
Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 1

Enforcing Fair Sharing
of Peer-to-Peer

Resources

Written by

Stefan Chouteau

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 2

Content

1. Introduction

2. Models of design, a p2p storage system must be

designed to address to

2.1 Threats a decentralized Design must address

2.2 Incentives in a p2p storage system

3. Different approaches of implementing fairness policies

in p2p storage systems

3.1 Quota Approach

3.2 Auditing

3.3 Extensions

4. Simulation results concerning bandwidth overhead

5. Personal Conclusion

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 3

1. Introduction

In the recent years, there have been a large number of peer-to-peer

systems for a lot of purposes. Some of them have been suitable for

sharing files, like Napster, Gnutella or Kazaa, just to name some of them.

One of the great Problems of those systems has been that users had no

natural incentive to provide services to the system. Why provide my own

resources, when I can get the other ones for free?

Those selfish people are often called “leecher”. You probably can imagine

that that leecher’s can cause serious problems in a peer-to-peer system. If

there are more people who want to use the systems resources than people

who are willing to provide their own resources to the system, there won’t

be a good performance.

You will learn about different models, which create incentives (for the

peers) to provide resources to the p2p-system, which will be directly

implemented into the p2p-system. To introduce these models, we will use

a fictitious p2p storage system, which I’m going to explain later in more

detail.

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 4

2. Models of design, a p2p storage system must be designed
to address to

The goal we want to reach is a notion of fair sharing. In other words every

peer in the p2p-system shall only be able to consume as much of the

systems resources, than it provides itself to the system. In a storage

system, this means every node will only be able to consume as much

remote storage, than it provides space for others on its own local disk.

But how to guarantee that a peer will only use as much resources as it

provides?

In a peer-to-peer system, you need a decentralized approach, which

guarantees that all peers are still equal, and no peer takes a position of

greater authority over others than anyone else. In Chapter 3, you will see

two possible decentralized designs, which are able to monitor the

transactions of every peer and that fulfil this notion.

Another advantage of a decentralized approach is that there is no single

point of failure, it is more robust to failures than a centralized approach and

it will easily scale to large numbers of nodes, but more on this later.

Let’s first try to understand the …

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 5

2.1 Threats a decentralized Design must address

It is possible that some nodes which to collude to corrupt the system,

perhaps trying to gain more storage for each other, than they collectively

provide to the network. We differentiate between three kinds of corruption:

• No Collusion

• Minority Collusion

• Minority Bribery

No Collusion means there are some nodes in the system, acting with the

purpose of gaining an unfair advantage over the network, but they are

acting on their own, because they have no one to collude.

Minority Collusion means a subset of the p2p-system is willing to form a

conspiracy to lie about their resources, but it is assumed that most nodes

in the p2p-system are uninterested in joining the conspiracy.

Minority Bribery is some kind of advanced collusion, there is still a subset

of nodes, which want to cheat on the others, but in this case, those nodes

try to bribe other nodes, perhaps by offering them to lie on their resource

usage, with the intention to get this node’s joining the conspiracy.

It is perfectly feasible that there will be bribery in such a system, and we

may even been able to build mechanisms against bribery, but it is entirely

unclear that the lower level p2p routing and messaging systems can be

equally robust. For the rest of the paper, we assume the correctness of the

underlying p2p system.

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 6

2.2 Incentives in a p2p storage system

Why shall peers in our storage system provide their local storage to

others? What incentive shall they have to do so?

In a p2p storage system, the ability to consume resources can be seen as

some kind of currency. In such a system, it is just feasible that remote

storage is more valuable to a node than its local storage. When now a

node exchanges its local storage against another nodes remote storage

both parties will benefit of the trade, giving them an incentive to cooperate.

One probably should mention that such a storage economy can be

expressed strictly as a barter economy; there is no need for money or

other forms of payment to exchange hands.

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 7

3. Different approaches of implementing fairness policies in
p2p storage systems

In this chapter, you will see some different approaches of implementing

fairness policies in our storage system. At first, we have to make two

assumptions our system will need to work properly.

At first, we need a public key infrastructure that allows nodes to digitally

sign documents, so other nodes can verify it. It shall be computationally

infeasible to forge.

Second, it is imperative to any of these implementations that nodes are

actually storing the files they claim to store. Because of that, we need a

challenge mechanism. This challenge mechanism picks for each file a

node is storing a node, which is holding a replica of that file. This happens

in periodical intervals. After that, the challenging node informs all other

replica holders that it is going to challenge its target. Then it randomly

selects a few blocks of the file and queries the target for the hash of those

blocks. The target can only answer this query if it has the file. If it hasn’t, it

will probably ask a replica holder for the file, but any such request during

the challenge would cause the challenger to be informed and because of

that be able to restart the challenge for another file.

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 8

3.1 Quota Approach

One of the first Quota approaches in p2p storage systems has been

mentioned in PAST. PAST is an internet based p2p global storage utility

which aims to provide strong persistence, high availability, scalability and

security. The PAST Paper suggested the use of smart cards that produce

signed endorsements of a node’s request to consume remote storage. The

consumed space is charged to an internal counter. If storage is reclaimed,

the counter will be credited.

But such a smart card approach has a lot of disadvantages. You need a

trusted organization that issues the cards. After a period of time the

smartcards will have been to re-issue to invalidate compromised cards.

This will raise costs that someone will have to pay. Therefore one needs a

business model to cover the costs. You see, this seems to be unsuitable

for a grassroots p2p system.

How can we improve this notion?

If each smart card would be replaced by a set of nodes, the same design

would be applicable. This set is called the manager set for a node. It is

defined to be a set of nodes adjacent to that node in the overlays node ID

space. This makes it easier for other parties in the overlay to discover and

verify them. The Job of those managers is to remember the amount of

storage consumed by the nodes they manage and to endorse all requests

from the managed nodes to store new files.

To make this system robust against minority collusion, a remote node

would insist that a majority of the manager nodes agree that a given

request is authorized. This requires the manager set to perform a

Byzantine Agreement protocol.

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 9

The protocol works roughly as follows:

1. A node A asks the manager set for node B if B is allowed to store new

files in node A’s remote storage

2. Each node in the manager set checks its records and sends a reply

3. Node A waits for a certain amount of same answers before the storage

process is granted or denied

The drawback of this design is that request approval causes relatively high

latency. The number of malicious nodes must be less than a certain

percentage in any manager set to guarantee that the approval process

couldn’t be disturbed and managers suffer no penalty if they grant

requests that would be correctly denied.

This means, this design is Vulnerable to bribery attacks.

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 10

3.2 Auditing

Let’s take a closer look on another approach, Auditing. Unlike the quota

manager design, nodes are required to maintain and publish their own

usage records, such that other nodes can audit them. Of course nodes

have no natural incentive to tell the truth about their records. Because of

that we have to create disincentives to nodes lying on their records.

Let’s first take a closer look on the usage records, the so called usage file.

Every node maintains a usage file, which is digitally signed and available

for any other node to verify. The usage file consists of three sections:

• The advertised capacity

• The local list

• The remote list

The advertised capacity is the amount of disk space, a user provides to the

system.

The local list consists of (node ID, file ID) pairs, containing the identifiers

and sizes of all files that the node is storing on its local disk on behalf of

others.

The remote list consists only of the file ID’s of all files published by this

node. Node ID’s aren’t necessary, cause this information can be found

using mechanisms in the storage system.

Together the local and remote list describe all the credits and debits to a

node’s account. We say a node is “under quota” when its advertised

capacity minus the sum of its remote list, charging for each replica, is

positive.

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 11

Concerning the usage file, there are two possibilities for a node to cheat on

others. A node could either inflate its advertised capacity beyond the disk

space it really has or deflate the sum of its remote list.

When increasing its advertised capacity beyond the resources of the disk,

this might attract storage requests that the node cannot honour. The node

may try to compensate by creating fraudulent entries in its local list, to

claim the storage is being used.

The second possibility is to deflate the remote list. This can be done by

just deleting entries without informing the appropriate node that he can

delete the file.

To prevent nodes from cheating, we need auditing procedures that any

node can perform on others. These procedures are called:

• Normal audit

• Random audit

When doing a normal audit, a node detects for any file in its local list, if

there is an entry in the appropriate node’s remote list. If the entry is

missing, the auditing node can feel free to delete the file, cause no one is

paying anymore for it. It is essential that the auditing is anonymous and

done at randomly chosen intervals. If the audited node could distinguish its

auditor, the entry could be restored for the time of auditing, so the audit

would only be gamed. This mechanism prevents fraudulent entries in a

node’s remote list.

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 12

When doing a random audit, a node checks for another node’s local list.

For every entry in this local list, there should be an appropriate entry in

another node’s remote list. If no entry can be found, the node, which had

signed the correctness of his books, and whose books imbalance will be

ejected by the system.

This procedure is even robust against bribery. If there is bribery, and one

of those cheating nodes, who form a so called cheating chain, is

discovered and ejected, it will only be a matter of time until the other

cheating nodes will be ejected too.

We require all nodes to perform random auditing with a lower frequency

than their normal audits. Each node should choose a node at random from

the overlay network. Assuming all nodes perform these random audits on

a regular schedule, every node will be audited on a regular basis with high

probability.

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 13

3.3 Extensions

As already mentioned, a node cannot consume more resources than it

provides, but it is easy to imagine nodes that want to consume more

resources than they provide or that provide more resources than they

consume. This overcapacity could be sold, perhaps through a online

bidding system for real-world money. These Trades could be directly

indicated in the local and remote lists, using entries like

(Node ID, Amount Trade) for example, where the selling node writes the

entry in its remote list and the buying node writes the entry in its local list.

Another improvement that could be done is concerning the usage files.

Fetching those files repeatedly could result in serious communication

overhead. We could implement some improvements to reduce this

overhead, eventually sending the usage files directly through the internet,

using an anonymizing relay, instead of using the overlay network. This

would result in a route of only two hops from the source to the

anonymising relay to the target.

Another way to reduce communication is to let the replica holders of a file

audit the publishing node alternately.

Or, last but not least only transmit the differences of usage files, because

those files will probably change slowly.

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 14

4. Simulation results concerning bandwidth overhead

In this chapter, you will see some simulation results, concerning the

bandwidth overhead of Quota Managers, auditing without and auditing with

caching. Caching means only the differences of usage files are

transmitted.

For the simulation, we assume all nodes are following the rules and no

nodes are cheating. The storage space of each node is chosen from 2

Gigabyte up to 200 Gigabyte with an average of 48 Gigabyte. In each day

of simulated time, 1% of the files are reclaimed and republished. Two

challenges are made to random replicas per file a node is storing per day.

For Quota Managers, the manager set size is ten. For Auditing, normal

audits are performed on average four times daily on each entry in a nodes

remote list, random audits are done once per day

Unless otherwise specified, all simulations are done with 10.000 Nodes,

285 files per node and an average node lifetime of 14 days.

0
10
20
30
40
50
60
70
80
90

1000 10000 100000

Auditing w/o
caching
Auditing w/
caching
Quota
managers

4.1 Overhead with different number of nodes

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 15

0
20
40
60
80

100
120
140
160
180
200

0 100 200 300 400 500 600 700

Auditing w/o
caching
Auditing w/
caching
Quota
managers

4.2 Overhead with different number of files per node

0

50

100

150

200

250

300

350

0 2 4 6 8 10 15 20 25

Auditing w/o
caching
Auditing w/
caching
Quota
managers

4.3 Overhead with different average node lifetime

As you can see, the auditing overhead is quite low – only a fraction of a

typical p2p node’s bandwidth. Auditing with caching has performance

comparable to quota managers, but is not subject to bribery attacks and is

less sensitive to the fraction of malicious nodes. Quota Managers get

mostly affected by the average node lifetime.

Enforcing Fair Sharing of Peer-to-Peer Resources 31 January 2005
Stefan Chouteau

Peer-to-Peer Information Systems WS 04/05 16

5. Personal Conclusion

You’ve seen two different approaches of enforcing fair sharing directly into

the p2p system. One based on requests and agreements, one based on

self-maintenance and audits. Each of these approaches has its

advantages and disadvantages. However, to me, auditing with caching

seems to be the best solution of all, its robust against bribery and has

nearly the same low bandwidth overhead as quota managers have.

At least, enforcing fair sharing of peer-to-peer resources is possible, it can

be implemented directly into the p2p system and it can be even robust

against bribery which leads to the benefit of all.

