
Autonomous Replication for High
Availability in Unstructured P2P Systems

(Paper by Francisco Matias Cuenca-Acuna, Richard P. Martin, Thu D. Nguyen)

Hristo Pentchev

Proseminar

Peer-to-Peer Information Systems

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

2

Motivation

P2P Comunity

I need
X

Has
somebody

X ?

Yes.Bye !

Please
give me

X !

We don’t have X.

§$%???
grrrr

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

3

Overview

Introduction
PlanetP
Autonomous Replication
Simulations

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

4

Introduction

P2P computing is getting important

Availability
Data availability
Peer availability in P2P communities

A decentralized and autonomous
replication algorithm
Increasing the availability of shared
data using this algorithm in weakly
organized systems is possible

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

5

Introduction

Naive idea
Replicate a file
Send the replicas randomly

The replication needs
Excess storage

Bandwidth

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

6

Introduction

Example:
Replicating a file 6 times in P2P community with
average peer availability 20% increases the file’s
availability to 79% but needs lots of bandwidth.

100GB + 600GB = 700GB
The availability is equal to the probability
that all peers having the file are offline.

Conclusion: Naive replication is not effective.

79,02097,018,01 7 ≈−=−=A

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

7

Introduction

How to improve the benefit of replication?

Erasure coding
Divide a file in m fragments
Code this m fragments in n (n > m), so that
the file could be reproduced with any m
(unique) fragments
Send the fragments to random peers

m n

divide code

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

8

Introduction

We win with erasure coding:

More availability

Less bandwidth

because constant changes to the online membership do not
require the movement of replicas any more

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

9

Overview

Introduction
PlanetP
Autonomous Replication
Simulations

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

10

PlanetP

Gossiping-based
publish/subscribe infrastructure

Maintaining the loosely synchronized global data
Gossiping in PlanetP - spreading new
information
Information needed by our algorithm:

Replica-to-peer mapping
Peer availability

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

11

PlanetP-Gossiping

PlaneP architecture

Local index = content of shared files

Global index = state of the community

local index global index

Node

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

12

Overview

Introduction
PlanetP
Autonomous Replication
Simulations

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

13

Autonomous Replication - Terminology & Assumptions

Nodes have hoard set and fragment
store

Hoard set – used by offline operations
Hoarding entire files

Fragment set - used by the algorithm
The size of the fragment sets is limited

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

14

Autonomous Replication - Terminology & Assumptions

Files have unique ID
Availability of fragments

)|()(yxytyAvailabilixtyAvailabili
Filesy
Fragmentsx

⊆=
∈
∈

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

15

Autonomous Replication

hoard setreplication store

Replicator

era
su

re
cod

e

hoard setexcess storage

Target

erasure code

erasure code

hoard setexcess storage

Target

hoard setexcess storage

Target

hoard set replication store

replication store

replication store

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

16

Autonomous Replication - The algorithm

The algorithm
Each member advertises IDs in the
global index (files + fragments)
Each member periodically estimates the
availability of its files and fragments
Each member periodically generates
random fragment of a random file and
pushes it to a random target (with its
availability)
The target saves the fragment or rejects
it

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

17

Autonomous Replication - Estimating the availability

Estimating the availability
Nodes insert/remove

and to/from the global index
Peers advertise their availability in the global index
Peers could either hoard a file or store only one
fragment of it
Peers go offline but not permanently
Peers are dropped from the global index after timeout

mfHashFile →)(_
mfHashFrag →)(_

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

18

Autonomous Replication - Estimating the availability

Note: Don’t work with duplicate fragments (small chance)

}))(_(|{)(
}))(_(|{)(
xGlobalIndemfHashFragmfF

xGlobalIndemfHashFilemfH
∈→=
∈→=

eofflineTimavgonlineTimeavg
eofflineTimavgPi ..

.
+

=

∑
∈

=
)(

1
fFi

iavg P
n

P

jn
avg

j
avg

n

mnjfHi
i PP

j
n

PfA −

+−=∈

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∏)1(1)(

1)(

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

19

Autonomous Replication - Fragmentation and replication

Fragmentation and replication
Choose a random file with availability
smaller then the wanted
Produce some fragment of this file using
erasure coding (n>>m)

Advantages of this kind of erasure coding:
1. Small probability of duplicating fragments
2. Usefulness of fragments
3. Easy to reflect changes in the community

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

20

Autonomous Replication - Target’s activity

Target’s activity
Receiving a request

If the replication store is not full then save the fragment
If the replication store is full then
compute the availability of the fragments in it

if

then reject the request
else we have the case that

then replace some fragment in the store with the new
one

But which one?

Aaverage _

10
__)_(AaverageAaveragefragmentnewtyAvailabili +≤

10
__)_(AaverageAaveragefragmentnewtyAvailabili +>

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

21

Autonomous Replication - Target’s activity

Weighted random selection
We make lottery with tickets divided in
two bowls like 80:20.
Every fragment receives the same
portion from the “small” one.
The tickets in the “big” bowl are shared
between the fragments having
availability bigger than the average
depending on their availability.
The “winner” must be ejected

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

22

Autonomous Replication - Target’s activity

Example:
We have 3 fragments a,b,c and 100 tickets:

Average availability (in nines) + 10%=0,76

So fragment a has the biggest chance to be rejected.

0,066,600,30,5c

0,196,61310,9b

0,736,66720,99a

Eviction
probability

Share
small pool

Share big
pool

Availability
in nines

Availability

)1(log. 10 tyavailabilininesNo −−=

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

23

Autonomous Replication - Optimizations

Optimizations on replicators
Including some weighted random
selection of files for replication
Choosing targets with free space in the
replication store

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

24

Autonomous Replication - Misbehaving peers

Misbehaving peers
Corrupting fragments

No consequences for the file reproduction
Wasted space

Pushing high available fragments
No consequences for the usage of replication store
Wasted bandwidth

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

25

Autonomous Replication - Misbehaving peers

Wrong information
Worst case: a peer advertises very high availability

and that it is hoarding a significant part from the
shared data

The community will not replicate this files
Much free storage for greedy peers
The peer will receive lot of requests for the files
it’s “hoarding”

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

26

Overview

Introduction
PlanetP
Autonomous Replication
Simulations

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

27

Simulations

Assumptions for the simulator
Synchronous replication’s attempt
Simplified message transfer timing simulation
Estimation of the availability every 10 min.
Erasure coding with m=10

Simulated communities

33,3%80,7%24,9%Node
availability

10 00050 00025 000No. Files

1001 0001 000No. Members

WorkgroupCorporateFile Sharing

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

28

Simulations

Results computed using equation 1 as analytical
model (Figure 2)

excess storage availability
CO 1,75X 3 nines
WG 6X 3 nines
FS 8X 3 nines

High members average availability increases the
availability

Figure 2

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

29

Simulations

Results from the simulation
excess storage availability

CO 1X 3 nines
WG 9X(uniform) 3 nines
FS 6X 3 nines

Figure 3
Server like peers increase the availability

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

30

Simulations

Centralized knowledge
Compare our algorithm (Rep) with one having
centralized perfect knowledge (Omni).

Less excess space used by Omni
Better minimum availability by Omni

Figure 3

Availability-Based Replacement
Compare our algorithm (Rep) with one replacing the
fragments in replication store by FIFO rule (Base).

Higher availability with Rep

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

31

Simulations

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

32

Thank you for your attention !

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

33

Figure 2

Simulations

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

34

Figure 3

Simulations

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

35

Figure 3

Simulations

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

36

Autonomous Replication - Estimating the availability

Back

}))(_(|{)(
}))(_(|{)(
xGlobalIndemfHashFragmfF

xGlobalIndemfHashFilemfH
∈→=
∈→=

eofflineTimavgonlineTimeavg
eofflineTimavgPi ..

.
+

=

∑
∈

=
)(

1
fFi

iavg P
n

P

jn
avg

j
avg

n

mnjfHi
i PP

j
n

PfA −

+−=∈

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∏)1(1)(

1)(

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

37

Appendix: PlanetP – Membership

Joining of new peers:
gossiping

NEW

Rejoining of peers
gossiping (the peer status is marked as ON-LINE)

ON-LINE

Leaving of present peers:
a peer discovers that another peer is OFF-LINE when an

attempt to communicate with it fails:

the peer status is marked as OFF-LINE

information in the global index is not dropped

if a peer has been marked as OFF-LINE continuously for
a time TDead , it is assumed that the peer has left the
community permanently:

all information about the peer is dropped

OFF-LINE

(before TDead):

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

38

Appendix: Rumoring algorithm

A peer has a change

A peer has a change:

rum
or

The algorithm provides spreading
of new information across a P2P
community

rumor

rumor

• if the rumor is new information for the
peer Py, then it starts to push this rumor
just like Px

• the peer Px stops pushing the rumor
after it has contacted n consecutive
peers that already heard the rumor

Px

ru
mor

• every Tg seconds, a peer Px pushes this
change (a rumor) to a peer Py chosen
randomly from the global index

Py

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

39

Appendix: Anti-entropy algorithm

The algorithm allows to avoid the
possibility of rumors dying out
before reaching everyone

All peers:

global index
summary

• the peer Py returns the summary of its
version of the global index

• then Px can ask Py for any new
information that it does not have

Px

• every Tr seconds, a peer Px attempts to
pull information from a peer Py chosen
randomly from the global index

pull

Py

11.01.2005 Autonomous Replication for High
Availability in Unstructured P2P

Systems

40

Appendix: Partial anti-entropy algorithm

The algorithm allows to reduce the
time of new information spreading

Extension of each push operation:

The process requires only one extra message exchange in
the case that Py knows something that Px does not

identifiers of
recent rumors

• the peer Py piggybacks the identifiers of a
small number of the most recent rumors

• then Px can pull any recent rumor that did
not reach it

Px

• a peer Px pushes a rumor to a peer Py

rumor

Py

