
Selfish Caching in Distributed Systems: A

Game-Theoretic Analysis

Write-up

Odysseas Papapetrou, Tutor: Prof. Gerhard Weikum

December 30, 2004

Abstract

Original Document: Selfish Caching in Distributed Systems: A
Game-Theoretic Analysis [6], from B. Chun, K. Chaudhuri, H. Wee, M.
Barreno, C. Papadimitriou and J. Kubiatowicz

The authors analyze the caching problem in P2P systems when the peers
behave selfishly, trying to maximize their own gain. They model the prob-
lem using a game-theoretic approach, and show that the game reaches a
Nash Equilibrium. Following, they enhance the system with a payment
methodology, which tunes the system toward a better solution.

1 Introduction

The nodes in distributed systems are usually characterized from a common goal,
and follow protocols for achieving that goal. As such, the protocols may easily
become optimized toward a better, more efficient, overall strategy. However,
with the recent advances in decentralized P2P systems, existence of protocols
in the application layer is not straight-forward. The peers may behave selfishly,
that is, deny obeying any protocols, trying to maximize their own profit, and
minimize their own cost. Namely this can introduce an important extra load in
the system, usually referred as price of anarchy, and reduce the overall system
performance.

The authors of this work study the problem of caching in a distributed P2P
system, when the nodes behave selfishly. They model the above problem using a
game-theoretic approach and prove that the system reaches a Nash Equilibrium.
Later, they introduce a payment model which can tune the system to a better
solution.

This introduction is followed by a short description of related work. We
then give some basic notions on game theory. In section 4 we describe how
our problem can be modeled and processed as a game. Then, in section 5 we
enhance our problem with payments in order to tune to better solutions. Finally,
we conclude with some discussion on this work and future plans.

1



2 Related Work

This work combines two distinct research areas: (a) peer to peer systems, and
(b) caching systems. Both the subjects are widely studied in the past, and there
have been many commercial applications of the research findings.

Peer-to-peer systems have recently attracted a considerable attention from
the CS community. Their ability to robustly distribute and efficiently solve
difficult problems by employing the computing power of many desktop PCs
without central coordination, makes them very attractive for many scientific
applications. The most prominent use of P2P systems is for information shar-
ing [2, 1]. Another use of P2P systems is for building distributed file systems,
such as OceanStore [7] and Pangaea [17].

One of the most difficult problems in P2P systems is optimization. In most
of these systems, peers can behave selfishly, putting their own benefit over the
social benefit, and over any community protocol. The most dominant practice
for optimizing these systems is by the use of incentives. The whole idea of
incentives is simple: since the peers do not want to follow good behavior, find a
way to make them realize the benefit. For example, Golle et al. [10], studying on
file-sharing P2P systems, propose, among others, to reward the participants for
sharing-uploading data to the system with a micro-payment mechanism. For the
same problem, in many modern P2P file-sharing systems such as eMule [1], the
participants get rewarded for offering to the system (i.e. uploading or sharing
files) by getting a better downloading bandwidth. Buragohain et al. in [5]
propose another way of providing incentives to the peers to make them offer to
the system. The proposal is based in game theory, and leaves out of the Nash
Equilibrium any peers that do not offer enough to the system (these peers will
not be satisfied on joining the system).

Caching on the other hand is one of the most common approaches in at-
tacking performance-related problems in Internet. Furthermore, caching can be
used for improving availability and reliability. However, most of the caching
schemes are usually centralized. For example, NetCache [3] and Squid [4] are
usually deployed in a dedicated machine (or a number of machines) and strictly
serve the needs of an organization.

Having a distributed caching system is also studied in the past. Squirrel [12]
uses a P2P technique to create a decentralized caching system. Squirrel enables
the machines (players) to share their local web browser caches, in order to
efficiently form a P2P caching system. The Squirrel protocol uses Pastry [16] for
implementing P2P distributed hashing and efficient routing. However, Squirrel,
as most of the other distributed caching systems, assumes perfect obedience of
the peers to the protocol. As such, a well-designed protocol may optimize the
system [11, 13, 15, 14, 9].

2



3 Game Theory

Game Theory offers a method of modeling and processing problems which in-
clude a number of independent components. Each component is modeled as a
player in a multi-player game where the players have a specific set of goals to
complete i.e. a number of resources to acquire. The set of the possible actions
of each player is well-defined from the beginning of the game, and each action is
usually accompanied by a cost. The players try to satisfy all their goals with the
minimum possible cost (in some cases, the problem becomes a minimum-cost,
maximum profit problem).

Game theory does not make any assumptions for the coordination of the
players. More specifically, we assume that each player is completely free to
follow his own strategy, without necessarily communicating, coordinating, or,
at any other way, respecting any other player (unless such rules are defined from
the game setup). Being selfish, the players do not try for the best result for the
community (i.e. choose a configuration that will minimize the social cost).
At the course of the game the players can dynamically adopt their strategy,
according to their opponents’ strategies, always seeking their own minimal costs.

We will now describe some basic notions in game theory, which we will use
while modeling the selfish caching problem:

Rational players: Each component in the multi-component system is called
a player. By the word rational we emphasize that the players will only
select an action if that action will be for their own profit i.e. minimize
their costs (according to their current knowledge).

The possible actions: Each player has a number of possible actions to do, in
order to succeed his goals. Each action is usually accompanied by a cost,
which is known to the player beforehand.

The player’s strategy: The strategy is a rule-like representation of the play-
ers behavior on the game i.e. if (buying-cost≤renting-cost) then buy it
else rent it. The strategy of each player defines his contribution to the
game. The players dynamically adopt their strategies (according to other
players’ strategies), seeking the minimum personal cost for themselves.

The personal cost: The personal cost for each player is the sum of all the
costs that occur from the player’s strategy.

The social cost: Social cost is the sum of all the personal costs for all the
players. Namely this is the cost we would like to minimize in our system.

The social optimum: The social optimum is the setup (may be more than
one) that achieves the minimum possible social cost in our game (not
necessarily an equilibrium and not necessarily reachable according to the
rules of the game).

A Nash Equilibrium: A Nash Equilibrium is the state of the system where
no player can benefit by changing his strategy, supposed that the other

3



players keep their strategies unchanged (all the players have reached a
local minimum). Intuitively, this is the state of the game where every
player can no longer minimize his cost, without first the other players
changing their strategy ⇒ none of the players change their strategies any
more.

The price of anarchy The price of anarchy is defined as the ratio of the worst
Nash Equilibrium social cost (the maximum cost that can be a Nash Equi-
librium for the system) to the cost of the social optimum

4 Modeling the Basic Game

Our problem includes a number of distributed peers (players) and a number of
documents. Each peer needs to have access to some of the documents. Acces-
sibility in the documents can be provided in two ways: (a) the peer can fetch
the document every time it is needed from another peer that already cached the
document, or (b) the peer can decide to cache the document itself, and keep it
updated. Each peer must decide which of the two approaches will be cheaper
for each document it needs, and implement its strategy in order to minimize its
overall cost.

More formally, our game is defined as follows:

Players: Each peer is a player in the game.

Possible actions: The peers have only two possible actions. They can either
fetch a document whenever it is needed or cache it locally.

The players’ strategy: Each peer’s strategy is defined as the documents which
the peer decides to cache locally. Each peer decides for the strategy which,
according to the expected requests and costs for each resource, minimizes
the cost for the peer.

The strategy profile: A strategy profile S = (S1, S2, ..., Sn) is the set of the
decided strategies for each peer

The personal cost: The personal cost for each peer is the sum of the cost for
caching the documents that are to be cached from the peer according to
its strategy and the cost for fetching all the other documents whenever
needed.

The social cost: Social cost is the sum of all the personal costs for all the
peers. (p1, p2, ..., pn).

The configuration of a document: A configuration X of a document d is
defined as the set of the peers that decide to cache d.

Our setup also includes the following rules:

4



1. Each peer is aware of the expected requests per resource (this can be done
by history-log analysis).

2. Each peer is aware of the cost for acquiring each resource from a remote
source.

3. Each peer is aware of the placement cost for each resource (that is, the
cost for caching and maintaining a fresh copy of a resource).

4. The peers do not have a capacity limitation, that is, each peer can cache
an unlimited number of resources.

We will now show how is the cost calculated for each peer. We will also
transform our problem to a simpler problem, for matters of easier handling, and
show how we can reach to a Nash Equilibrium.

4.1 The Cost Model

The whole game is actually motivated by the effort of each peer to reduce
its personal cost, while still having all the needed resources. Thus, the most
important part of the game, which actually defines the course of the game is
the cost for each peer to acquire a resource. We have the following two cases:

• The peer caches the resource locally. In this case, the cost is called place-
ment cost. The placement cost of peer i to cache resource j is noted by
aij and defined as follows:

aij = k1i + k2i

UpdateSizej

ObjectSizej

1

T
Pj

∑

k

wkj

where
k1i is the installation cost
k2i is the relative weight between the maintenance cost and the installa-
tion cost
Updatesize is the size of an update
ObjectSize is the size of an object
T is the update period
Pj is the number of writes over the number of reads
wkj is the(expected) number of requests of peer k for document j

While the placement cost can be correctly calculated with the above for-
mula, we will now simplify the problem by assuming that the placement
cost for all the document and peer combinations is stable and equals to
α. So, for the rest of this work, we will assume

aij = α ∀ i : peer, j : document

5



• The peer fetches the resource from the nearest remote cache. In this case,
the cost for the peer i to fetch resource j is equal to the distance between
the peer and the nearest remote cache that includes the resource, noted
by dil(i,j), where l(i, j) is the peer nearest to i that caches document j.
The term nearest always refers to the fetching cost distance (the peer with
minimum fetching cost distance from i).

According to this cost model, the solution of the game (the social optimum)
can be mathematically found by Integer Programming.

Single-object game: Since peers do not have a maximum capacity, we can
see the game of caching for each of the resources as a different game [8]. We
will solve the caching problem for each of the resources, and then combine the
solutions to reach to a solution for the multi-object game. More accurately, a
Nash equilibrium for the multi-object game is the cross product of the equilibria
for the single-object games. Thus, from now on, we will study the easier, single-
object (basic) game. The cost of each peer in the single-object game is now
simplified in the following:

Ci(S) = αSi + wijdil(i,j)(1 − Si)

4.2 Analysis

It should be clear by now that our game somehow “evolves”. In each step of
the game, each peer may decide to cache or de-cache a resource depended on
the decisions-strategies of the other peers. We are interested to see if the game
reaches a stable situation, where none of the peers is interested to change its
strategy (cache or de-cache any resources) supposed that all other peers keep
their strategies stable. This situation is called Nash Equilibrium.

Each game can have more than one Nash Equilibria. Each Nash Equilibrium
denoted with (S∗

i , S∗

−i) specifies a configuration X (that is, a collection of peers
which locally cache the resource). The set of all pure strategy Nash Equilibrium
configurations is denoted with ε. We know that for all configurations that belong
to ε, a peer caches a document iff the placement cost is less or equal to the cost
occurred for fetching the document each time it is needed from the nearest peer
that caches the document (or else, the peer could achieve a lower cost by altering
its strategy and fetching the resource from a near cache). More formally, for
any Nash Equilibrium configuration

X ∈ ε ⇔ ∀i ∈ N, ∃j ∈ X s.t. dji ≤ α and ∀j ∈ X, ¬∃k ∈ X s.t. dkj < α

where N denotes the set of peers and X is a configuration.
We can easily show that there exist at least one Nash Equilibrium in the

basic game. In order to produce one Nash Equilibrium we do the following:
1. Ignore nodes with zero demand

2. Calculate βx = α
wxj

∀x : peer

3. Order list of βx ascending

4. Cache the document on the peer with lower βx in the list

6



5. Remove all the peers from the list that can get

the object from the new cache for cost lower than α

6. Repeat from 4 until the list is empty

When the above algorithm finishes, all the peers are pleased, and the system
stabilizes. This is because all the peers that did not cache can get the docu-
ment from a cache for cost less than the placement cost (α) and all the peers
that cached the document will have more personal cost when de-caching the
document.

We now want to evaluate our Nash Equilibrium solutions, and see how close
they are to the social optimum solution. For the evaluation, we will use the
social cost definition, and check how much worse are our Nash Equilibria from
the social optimum. The social cost of a strategy profile (the set of strategies
for all the peers) for the single-object game is defined as the sum of the costs
for each peer, that is:

n−1∑

i=0

Ci(S)

where Ci(S) is the cost incured by server i. The social optimum strategy profile
is the strategy profile that minimizes the social cost (not necessarily a Nash
Equilibrium) and the social optimum cost is the cost of that strategy profile.

A Nash Equilibrium does not necessarily suggest the configuration resulting
to the social optimum. There are even cases where the social optimum is not
a Nash Equilibrium of the basic game. For example, in the system shown in
Figure 1, the social optimum is when peer 1 decides to cache the system (the
social cost will be α + 5). However, such a configuration cannot be a Nash
Equilibrium, since peer 1 can fetch the resource for α − 2 instead of caching it
for α.

Figure 1: The Social Optimum is not always a Nash Equilibrium in the basic
game

7



We can also show that the Price of Anarchy depends on the network topology.

For example, in Figure 2 the PoA is 1, while in Figure 3, the PoA is 3(α−1)
2α

(in our
examples, for simplification purposes, we assume that all nodes have the same
demand wij = 1 for our document). More specifically, the PoA is bounded by

O(n
D

D+1 ), where D are the dimensions of the topology, and is asymptotically
approaching O(n) for high-dimensional network topologies.

Figure 2: Star Topology: Peer 1 caches the resource. The Price of Anarchy is 1

Figure 3: If peer 1 (or 2 or 3) caches the resource, none of the peers 4, 5, 6
decide to cache the resource in any Nash Equilibrium. They always get the

resource from peer 1. The Price of Anarchy is 3(α−1)
2α

8



5 Enhancing the Game with a Payment Model

We have seen that the Nash Equilibrium in the basic game does not necessarily
succeed a low price of anarchy. In fact, the basic game can lead to very inefficient
solutions. In order to try to reach to better solutions, we will now enhance the
problem with a payment model. Again, the problem will be modeled using game
theory. Then, we will evaluate the new solutions and compare them with the
solutions of the basic game.

5.1 Modeling the payment-enhanced game

In the basic game, each peer needing a resource had only two options, a) to
fetch the resource from a remote source, or b) to keep a local copy - cache of
the resource. As such, the game did not encourage any other cooperation of the
peers, which could potentially lead to better solutions.

The cause of inefficient solutions in the basic game was under-supply. Since
the peers did not collaborate, they did not share the placement costs. Thus,
the unshared placement cost was usually higher from the fetching cost for the
majority of the peers. Now, in order to encourage cooperation we introduce a
third option for the peers. The peers now can also bid to a neighboring peer,
to cache the resource for them.

The bidding mechanism is simple. Each peer that needs access to a resource
and does not have strong incentives to cache it locally (i.e. fetching is less
expensive that caching) can promise some money to a neighboring peer (we call
this action “bidding”), in order to persuade the second peer to cache it, and
then get it from there. Then, when the second peer receives a sufficient amount
of bids to cache a resource, it can decide to cache the resource and collect the
bids (the bids on a peer are collected iff the peer decides to cache).

The payment-enhanced game adds three more decisions to the peers. The
peers must first decide on their threshold to cache. The threshold to cache is
the minimum value of the bids received from a peer, over of which, it is more
profitable for the peer to cache the document locally (and collect the bids) rather
than fetch it each time it is needed. In order to be profitable for the peer to
cache instead of fetching the document (our peers still behave selfishly), each
peer decides the threshold to cache, so that the following is true:

PlacementCost − ThresholdToCache ≤ FetchingCost

Each peer also needs to decide which peer to bid on, and the maximum bid
it is able to offer to each neighbor so that it can still have a profit compared
to fetching the document from another cache or caching it locally. The best
neighbor for bidding on would be the nearest neighbor (with the minimum
distance from the peer). Furthermore, in order for the peer to have profit on
bidding, the maximum bid would be:

dist(Peer,BestNeighbor) + MaximumBid ≤ min(Fetching, P lacementCost)

9



Having added the bidding mechanism in the basic game, we need to redefine
some of our notations. The strategy now for each peer (for the simplified single-
document game) is a triple of the following form: (vi, bi, ti) ∈ (N,ℜ+,ℜ+),
where
vi is the peer to bid on for caching the document,
bi is the value of the bid to vi,
ti is the threshold for caching the document.

The result of the payment-enhanced game must include not only the config-
uration for each document, but also the bids that are done. So, for each peer (for
the simplified single-document game) the result of the game is now:(Ii, vi, bi, Ri) ∈
({1|0}, N,ℜ+,ℜ+), where
Ii is whether the peer decided to cache the document or not,
vi is the peer to bid on for caching the document,
bi is the value of the bid to vi,
Ri is the bids the peer receives if it cached the document.

The personal cost for each peer now (always for the simplified single-document
game) is also adjusted to include the biddings:

Ci(S) = αIi + wijdil(i,j)(1 − Ii) + biIvi
− RiIi

where α is the placement cost, Ii is whether peer i decided to cache the document
or not, Ivi

is whether the peer vi (the peer that i bids on to cache the document)
cached the document or not, wij is the expected request for document j from
peer i, dil(i,j) is the distance between the peer and the nearest remote cache that
includes the resource, where l(i, j) is the peer nearest to i that caches document
j, bi is the bid value made from peer i to peer vi for caching the document,
and finally, Ri is the sum of the bids collected from peer i in order to cache the
document.

Since the bids received from all the peers and the bids made from all the
peers are always zero-sum, the social cost in the payment game is not affected.

5.2 Analysis

All the Nash Equilibria of the basic game are Nash Equilibria of the payment
game. This is true since the payment game can simulate the basic game in the
following way:

select any equilibrium of the basic game

for each peer that caches the document in the basic game

set caching threshold=0

for each peer that does not cache the document

set caching threshold=a

for all peers

set maximum bid=0

We can also show that the price of anarchy in the payment game is at least equal
to the price of anarchy in the basic game. Since all the Nash Equilibria of the

10



basic game are also Equilibria in the payment game, this means that, the worst
Nash Equilibrium in the basic game is also an Equilibrium in the payment game.
Furthermore, the optimal solution in the basic game is the same to the optimal
solution in the payment game (since the topology did not change). This results
to a price of anarchy (PoA) for the payment-enhanced game to be at least equal
to the price of anarchy in the basic game.

Furthermore, the payment-enhanced game can have worse Nash Equilibria
than the basic game. Figure 4 presents an example of such an equilibrium. In
the example, all the dashed lines represent connections which carry cost equal
to 1 (distance between the two peers is 1). The cost of all the other connections
is shown in the picture, and the cost for caching is α for all the peers. In the
payment-enhanced game, peers 1 and 10 can bid on peers 8 and 9 a value of α

4
in order to persuade them to cache the document. This will persuade both peer
8 and 9 to cache the document, but will lead to a Nash Equilibrium which is
not a Nash Equilibrium in the basic game (peers 8 and 9 can not possibly cache
the document at the same time in the basic game since they have distance less
than α). However, the new Nash Equilibrium has worse social cost than any
possible social cost in the basic game for this network topology.

Figure 4: The payment-enhanced game may have worse Nash Equilibria than
the basic game

However, we can show that we can always implement the social optimal
configuration in the payment-enhanced game. This was not the case in the
basic game i.e. the social optimal configuration was sometimes not a Nash
Equilibrium in the basic game (Figure 1). More precisely, any social optimal
configuration can be implemented now by distributing the difference of the place-
ment cost to the fetching cost for each peer that caches the document in the
social optimal as bids in the the peers that access the document from that
peer. This will give the necessary incentive in the right peers to cache, since
PlacementCost−Bids ≤ FetchingCost. Furthermore, no other peer will cache
since it can get the document from an existing cache for less cost than caching
locally (or else the initial social optimal configuration would not be optimal).

11



Furthermore, the Optimistic Price of Anarchy (OPoA) in the payment-
enhanced game is always 1. This is true since the social optimal configura-
tion is always implementable in the payment-enhanced game. This makes the
payment-enhanced approach promising for further work.

Simulations: Theory gives contradicting evaluations for the payment game.
As we already presented, while the payment-enhanced game has always Opti-
mistic PoA = 1 (which means that the social optimal is always implementable),
we can sometimes get worse Nash Equilibria than the basic game.

In order to get a better insight of the payment-enhanced game, the authors
perform large-scale simulations of both the games in varying network topologies,
with varying number of peers. From the simulations, the payment-enhanced
game seems to tune to better solutions compared to the basic game. More
specifically, the PoA in the basic game is usually higher than the respective PoA
in the payment-enhanced game for the same network topology. Furthermore,
the payment-enhanced game gives incentives to cache, thus usually creates more
replicas than the respective basic game (which usually reduces the PoA, since
the PoA is due to under-supply).

6 Discussion

This work is an important step toward modeling and tuning non-cooperative
P2P systems. With the recent advances in P2P systems and Internet, non-
cooperative distributed systems where the peers behave selfishly are more re-
alistic and more useful than the cooperative ones. Specifically non-cooperative
caching is well-suited for P2P systems, and can actually be used in many dis-
tributed applications. This work does not only offer on selfish caching for P2P
systems. The study, while focusing on the caching problem, presents an inter-
esting approach for optimizing many other P2P applications.

However, the authors make many assumptions, and thus impose important
constraints on the selfish caching problem in order to model and solve it as a
game. More specifically, the following assumptions are made:

Server Congestion: Server Congestion is ignored in the problem. While the
optimal cost-oriented solution in some setups can be to cache the doc-
uments in some central peers (i.e. in a star topology), this overloads
these peers, and can cause severe problems. The overall system cost is
importantly reduced in such cases. However, this is not taken under con-
sideration in this work. This problem (alone) is investigated in [18].

Placement Cost: The authors assume that the placement cost for all the peers
is equal. This importantly simplifies the game modeling but is non-realistic
for the caching application. The game-theoretic approach can easily be
used for studying the problem with varying placement cost.

Caching Capacity: The authors use peers with no capacity. While this as-
sumption is essential for enabling the game-theoretic approach (otherwise,

12



we could not simplify our problem to a single-document caching problem),
it can make the study not suitable for realistic systems.

Stable demand of all peers: We assume that all peers have the same de-
mand. Enhancing the approach to enable varying demands over all peers
is possible with game theory.

7 Conclusions and Future Work

The authors of this work used a game-theoretic approach to study the selfish
caching problem. They initially model the selfish-caching problem as a non-
cooperative game, where the peers can either cache or fetch the documents from
another cache. Investigation on the basic game shows that the price of anarchy
can be high. Then, they enhance the basic game with a payment option, which
encourages cooperation, and gives incentives to cache. The enhanced game
sometimes has even higher PoA than the basic game. However, the enhanced
game always has Optimistic PoA equal to 1 (the social optimum can always be
implemented).

The authors propose future enhancements on this work. First, they want
to remove some of the assumptions made in the payment system (section 6).
For example, they want to study the problem where the peers have varying
placement costs and demands (we assumed that demand and placement costs
are the same for all the peers), or when the peers have a maximum caching
capacity. Furthermore, they want to take server congestion into account, which
is completely ignored in the current system, and can lead to completely different
solutions.

The authors also propose more study on the aggregation effect, when several
peers are grouped and studied as one. They believe that the aggregation effect
may reach to better Nash Equilibria. Moreover, the authors propose bigger
simulations, with different network topologies, and want to study if forcing
some distance constraints can reduce the PoA.

References

[1] eMule Peer-to-peer file sharing system, available at http://www.emule-
project.net.

[2] Gnutella P2P File Sharing, available at http://www.gnutella.com/.

[3] NetCache Network Cache Appliance, available at
http://www.netapp.com/.

[4] SQUID Web Proxy Cache, available at http://www.squid-cache.org/.

[5] Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. A Game
Theoretic Framework for Incentives in P2P Systems. In 3rd International
Conference on Peer-to-Peer Computing, 2003.

13



[6] B. Chun, K. Chaudhuri, H. Wee, M. Barreno, C. Papadimitriou, and J. Ku-
biatowicz. Selfish Caching in Distributed Systems: A Game-Theoretic
Analysis. In PODC, 2004.

[7] J. Kubiatowicz et al. OceanStore: An Architecture for Global-scale Persis-
tent Storage. In ASPLOS. ACM, 2000.

[8] A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The Complexity of
Pure Nash Equilibria. In ACM STOC, 2004.

[9] Michel X. Goemans and Martin Skutella. Cooperative facility location
games. In Symposium on Discrete Algorithms, pages 76–85, 2000.

[10] P. Golle, K. Leyton-Brown, and I. Mironov. Incentives for sharing in peer-
to-peer networks. In ACM Conference on Electronic Commerce, 2001.

[11] Steven Gribble, Alon Halevy, Zachary Ives, Maya Rodrig, and Dan Su-
ciu. What Can Databases Do for Peer-to-Peer? In WebDB Workshop on
Databases and the Web, 2001.

[12] Sitaram Iyer, Antony Rowstron, and Peter Druschel. Squirrel: A decentral-
ized peer-to-peer web cache. In 21st ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC), 2002.

[13] B. Ko and D. Rubenstein. A Distributed Self-stabilizing Protocol for Place-
ment of Replicated Resources in Emerging Networks. In ICNP. IEEE, 2003.

[14] V.N. Padmanabhan L. Qiu and G.M. Voelker. On the Placement of Web
Server Replicas. In INFOCOM. IEEE, 2001.

[15] B. Li, M.J. Golin, G. F. Italiano, and X. Deng. On the Optimal Placement
of Web Proxies in the Internet. In INFOCOM. IEEE, 1999.

[16] Antony Rowstron and Peter Druschel. Pastry: Scalable distributed object
location and routing for large-scale peer-to-peer systems. In International
Conference on Distributed Systems Platforms (Middleware), 2001.

[17] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming
Aggressive Replication in the Pangaea Wide Area File System. In USENIX
OSDI, 2002.

[18] Subhash Suri, Csaba D. Toth, and Yunhong Zhouy. Uncoordinated Load
Balancing and Congestion Games in P2P Systems. In Third International
Workshop on Peer-to-Peer Systems, 2004.

14


