
Analysis of the Evolution of
Peer-to-Peer Systems

Proseminar
“Peer – to – Peer Information Systems”

WS 04/05
Prof. Gerhard Weikum

Speaker : Emil Zankov
Tutor : Sebastian Michel

Talking Points

Motivation
Related Work
Problems
Analysis
Summary

What is an Ideal P2P
Network?

Running continuously forever
Efficient lookups
Allow node to join and leave
Properly rearranging the ideal overlay

Motivation

A P2P network works well when the
nodes join sequential, but what is if this
happen concurrently?
The overlay is no more ideal if fault
occur
What happens if faults accumulate
A real P2P system is almost never in
ideal state

Goals

By existence of concurrent join und
unexpected departure to guarantee:

Efficient lookups
Connected Network
Small number of idealization rounds

Related Work

Node join and leave only at well-behaved
network (Plaxton et al. 1997)
Fault tolerance only if |joining nodes| >
|departing nodes|(Saia at al. 2002)
Maintenance using an central server
(Pandurangan et al. 2001)

The Chord P2P System

3[2,6)2

3[0,2)0

7[7,0)7

succintstart

Finger Table 6

0

4

2

5

6

1

7[7,3)7

6[5,7)5

6[4,5)4

succintstart

Finger Table 3

3[3,7)3

3[1,3)1

3[0,1)0

succintstart

Finger Table 7

7

3

Half-Life Definition

Given a N node system at time t
Doubling time(DT) – a time from t
required for N additional nodes to join
Halving time(HT) – a time from t
required for N/2 live nodes to depart
Half-Life is Min(DT,HT)

Half-Life is a coarse factor of the rate of
change of a system

Loopy Problem

Loopy states
Weakly ideal
Strong ideal

Reasons
Impl. Bugs
Breakdown of
join/depart Model
Low probability events

1

8

21

14

48

56

32

Appendages Problem

Recently joined
nodes
Non empty tree
rooted at any
node

Failure Problem

Split the Network
Inconsistent lookup

The Ideal Chord State

Connectivity
Exist path between any two nodes

Randomness
Independently and uniformly distributed nodes

Cycle sufficiency
Every node is on the cycle

Non-loopiness
successor)u(uv v Cycu .,: ∈¬∃⇒∈∀

The Ideal Chord State

Successor list validity
Every u.successor_list contains the first
c*logN nodes that follows u, c=O(1)

Finger validity
The first node following

is stored as u.finger[i]1i2u −+

A Failure Model Definition

Successor list validity
Every |Lu|≥(c/3)*logN
Every Lu contains exacly the first |Lu| live
nodes that follow u

Finger validity
If u.finger[i] is alive then it’s the first live
node following 12 −+ iu

A Pure Failure Model

1

5

7
8

10

12

14

15751

5115

11514

151412

141210

12108

875

5115

875

1087

12108
151412

151210

751

12107

11514

71

114
1410

107

N node networkN/2 nodes fail1/3 live successor1 Idealization round2 Idealization and clean

Lemma

For an N node network in with failure, occur
N/2 oblivious failures during Ω(logN)
idealization rounds, then:

=> Throughout this process,find_successor(q)
returns the first living successor of q in O(logN)
time

=> Resulting network is in cycle with failures state

A Pure Join Model

O(logN) incorporating
rounds
O(log²N) time fully
incorporating

Network with appendages1 incorporating round2 incorporating round3 incorporating round

A Join Model Definition

)(log NAu Ο=
The finger are correct with respect
to a constant fraction of the nodes
on the system

uAu at rooted nodes appendage−

Lemma

For a N node network with appendages,
suppose that during Ω(log²N) rounds of
idealization N nodes join the network, then:

=> Throughout this process, find_successor(q)
returns in O(logN) time the successor s Cyc
or a As

=> the resulting network is in cycle with
appendages state

∈
∈

Proof

O(logN) time to
find any old node
O(logN) round to
incorporate the
new nodes from
the appendages

A Dynamic Model Definition

Union from the Join Model and the
Failure Model

Cycle sufficiency
For any consecutive cycle nodes u1.....ulogN

=>)(log
log

1
NA

N

i
ui

Ο=∑
=

Theorem

A network of N nodes in cycle with appendages
and failures state, allow up to N oblivious joins
and N/2 failures at time over D*log²N
(D=O(1))idealization rounds, then:

=> find_successor(q) returns the first living
successor of q in O(logN) time

=> The resulting network is in cycle with
appendages and failures state

Proof
Incorporation of node from each
appendage in each round is not sure,
since cycle node fails

Proof

Cycle nodes fails,
causing their
appendages merge
together

Summary

The Chord system works good in
existence of dynamic departures and joins

Resolve queries efficient O(logN) time
The maintenance work can be reduced by
logarithmic factors

Thanks?

Questions?

Summary

The Chord system works good in
existence of dynamic departures and
joins

Resolve queries efficient O(logN) time
The maintenance work can be reduced by
logarithmic factors

How can we find the Half-Life?

Proof

Connected Network since
logN live entries in successor_list
nodes fail with constant probability

u.find_successor(k) is efficient
the next node’s i-th finger is up with 1/2
probability
each forwarding halves the distance

Clean the old failures in successor_list

Proof

An N Node weak ideal
network without loopy
states have N
successor pointer

10

15
2

6

8
s[0]=15

s[0]=2

s[0]=6
s[0]=8

s[0]=10
s[1]=8

Theorem

Within O(N²) rounds of strong idealization,
an arbitrary connected Chord network
becomes strongly ideal

How to Find a Loopy State

A Self Search

u

w
w.predecessor

