Analysis of the Evolution of
Peer-to-Peer Systems

o SR

Proseminar
“Peer — to — Peer Information Systems”
WS 04/05
Prof. Gerhard Weikum

Speaker : Emil Zankov
Tutor : Sebastian Michel

i Talking Points

= Motivation

= Related Work
= Problems

= Analysis

= Summary

What is an Ideal P2P
i Network?

= Running continuously forever

= Efficient lookups

= Allow node to join and leave

= Properly rearranging the ideal overlay

i Motivation

= A P2P network works well when the
nodes join sequential, but what is if this
happen concurrently?

= The overlay is no more ideal if fault
OCCcur

= What happens if faults accumulate

= A real P2P system is almost never in
ideal state

i Goals

By existence of concurrent join und
unexpected departure to guarantee:

= Efficient lookups
s Connected Network
= Small number of idealization rounds

i Related Work

= Node join and leave only at well-behaved
network (Plaxton et al. 1997)

= Fault tolerance only if |joining nodes| >
|departing nodes|(Saia at al. 2002)

= Maintenance using an central server
(Pandurangan et al. 2001)

i The Chord P2P System

Finger Table 7

start | int | succ
0O |[01)] 3
1 [1,3)| 3
3 [3,7)| 3

Finger Table 6

Finger Table 3

start | int | succ
7 |[70)] 7
0 |[02)]| 3
2 |[[26)]| 3

start | int | succ
4 |[45) | 6
5 |[57)| 6
7 | [73)| 7

i Half-Life Definition

Given a /M node system at time t

= Doubling time(DT) — a time from t
required for N additional nodes to join

= Halving time(HT) — a time from t
required for A2 live nodes to depart

= Half-Life is Min(DT,HT)

Half-Life is a coarse factor of the rate of
change of a system

‘L Loopy Problem

= Loopy states
=« Weakly ideal
« Strong ideal

= Reasons
« Impl. Bugs
= Breakdown of
join/depart Model
= Low probability events

32

‘L Appendages Problem

= Recently joined
nodes

= Non empty tree
rooted at any
node

i Failure Problem

= Split the Network
= Inconsistent lookup

i The Ideal Chord State

= Connectivity
= EXist path between any two nodes

= Randomness
= Independently and uniformly distributed nodes

= Cycle sufficiency
= Every node is on the cycle
= Non-loopiness
= VU € Cyc = —3v:V € (U, u.successor)

i The Ideal Chord State

= Successor list validity

» Every wu.successor_/ist contains the first
c*log nodes that follows v, c=0(1)

= Finger validity
= The first node following
u+2"" is stored as w.finger{i]

i A Failure Model Definition

= Successor list validity
M Every |LU|Z(C/3)*|09N

= Every L.contains exacly the first | L] live
nodes that follow v

= Finger validity
« If w.finger/i]is alive then it's the first live
node following u+2'*

i A Pure Failure Model

i Lemma

For an /Vnode network in with failure, occur
N2 oblivious failures during Q(log/N\)
idealization rounds, then:

=> Throughout this process, /ind_successor(q)
returns the first living successor of g in O(log/)
time

=> Resulting network is in cycle with failures state

i A Pure Join Model

O(log/) incorporating
rounds

O(log2N) time fully
incorporating

i A Join Model Definition

= |A=0O(logN)
= The finger are correct with respect

to a constant fraction of the nodes
on the system

A. — appendage nodes rooted at u

i Lemma

For a Vnode network with appendages,
suppose that during Q(log2/N\) rounds of
idealization AV nodes join the network, then:

=> Throughout this process, find_successor(q)
returns in Alog/NV) time the successor s€Cyc
or a € As

=> the resulting network is in cycle with
appendages state

i Proof

= O(logN) time to
find any old node

= O(logNV) round to
incorporate the
new nodes from
the appendages

i A Dynamic Model Definition

= Union from the Join Model and the
Failure Model

= Cycle sufficiency

= For any consecutive cycle nodes us.....Uwgw
logN

-~ 2|A,|=0(logN)

i Theorem

A network of /A nodes in cycle with appendages
and failures state, allow up to NV oblivious joins

and N2 failures at time over D*log2/N
(D=0(1))idealization rounds, then:

=> find_successor(q) returns the first living

successor of gin (logN) time
=> The resulting network is in cycle with

appendages and failures state

Proof

= Incorporation of node from each
appendage in each round is not sure,
since cycle node fails P

i Proof

= Cycle nodes fails,
causing their
appendages merge
together

i Summary

= The Chord system works good in
existence of dynamic departures and joins
= Resolve queries efficient O(log/A) time

= The maintenance work can be reduced by
logarithmic factors

Thanks?

Questions?

i Summary

= The Chord system works good in
existence of dynamic departures and
joins
= Resolve queries efficient O(log/A) time

= The maintenance work can be reduced by
logarithmic factors

= How can we find the Half-Life?

i Proof

= Connected Network since
= log/Nlive entries in successor_list
= nodes fail with constant probability

» U.find_successor(k) is efficient

= the next node’s i-th finger is up with 1/2
probability

= each forwarding halves the distance
s Clean the old failures in successor /ist

i Proof

= An NV Node weak ideal
network without loopy
states have N
successor pointer

i Theorem

Within O(N-<) rounds of strong idealization,
an arbitrary connected Chord network
becomes strongly ideal

i How to Find a Loopy State

= A Self Search

. predecessor

