

SeAl: Managing Accesses and Data in Peer-to-Peer

Sharing Networks

Konstantin Halachev

Peer-to-Peer Information Systems

Tutor: Peter Triantafillou

1. Introduction

The Peer-to-Peer paradigm is becoming a new standard for architecting distributed
applications, with file-sharing systems being by far the most popular among end users.
This popularity however leads to a number of challenging, data and resource managing
problems. In these systems ,unlike traditional database systems, there is no central
authority to manage the storage and computational resources. In the peer-to peer
environments each peer manages its own data and computational resources and this leads
to a great variance in the behavior of the system.
Peer-to-Peer systems tend to rely on some basic assumptions for the peer behavior on
which they base their analisys for effectiveness and efficiency.However recent studies on
user behavior showed that the users in peer-to-peer networks tend to behave as selfish as
they are allowed to. This leads to a crucial problem of performance, scalability and
stability of the system.
The subject of this presentation – SeAl, considers as main task the problem of tackling
selfish user behavior.
SeAl is an infrastructure transparently weavable into structured and unstructured P2P
sharing networks, which provide the system with possibility to categorize peers and allow
a regulated access to the resources depending on their contribution to the society.SeAl
manages the service peers receive, depending on their contribution to the society and thus
urges peers to be altruistic. This will lead to a better efficiency and overall performance of
the underlying P2P system.

2. A high level view of SeAl

SeAl is a software infrastructure which consists of two main distinct layers:
 -SAL - SeAl monitoring/accounting layer which monitors behavior of the peers and
keeps metadata of the contribution of each peer to the society on which any service the
peer received is based.
 -SVL – SeAl verification/auditing layer which use cryptographic techniques in order
to provide the appropriate security level of the operations of SeAl.
For simplicity reasons we will assume that SeAl works in the context of file-sharing
systems even though it is suitable for all other classes of P2P applications.

a. Favors
SeAl counter-selfishness mechanism is based on the “natural” notion of “favors”.
What is favor?
If peer n1 accesses resource r shared from peer n2, then we say that peer n1 owes
peer n2 a favor f(n1,n2,r) about resource r.

n2n1

Please,
give me r

r

r … …
Resources Fo FdResources Fo Fd

… … …
Resources Fo FdResources Fo Fd

r f(n1,n2,r)

f(n1,n2,r)

Fig1 When n1 accessed resource r shared by n2, then information about the favor is
saved in n1 and n2’s favors lists

Each node keeps two local lists of information about the favors he participated in.
Fd-the list in which the peer notes the favors he has done,
Fo-the list in which the peer notes the favors he owes to other peers.
Ideally we consider that the perfect load-balancing of a P2P system will be if all
peers have accesses the same amount of resources on the network with the amount
they contributed to other peers i.e. the equilibrium of the system is when
ni.Fd=ni.Fo for each peer ni.
With this observation in mind we will define a selfishness/altruism of a peer as a
function of its Fd and Fo lists. We define A to be the altruism/selfishness value for
a peer and for A we use either the formula |Fd\Fo| or |Fd|-|Fo|.
The higher the value the more altruists the user is but the perfect condition of the
system is when the variance of this value given the values of all peer is the least.
This will mean that the system reaches a state of load-balancing in which the
demands of the system are fulfilled by all peers.

b. Basic notation and infrastructure
Independently of the underlying system SAL deploys a Distributed Hash Table
(DHT) overlay of its own to store SeAl specific metadata. If the underlying system
already uses a DHT then SeAl can use this DHT for its specific purposes instead of
deploying another DHT in the system.
Every node in SeAl has a unique public/private key pair {kp,ks}.This pair is
created for each user before his first registering to the system.
The public key for each node is accessible for every other node and when hashed
is used as node ID.Which implies that a specific pair of public and private key
automatically leads to information of the node past behaviour.For security reasons
when a node claims to have a specific key pair upon his initial joining the system
he is asked for a verification of the key pair by decrypting some information
encrypted with its public key. In this manner peers are prevented from choosing
their position in the DHT network.

3. The SeAL monitoring/accounting layer

In this chapter detailed description of the mechanisms used for monitoring and accounting
peers’ behavior will be given. This layer only tackles with the problem of user selfishness;
all other variations of malicious user behavior are handled by SeAl verification layer.

a. Transaction Receipts and favors
Each transaction in SeAl finishes with both sides possessing a digital ”receipt” for
the transaction called Transaction Receipt (TR). TR(n1.id,n2.id,r.id.t) is a receipt
denoting that peer n1 with id n1.id has accessed resource r shared by peer n2 with id
n2.id at time t.
The favors mechanism in SeAl is implemented using TRs.An entry in Fo or Fd is of
the form {n2.id,r.id,t,TR()}.Some of the information is duplicated because TR is
digitally signed by both peers and thus we need the second peer id explicitly to
verify the TR.
However not every entry in the favors list has the same unit value. The bottleneck
of the P2P systems is the network bandwidth,so we assume that each entry in the
favors list has a value of |TR.r.size x TR.t/current time|.The calculation of this
value also introduces the aging algorithm in SeAl.Each value of each entry
weakens with time thus giving a possibility the peer recent behavior to have most
influence upon its rating in the system.

b. Favor payback - enforced
Here we introduce the mechanism for favor payback.
The mechanism is based on forwarding requests for resources.

n2n1

n3

Please, pay
me back the

favor by
serving n1

r

… … …
Resources Fo FdResources Fo Fd

r f(n1,n3,r) r … …
Resources Fo FdResources Fo Fd

f(n3,n2,r)

r … …
Resources Fo FdResources Fo Fd

f(n3,n2,r)

Please,
give me r

f(n1,n3,r)
Fig2 Suppose peer n2 has done peer n3 a favor for resource r and a new peer n1
request the same resource r from peer n2.Then peer n2 can decide to offer n3 a
chance to pay back the favor by serving n1 instead of n2. This is done by n2
forwarding n1’s request to n3 and if n3 serves it, n1 marks that he owes a favor to
n3,n3 marks that he has done a favor to n1 and both n2 and n3 mark the previous
favor between them concerning resource r as paid back.

n2n1

nk

r

… … …
Resources Fo FdResources Fo Fd

r f(n1,nk,r) r … …
Resources Fo FdResources Fo Fd

f(n3,n2,r)

r … …
Resources Fo FdResources Fo Fd

f(nk-1,nk-2,r)

n3

…

nk-1

r … …
Resources Fo FdResources Fo Fd

f(nk,nk-1,r)

Please,
give me r

f(n1,nk,r)

Fig3 This algorithm has a multiple version ,where a chain of forwarding of the
request is created but only the last two nodes of the chain mark the favor as paid
back because it is considered for the others that the cost of forwarding the request
is not equal to paying it back.

Each peer keeps in track its current selfishness/altruism score in the system- A.
Node administrators choose the formula for it :|Fd|-|Fo| or |Fd|\|Fo| and they also
choose a threshold bounds for A: Amax and Amin.Each peer upon a request takes the
decision of whether to forward it based on its current altruism value and the limits
for the altruism value Amax and Amin he has.

n2n1

… … …
Resources Fo FdResources Fo Fd

r … …
Resources Fo FdResources Fo Fd

f(n3,n2,r)

If n2.A <n2.Amin
Serve request

Else if n2.A>n2.Amax
Forward if possible

Else
Forward if possible

with some Pr(Fd)

Fig4 Upon a request if peers current altruism value is less than Amin he serves the
request and thus increases its altruism, if it is greater than Amax then he forwards
the request if another peer who can handle this request exist. And if the current
altruism is in the limits given, then the peer decides its behavior based on some
probabilistic method

c. Bad reputation –the black lists
Any deviation from the normal peer behavior is considered selfish and may trigger
the blacklisting of the corresponding peer. Blacklisting is publishing a specific
black-list request (BLR) entry on the DHT.The BLR is published on the DHT
with id=H(“BLR”|H(n1.id)), where H is a hash function and thus the peer that
stores the BLR does not know whom does it blacklist. These entries are used to
calculate a negative score for the peer upon request.

n2
n1

… … …
Resources Fo FdResources Fo Fd

r … …
Resources Fo FdResources Fo Fd

f(n1,n2,r)Forward a
node for r

Reject

Push
BLR=TR(H(n1.id),n2.id,

r,t)
On the DHT using id
id=H(“BLR”|H(n1.id))

ni
Fig5. If a peer rejects to serve a favor payback offer, he is a subject of blacklisting
and the node whose request was rejected may publish a BLR on the DHT.

d. Request scoring –the white lists
Upon a file request the serving node forms a request score. This request score is
formed by a mechanism which takes into account both the peer altruism and
selfishness.
The score is formed by the following algorithm:

n2n1

Give me r

Request for white-list subset
with size at most S

Wm ‹ n1.Fd
|Wm| ≤ S

Evaluate Wm value
0≤sw ≤S

DHTAsk for black list entries for n1
With value no more than sw

Return a (sub)
list of

black list for n1

Evaluate black-list
to sb value

Compute request
score

Rs=sw - sb – r.size

Fig6 Upon request from n1 for resource r ,n2 request from n1 a sub list of n1.Fd
limited by some maximum value S (a limmited list of some favors n1 has
done).Based on the sub list n1 has sent ,n2 forms a base positive value of the
request sw corresponding to the value of the white list (no matter how big the list
n1 sends is the maximum value for sw is S,thus limiting the network overload and
malicious user behavior consequences). Then n2 knowing n1‘s id asks the node in
the DHT that is responsible for keeping n1’s black-list requests for a sub list of all
the black-listings of n1 with value no more than sw.Evaluating the received list the
negative score sb for the peer is formed. The total score for the request is formed
from the formula |sw-sb – r.size|.

e. Request serving –the incentives
Why would a peer care about his reputation? Let us overview a simple request
serving. When a request comes its score is computed based on the algorithm in the
previous part. Then it is stored in a sorted manner in the waiting queue. Based on
the decision of the node administrator request with low scores can either be
scheduled for processing, allocated limited resources or even rejected. This
introduces an important incentatives of user to be altruistic.

f. Debt payback
Peers can regularly check the system for BLR against them. If such exist they can
contact the node that blacklisted them and offer to pay back the debt. If all goes
well the blacklisted node receives a new TR denoting that it has paid its debt. Then
it can either request the node storing the BLR to remove it from the network or
wait for the next validation of the BLR to cancel it.

4. SeAl Verification Layer

The SAL layer had a main purpose of tackling with the user selfish behavior, when SVL
has to provide the security tools needed for the system operations and tackle all other
kinds of misbehavior.

a. Transaction receipt revisited
TRs are the most important object in the SeAl structure so it is natural that
misbehaving users will try to attack them. How are TRs protected?
When a transfer finishes both involved nodes receive a transaction receipt which is
signed by both the nodes and thus each of them is fully valid authorizing
document.Each third party may verify a TR by checking the signatures of the
nodes. It is assumed that a signature cannot be forged and because of this a TR
cannot be forged too.
Note: Still coluding users can compute TRs which are considered valid from the
system.

b. Blacklisting revisited
When computing a request score the serving peer may receive a list of BLR.Then
the peer has a task to verify the correctness of the entries in this blacklist request.
The theoretical solution is that he checks each entry, but due to the trade-off
between extra network accesses and possible incorrect BLR the solution chosen is
to verify each of the entries with some probability Pr(v).The algorithm for
verification of BLR is briefly described in the following scheme:

n1
nk

Check
BLR(H(n1.id),n2.id,r,t)

n2

BLR check

True

No, I paid this
Favor. + TR

Is this BLR paid?
No

Ask legitimate user
to blacklist n2

Yes

Cancel this BLR

Fig7 Node n1 was blacklisted by node n2 and, node nk is to check this BLR.First he
asks if the blacklisted node has any objections for this blacklisting.n1 at this point
has two choices, either he accepts the punishment or he claims he has paid his debt
for this BLR. If so he sends a TR that confirms the payback. Then nk asks n2 about
the status of this BLR.If n2 confirms that it is canceled then nk asks the node
corresponding for this BLR in the DHT to cancel it. The other case is if n2 claims

that this debt is not paid, which is considered a misbehaving of n2 and he is
blacklisted.

c. White lists revisited
Similar to the BLR ,each white-list entry is verified with some probability
Pr(c).This verification scheme assures us that all the TR used in the system are
verified but the overload of network resources is low.

d. File transfer
In this part a simple file transfer algorithm is presented.

Fig8.When a request for resource r from the client is received, the server creates
two symmetric keys and encrypts r using the first key and the first key using the
second. Then these two encrypted resources are sent to the client, but he still needs
the second key to decrypt the resource. The client creates an initial draft of the
Transaction receipt for this transfer, signs it and sends it to the server. Then the
server signs the TR and sends a copy of it to the client together with the key to
decrypt the resource.
Note: Still there is a possibility of misbehaviour from the server,because he has a
valid TR when the client has nothing but useless bytes.The server can then decide
to either just not send the TR,but then this entry will not be valid TR,or black-list
the client for this favor .This blacklisting willl be legal,even though the purpose of
it is not very clear.

e. SeAl achievements
The above security and verification scheme provides a strong disincentives but still
not a complete solution to the common problems of Sybil attack and colluding
peers,.
Sybil attack is called the case when a node rejoins the network with new id to
obtain a new personality and not be punished for he’s previous behavior.

Sybil attack is made undesirable because a peer loses his white list and thus the
maximum possible request score increase he can receive is 0,which is the worse
possible.
Collusion attack is made undesirable, because no matter how big white lists peer
has, their score increase is always limited by the server white list threshold and the
size of their blacklists. So it they are malicious users and have huge black-lists
they will still get score increase sw-sb of 0.
Note:Still when combined the attacks have effect.Which actually means that the
colluding peers have efect because Sybil attack does not require neither skill or
resources to be launched.However the influence of the Sybil attack by itself is
limmited because of the assumption that the newcommers start with the lowest
possible request score increase of 0.

5. Experiments and Performance results

a. Test models setup
For the experiments the following structure was developed. A file sharing network
with 50000 distinct documents of sizes from 3-10MB(average size of 6.5MB).The
system has 2048 peers. A simulation of 1000000 request following Poisson
distribution, such that every peer will make approximately 5 requests a day of
simulated time.
For the peer population two different models were tried:
- 90% freeriders and 10% altruists
- 70% freeriders and 30% altruists
With connections varying from 33,6kbps (modem) – 256kbps (cable) for selfish users
and from 256kbps (cable)-2Mbps (T1) for altruists.
Peers compute their altruism scores by the formula |Fd|-|Fo|.They redirect with
probabilities 0 when A is below Amin, 1 when A is above Amax and 0.5 when A is
between Amax and Amin.
Furthermore for describing the user behavior model we have
Pr (Ra) = 0.8 -probability remain altruist,i.e. altruist serve a request
Pr(Rs) = 1 probability remain selfish, i.e. selfish user not serve request.
Pr(Ef)=0.2 per download probability for file erasure
Pr(Ca)=0.1 –per request probability of connection failure
The user behavior is changed by the following mechanism:
When a request is enqueued the client is informed of the expected remaining time until
the request is served. If it is more than a fixed threshold value the user drops the
request and considers improving his behavior by Sd with probability Pr(Sd)=0.5 SD=
0.05
Note: It is hard to evaluate the objectivity of this user behavior model.It is based on
pure heuristics.

b. Results and discussions

In these results we observe that in the SeAl enabled system the mean of the
altruism/selfishness function is closer to 0 .As mentioned before the ideal case is
considered to be the one when all peers have a selfishness of 0.The important thing
is the distribution of the variance where a stable distribution around the mean
means that the whole system was balanced and the request were distributed over
all peers.

On these result we observe the Fd/Fo graphics for Seal enabled and disabled system. In
both systems two clusters are observed, the one of the altruists and the one of the
freeriders. The difference of the mean values for the two clusters is really small for the
SeAl system and the fact that the cluster of the selfish users is lifted from the base
level which means that they mere forced to contribute to the society in order to get
served.

In the model with 90% freeriders we observe a very interesting fact. The waiting time
for the SeAl enabled is slightly lower than the SeAl disabled system even with all the
redirections. This model also leads to a better load balancing.

6. Conclusions

SeAl is a system which can be integrated into the current P2P systems. It provides metrics
for evaluation and managing selfishness/altruism of the users and offers some incentatives
which can be used for regulated access on the base of peer behavior. Still each peer has
the freedom to define its own selfishness limits.Network, storage and response time
overheads observed in the experiments were significantly small.
SeAl provides a mechanism to limit the influence of Sybil attack and the colluding users
problems over the network. With the idea that it can be used as a base for development of
wide variety of services in P2P networks.
 We have the open problems of initial setting all the threshold values SeAl uses and how
are they going to be managed by peers. With SeAl we note down some very interesting
but complex as implementation ideas of incentatives for the users.SeAl handles the Sybil
attack by giving the newcommers the lowest possible raiting increase score, but even
given the complexity of the system, colluding users will still be able to reach a maximum
score increase with no significant efforts .Still for some more in-depth evaluation we have
to wait until SeAl is tested within a real system with its variety of unpredictable users.

