
GridVine: Building Internet-Scale Semantic Overlay Networks

- Introduction
- Overview of our Approach
- The P-Grid P2P system
- Semantic Support
- Semantic Interoperability
- Related Work
- Summary

Introduction

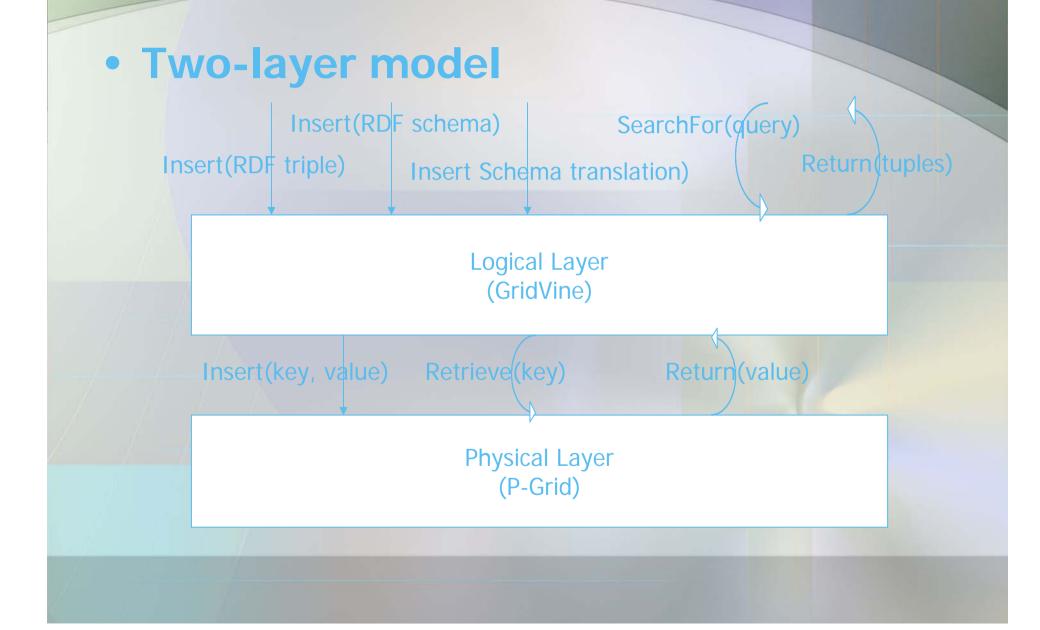
What is semantic Overlay Network?

Schema mapping

Introduction

- Based on federated databases
- Realization of semantic overlay networks in order to enable semantic interoperability
- Key aspect: data independence
 - logical layer:
 - supports semantic interoperability;
 - provides semantic gossiping
 - /physical layer:

provides operations exploiting a structured overlay network, P-Grid


Introduction

- Requires mappings of operations and data to the physical layer
 - Introduction of a specific name space present in the peer space
 - The mapping of data and metadata to routable keys

- The implementation of traversals of the semantic network for querying using intermediate schema mapping

- Introduction
- Overview of our Approach
- The P-Grid P2P system
- Semantic Support
- Semantic Interoperability
- Related Work
- Summary

Data Independence

Data Independence

- P-Grid is an efficient, self-organizing and fully decentralized access structure
- GridVine uses two of P-Grid's basic functionlities: Insert(key, value) and Retrieve(key)
- Choose RDF/RDFS as languages to encode metadata and vocabulary definitions in GridVine

Decentralized Semantics

Schema inheritance

- provides GridVine with basic schema reusability and interoperability
- Semantic Gossiping
 - applied to foster semantic
 - interoperability in decentralized settings
 - Query forwarding
 - iterative forwarding
 - recursive forwarding

- Introduction
- Overview of our Approach
- The P-Grid P2P system
- Semantic Support
- Semantic Interoperability
- Related Work
- Summary

The P-Grid P2P system

- GridVine uses P-Grid system as physical layer
- P-Grid is based on the principles of distributed hash tables(DHT)
- Peers refer to a binary tree structure
- Each peer p ∈ P is associated with a leaf
- Each leaf corresponds to a binary string $\Pi \in \Pi$
 - --> each peer associated with a path
- Each peer stores a set of data items δ (p)
 For d ∈ δ (p) binary key key(d) has Л(p) as prefix

- Introduction
- Overview of our Approach
- The P-Grid P2P system
- Semantic Support
- Semantic Interoperability
- Related Work
- Summary

Semantic Support

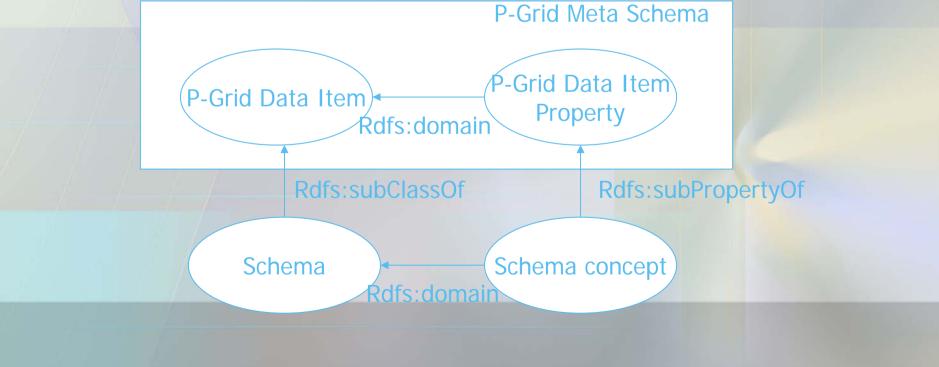
- Metadata Storage
 - URI Schemes p-grid ://, for resource, p-grids://, for schema-elements
 - all resources identified by P-Grid URIs
 - Example :

P-Grid resource 11110101(subject) is entitled(predicate) Rain, Stream and Speed(object) <?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdfsyntax-ns#">

<rdf:Description rdf:about="pgrid://11110101"> <Title xmlns="pgrids://01001101:bmp#">Rain, Steam and Speed</Title>

</rdf:Description>


</rdf:RDF>

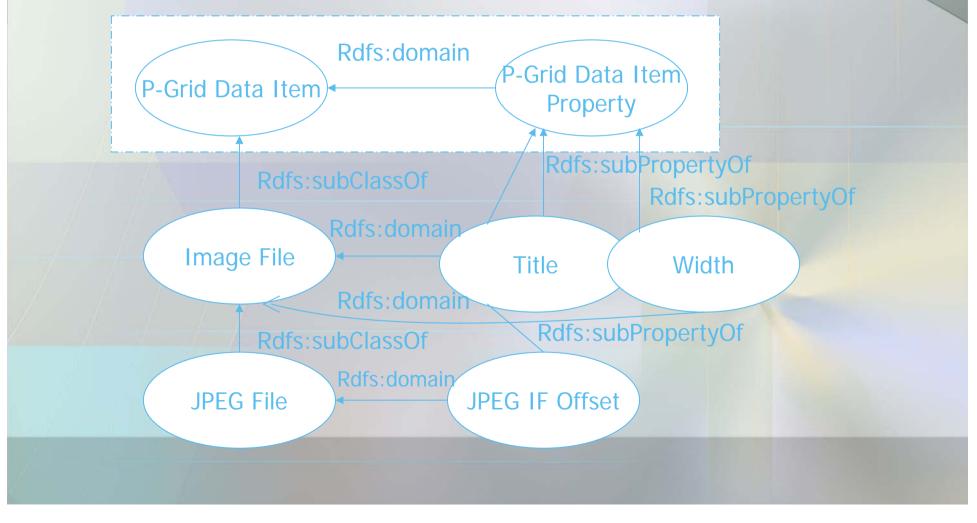
Metadata Storage

- We reference each individual triple three times, generating seperate keys based on their subject, predicate and object values
- Insertion operation of a triple t ∈T
 Insert(t) = Insert(t_{subject}, t), Insert(Hash(t_{predicate}),t),
 Insert(Hash(t_{object}), t)

Schema Definition And Storage

- Schematic information in GridVine is encoded using RDFS
- P-Grid meta-schema and its relation to user-defined RDF schemas

Resolving Queries in GridVine


- Simplest query with one bound variable SELECT ?y
 WHERE (<p-grid://01101000>, ?y, ?z)
 return all the predicates used to annotate data item 01101000
- Implementation
- Subject ,predicate and object can all be replaced by variables which may be bound or not

- Introduction
- Overview of our Approach
- The P-Grid P2P system
- Semantic Support
- Semantic Interoperability
- Related Work
- Summary

Semantic Interoperability

Schema Inheritance

P-Grid Meta Schema

Semantic Gossiping

- Aims at establishing global forms of agreement starting from a graph of purely local mappings among schemas
- Semantic neighbourhood
- Network can be seen as a directed graph of translations
- Two interesting properties :

- Transitivity allows for the forwarding of queries to semantic domains for which there is no direct translation link

Check the guality of translations

Semantic Gossiping

- Translation links are stored as OWL documents
 - <rdf:RDF xmlns:owl ="http://www.w3.org/2002/07/owl#" xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntaxns#">
 - <Image_Description xmlns="pgrids://10000101:exif#"> <owl:equivalentProperty rdf:ID="m1" rdf:resource="pgrids://01001101:bmp#Title"/>
 - </Image_Description>
 - <Exif_Image_Width xmIns="pgrids://10000101:exif#"> <owl:equivalentProperty rdf:ID="m2" rdf:resource="pgrids://01001101:bmp#Width"/> </Exif_Image_Width>
 - </rdf:RDF>

- Introduction
- Overview of our Approach
- The P-Grid P2P system
- Semantic Support
- Semantic Interoperability
- <u>Related Work</u>
- Summary

Related Work

• Hyperion:

proposes an architecture and outlines a set of challenges for decentralized data management in P2P Systems

• SWAP:

Approach combining P2P and Semantic Web techniques

• Edutella:

employs a super-peer topology and facilitates the clustering of data based on ontology, rule, or query

Related Work

- PeerDB:
 - facilitates sharing of data without shared schema;
 - combines the power of mobile agents into P2P systems to perform operations at peers' sites
- Pizza peer data management project:
 - takes an approach to semantic
 heterogeneity that is similar to Semantic
 Gossiping;

provides no measures to judge correctness

Summary

- Introduction
- Overview of our Approach
 - Data Independence
 - Decentralized Semantics
- The P-Grid P2P system
- Semantic Support
 - Metadata Storage
 - Schema Definition And Storage
 - Resolving Queries in GridVine
- Semantic Interoperability
 - Schema Inheritance
 - Semantic Gossiping
 - **Related Work**