
Querying the Internet with PIER

Article by: Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo,
Scott Shenker, Ion Stoica, 2003

EECS Computer Science Division, UC Berkeley
International Computer Science Institute

Presentation by: Laura Tolosi

Supervisor: Prof. Gerhard Weikum

OverviewOverview

MotivationMotivation

Querying the InternetQuerying the Internet

CAN CAN -- A particular DHTA particular DHT

PIERPIER

Validation and performance evaluationValidation and performance evaluation

2

MotivationMotivation
• Scalability of Database Systems

Querying the InternetQuerying the Internet

CAN CAN -- A particular DHTA particular DHT

PIERPIER

Validation and performance evaluationValidation and performance evaluation

3

Scalability of Database SystemsScalability of Database Systems

• Internet - hundreds million nodes
• The largest database systems - only few hundred nodes
• Scalability - ‘the ability to grow your system smoothly and economically as your
requirements increase’

• Parameters: data size, speed, workload, transaction cost
• Goal: huge number of concurrent users, continuous availability, large-stored data volume
• Measuring for scalability success:

Workload

Hardware
config

Query
response

time
DB size

• size-up

• speed-up

• scale-up
• cost
- workload increase should
not increase transaction cost
- X(data size) implies ≤ X (cost)

≤ XX

X

≤1/X
X

≤ X

4

MotivationMotivation

Querying the InternetQuerying the Internet
•• Applications

• Design principles

CAN CAN -- A particular DHTA particular DHT

PIERPIER

Validation and performance evaluationValidation and performance evaluation

5

Querying the InternetQuerying the Internet

• Application example - Network Intrusion Detection

• attack ‘fingerprints’: sequences of port accesses (port scanners), port numbers
numbers and packet contents (buffer-overrun attacks, web robots), application level
information on content (email spam) …

• one can detect similar fingerprints, frequently reported
SELECT I.fingerprint, count(*)*sum(R.weight) AS wcnt
FROM intrusions I, reputation R
WHERE R.address = I.address
GROUP BY I.fingerprint
HAVING wcnt > 1.5

IP address fingerprint attribute1

1 F1 ...

2 F1 ...

3 F2 ...

1 F2 ...

3 F1 ...

Table 1: intrusions

IP address weight attribute2

1 0.8 ...

2 0.5 ...

3 0.2 ...

Table 2: reputation

fingerprint wcnt

F1 4.5

F2 2.0

Table 3: join result

6

Querying the InternetQuerying the Internet

• Relaxed principles for scaling

• Relaxed consistency

• Organic Scaling

• Natural Habitats for Data

• Standard Schemas via Grassroots Software

7

MotivationMotivation

Querying the InternetQuerying the Internet

CAN CAN -- A particular DHT A particular DHT
• Design, construction, joining, routing… (quick overview)

PIERPIER

Validation and performance evaluationValidation and performance evaluation

8

Content-addressable Network (CAN)Content-addressable Network (CAN)

• CAN is a particular DHT

• virtual d-dimensional Cartesian coordinate space
partitioned among the nodes in the system

C D E

A B

(0.0) (1.0)

(0.1) (1.1)

(0.0-0.0, 0.0-0.5) (0.5-1.0, 0.0-0.5)

(0.0-0.5, 0.5-1.0)

Node B’s coordinate zone
IP_addr(A)

IP_addr(D)

IP_addr(E)

B’s routing table

• store (key, value) pairs using a hash function:

• key → (f_1(key), … , f_d(key))

• key is mapped to a point in the coordinate space

• (key, value) will be stored by the node
responsible for the zone in which the point lies.

• each node maintains as its set of neighbors
the IP addresses of node with adjoining zones

9

Content-addressable Network (CAN) - continuedContent-addressable Network (CAN) - continued

6 2

3 1 5

4

• Routing in CAN

• hash(key) = (x, y)

• ‘simulate’ a straight line from source to
destination nodes

• Joining

• a new node randomly chooses a point
in the space (say (x,y))

• sends a join request to an existing
node in CAN (say 6)

• the message is routed until the zone in
which the point lies is reached

• the zone is split

• For a d-dimensional space partitioned
in n equal zones:

neighbors 2 maintains node individualan -

4

 :length path routing average the-
1

d

nd d

• More on CAN: Node departure,
Recovery ...

(x,y)

7

10

MotivationMotivation

Querying the InternetQuerying the Internet

CAN CAN -- A particular DHT A particular DHT

PIERPIER

•• Architecture
• Routing layer
• Storage manager
• Provider

• DHT distributed joins
• Symmetric hash join

Validation and performance evaluationValidation and performance evaluation

11

Physical Network

Network

IP
Network

Overlay Network

Storage
Manager

Provider

Overlay
Routing

DHT

PIER ArchitecturePIER Architecture

Query Plan

►◄

►◄ get

scan(I) scan(R)

PIER

Core Relational
Execution Engine

Query
Optimizer Catalog

Manager

Applications

Network
Monitoring

Other User
Apps

Declarative Queries
SELECT I.fingerprint,

count(*)*sum(R.weight) AS wcnt
FROM intrusions I, reputation R
WHERE I.address = R.address
GROUP BY I.fingerprint
HAVING wcnt > 1.5

12

DHT DesignDHT Design

• Routing Layer

Mapping for keys

Dynamic as nodes join and leave

• Storage Manager

DHT based data

• Provider

Storage access interface for higher levels

• Any particular DHT can be used (CAN, Chord ...)

13

ProviderStorage
Manager

Overlay
Routing

Routing LayerRouting Layer

• Maps a key into the IP address of the node currently responsible for that key.

• Provides exact lookups, callbacks higher levels when the set of keys has changed.

• Routing Layer API

lookup (key) → ipaddr

join (landmark)

leave ()

locationMapChange()

14

Storage ManagerStorage Manager

• Stores and retrieves records, which consist of (key, value) pairs.

• Keys are used to locate items and can be any data type or structure supported

• Storage Manager API

store (key, item)

retrieve (key) → item

remove (key)

15

ProviderProvider

• Ties routing and storage manager layers and provides an interface to applications
• Each object in the DHT has a namespace, resourceID and instanceID
• namespace: application or group of objects, table or relation
• resourceID: primary key or any attribute
• instanceID: integer to separate items with the same namespace and the same resourceID
• DHT key : hash (namespace, resourceID)

• Provider API
get (namespace, resourceID) → item
put (namespace, resourceID, instanceID, item, lifetime)
renew (namespace, resourceID, instanceID, item, lifetime) → bool
multicast (namespace, resourceID, item)
lscan (namespace) → iterator
newData (namespace) → item

16

Query ProcessorQuery Processor

• Performs selection, projection, join, grouping, aggregation

• Items are inserted, updated, deleted via DHT interface

• Operators produce results as quick as possible (push)

• Enqueue the data for the next operator (pull)

• reachable snapshot: the set of data published by reachable nodes at the time the
query is sent from the client node

• dilated reachable snapshot: union of local snapshots of data published by
reachable nodes

• local snapshot: data published at the time the query message arrived at the
node

17

DHT Distributed JoinsDHT Distributed Joins

• relational database join performed to some degree in parallel by a umber of
processors (machines) containing different parts of the relations on which join is
performed
• DHT distributed join example:
SELECT I.fingerprint,

count(*)*sum(R.weight) AS wcnt
FROM intrusions I, reputation R
WHERE R.address = S.address
GROUP BY I.fingerprint

HAVING wcnt > 1.5

IR

I

I
R

R

I

• match records on different
machines

18

DHT Distributed Joins - continuedDHT Distributed Joins - continued
SELECT I.fingerprint,

count(*)*sum(R.weight) AS wcnt

FROM intrusions I, reputation R

WHERE R.address = S.address

GROUP BY I.fingerprint

HAVING wcnt > 1.5

Entire DHT
Network

Namespace NI = multicast
group(I - group)

Table: intrusions

Query initiator

19

DHT Distributed Joins - continuedDHT Distributed Joins - continued

Entire DHT
Network

Namespace NR = multicast
group(B - group)

SELECT I.fingerprint,

count(*)*sum(R.weight) AS wcnt

FROM intrusions I, reputation R

WHERE R.address = S.address

GROUP BY I.fingerprint

HAVING wcnt > 1.5
Table: reputation

20

DHT Distributed Joins - continuedDHT Distributed Joins - continued

Entire DHT
Network

[1] multicast(I-group,’oper-j’,’SELECT I.fingerprint, ...’)
[2] multicast(R-group,’oper-j’,’SELECT I.fingerprint, ...’)[3] lscan:

For each tuple in I:
extract I.address, I.fingerprint
item = (I.address,

I.fingerprint, ‘I’)
instanceID = random()
put(‘NQ’, I.address,
instanceID, item, ‘60 min’)

[3] lscan:
For each tuple in R:
extract R.address, R.weight
item = (R.address, R.weight,

‘S’)
instanceID = random()
put(‘NQ’, R.address,
instanceID, item, ‘60 min’)

NQ namespace

PUSH phase

21

DHT Distributed Joins - continuedDHT Distributed Joins - continued

Entire DHT
NetworkNQ namespace

PULL phase

[5] receive(‘oper-x’, (I.fingerprint, R.weight))
store received item in result table

[4]newData(‘NQ’, item)
for each call of newData()

get(‘NQ’, item.resourceID)
if get returns both an I-derived tuple and an R-derived tuple, then

send(‘oper-j’, hash(initiator), (I.fingerprint, R.weight))

22

MotivationMotivation

Querying the InternetQuerying the Internet

CAN CAN -- A particular DHT A particular DHT

PIERPIER

Validation and performance evaluationValidation and performance evaluation

23

Simulation setupSimulation setup

• Workload:
SELECT R.pkey, S.pkey, R.pad
FROM R, S
WHERE R.num1 = S.pkey

AND R.num2 > constat1
AND S.num2 > constant2
AND f(R.num3, S.num3) > constant3

• R has 10 times more tuples than S
• attributes in S, R are uniformly distributed
• constants chosen as to produce 50% selectivity
• R.pad attribute assures that all tuples are 1KB in size

• 10 000 nodes network
• cluster of 64 PCs
• topology : fully connected network, 100ms latency , 10Mbps
• assumption: data changes at a rate higher than the rate of incoming queries
• all measures: performed after CAN routing stabilizes, tables R, S are in the DHT

24

Scalability evaluationScalability evaluation

• evaluate it by proportionally increasing the load with the number of nodes
• each node - 1MB data
• measure the response time for the 30-th tuple
• avoid to measure the first response time

Average time to receive the 30th
result tuple when both the size of the
network and the load are scaled up.

25

Effects of soft stateEffects of soft state

• evaluate the robustness of the system in the face of node failures
• assume it takes 15s to detect a node failure
• all data is lost when a node fails
• periodically renew all tuples

Average recall for different refresh rates

Failure rate (failures/min)

26

SummarySummary

• PIER - a distributed query engine based on widely distributed environments
• It is internally using a relational database format

• PIER aims to overcome the traditional database lack of scalability by using
relaxed principles of consistency and a peer-to-peer like technology

• PIER is a read only system
• PIER is build on top of a DHT
• CAN - particular DHT, based on hashing data onto a d-dimensional space
• Implements DHT- distributed joins algorithms - e.g. symmetric hash join
• Operators are not enqueued: results are produced as quickly as possible (push),
and data is transferred for the next operator (pull)
• Queries are optimized in order to minimize the response time

27

THANK YOU!

28

