=i

INFORMATIK

Querying the Internet with PIER

Article by: Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo,
Scott Shenker, Ion Stoica, 2003
EECS Computer Science Division, UC Berkeley
International Computer Science Institute

Presentation by: Laura Tolos

Supervisor: Prof. Gerhard Weikum




Overview

=i

INFORMATIK

-1 Motivation

Querying the I nternet
CAN - A particular DHT
PIER

e A

Validation and performance evaluation




P

INFORMATIK

® Motivation
* Scalability of Database Systems

Querying the I nter net
CAN - A particular DHT

PlER

e A

Validation and performance evaluation




O
Scalabilitz of Database §stems \ mpﬂ

* Internet - hundreds million nodes
* The largest database systems - only few hundred nodes

* Scalability - ‘the ability to grow your system smoothly and economically as your
requirements increase’

» Parameters: data size, speed, workload, transaction cost

» Goal: huge number of concurrent users, continuous availability, large-stored data volume
* Measuring for scalability success:

<X

e Size-up
* speed-up
« scale-up

X

* COSt
- workload increase should

not increase transaction cost
- X(data size) implies < X (cost)




I\IF(]RMATIK_

4 Moativation
a Queryingthelnternet
 Applications
* Design principles
m CAN - A particular DHT
B PlER

23 Validation and performance evaluation




=i

INFORMATIK

Querying the Inter net

* Application example - Network I ntrusion Detection

e attack ‘fingerprints’: sequences of port accesses (port scanners), port numbers
numbers and packet contents (buffer-overrun attacks, web robots), application level
information on content (email spam) ...

* one can detect similar fingerprints, frequently reported

SELECT I.fingerprint, count (*)*sum(R.weight) AS wcnt
FROM intrusions I, reputation R

WHERE R.address = I.address

GROUP BY I.fingerprint

HAVING wcnt > 1.5

IP address | fingerprint | attributel |P address |weight | attribute2 fingerprint went
1 F1
! 0.8 F1 4.5
2 Fl 2 0.5 - s
3 F2 '
3 0.2
1 F2
3 F1
Table 1: intrusions Table 2: reputation Table 3: join result

6



Querying the Inter net

* Relaxed principles for scaling
 Relaxed consistency
* Organic Scaling
« Natural Habitats for Data

» Standard Schemas via Grassroots Software

=i

INFORMATIK




I\IF(]RMATIK_

4@ Motivation
m Querying the lnternet

m CAN - A particular DHT

 Design, construction, joining, routing... (quick overview)
B PlER

23 Validation and performance evaluation




Content-addressable Network (CAN)

=i

INFORMATIK

* CAN is a particular DHT (0.1)

(1.1)

« virtual d-dimensional Cartesian coordinate space
partitioned among the nodes in the system

C

* store (key, value) pairs using a hash function: (0.0-0.5,0.5-1.0)

- key - (f_1(key), ..., f d(key))

* key is mapped to a point in the coordinate space

* (key, value) will be stored by the node A B
responsible for the zone in which the point lies. (0.0-0.0, 0.0-0.5) (0.5-1.0, 0.0-0.5)
* each node maintains as its set of neighbors / N
the IP addresses of node with adjoining zones
joining (0.0) / \ (1.0)
Node B’s coordinate zone IP addr(A)
IP addr(D)
IP addr(E)

B’s routing table




=i

INFORMATIK

Content-addressable Network (CAN) - continued

* Routing in CAN
* hash(key) = (x, y)

* ‘simulate’ a straight line from source to 3 1 .
destination nodes

~

* Joining

 a new node randomly chooses a point
in the space (say (x,y))

* sends a join request to an existing
node in CAN (say 6)  For a d-dimensional space partitioned

» the message 1s routed until the zone in inn equal zones: d L

which the point lies is reached - the average routing path length : " nd

- the zone is split - an individual node maintains 2d neighbors

* More on CAN: Node departure,
Recovery ...

10



I\IF(]RMATIK_

M otivation
a Querying the lnternet
CAN - A particular DHT
m PIER

* Architecture

* Routing layer
 Storage manager
* Provider

« DHT distributed joins
* Symmetric hash join

Validation and performance evaluation

11



PIER Architecture

=i

SELECT I.fingerprint,

GROUP BY I.fingerprint
HAVING went > 1.5

Declarative Queries

count(*)*sum(R.weight) AS went
FROM intrusions I, reputation R
WHERE I.address = R.address

Other User
Apps

Query Plan

INFORMATIK

Overlay Network

Physical Networ k

Core Relational
Execution Engine

/

Network
Monitoring

Query

Optimizer [

\

A

I NV RN

Applications

Catalog
Manager

PIER

\ 4

Provider

4

A

A

y

Overlay
Routing

Storage
Manager

/ Network

IP




DHT Design

* Routing Layer

Mapping for keys

=i

INFORMATIK

Provider

Manager

Dynamic as nodes join and leave

 Storage Manager

DHT based data
* Provider

Storage access interface for higher levels

* Any particular DHT can be used (CAN, Chord ...)

Storage ¢

Overlay
Routing

13



=i

Routing L ayer

INFORMATIK

» Maps a key into the | P address of the node currently responsible for that key.

* Provides exact lookups, callbacks higher levels when the set of keys has changed.

* Routing Layer API
lookup (key) — 1ipaddr
join (landmark)
leave ()

locationMapChange()

14



=i

INFORMATIK

Storage M anager

 Storesand retrievesrecords, which consist of (key, value) pairs.

» Keys are used to locate items and can be any data type or structure supported

 Storage Manager API
store (key, item)
retrieve (key) — item

remove (key)

15



=i

INFORMATIK

Provider

» Ties routing and storage manager layers and provides an interface to applications

 Each object in the DHT has a namespace, resourcelD and instancelD

* namespace: application or group of objects, table or relation

e resourcelD: primary key or any attribute

« instancelD: integer to separate items with the same namespace and the same resourcelD
 DHT key : hash (namespace, resourcelD)

e Provider API

get (namespace, resourcelD) — item

put (namespace, resourcelD, instancelD, item, lifetime)

renew (namespace, resourcelD, instancelD, item, lifetime) — bool
multicast (namespace, resourcelD, item)

Iscan (namespace) — iterator

newData (namespace) — item

16



Query Processor

=i

INFORMATIK

 Performs selection, projection, join, grouping, aggregation
* [tems are inserted, updated, deleted via DHT interface
» Operators produce results as quick as possible (push)

* Enqueue the data for the next operator (pull)

« reachable snapshot: the set of data published by reachable nodes at the time the
query 1s sent from the client node

» dilated reachable snapshot: union of local snapshots of data published by
reachable nodes

* local snapshot: data published at the time the query message arrived at the
node

17



=i

INFORMATIK

DHT Distributed Joins

* relational database join performed to some degree in parallel by a umber of
processors (machines) containing different parts of the relations on which join is

performed
e DHT distributed join example:

SELECT I.fingerprint,

count (*) *sum(R.weight) AS wcnt
FROM intrusions I, reputation R i
WHERE R.address = S.address

GROUP BY I.fingerprint

HAVING wcnt > 1.5

» match records on different
machines

18



DHT Distributed Joins - continued

=i

SELECT I.fingerprint,

count (*) *sum(R.weight) AS wcnt
FROM intrusions I, reputation R
WHERE R.address = S.address
GROUP BY I.fingerprint
HAVING wcnt > 1.5

Namespace Ni = multicast
group(l - group)

INFORMATIK

IP address

fimgerprint

attributel

1

Fl

Fl

Led | 2

Query initiator

Fz

FZ

Fl

Table: intrusions

EntireDHT

Networ k

19




O
DHT Distributed Joins - continued mpﬂ

INFORMATIK

SELECT I.fingerprint,

count (*) *sum (R.weight) AS wecnt IF address |weight | attributel
FROM intrusions I, reputation R 1 0.8
WHERE R.address = S.address 9 05
GROUP BY I.fingerprint 3 0.
HAVING wcnt > 1.5 Namespace Nr = multicast

group(B - group) Table: reputation

EntireDHT
Networ k




DHT Distributed Joins - continued

=i

INFORMATIK

[3] Iscan:

For each tuple in I:

extract I.address, I.fingerprint

item = (I.address,
[.fingerprint, ‘I”)

instancel D = random()

put(‘Nq’, I.address,

instancel D, item, ‘60 min”)

PUSH phase

Nq namespace

[ 1] multicast(I-group,’oper-j’,’SELECT I.fingerprint, ...”)
[2] multicast(R-group,’oper-j’,’SELECT I.fingerprint, ...”)

[3] Iscan:

For each tuple in R:

extract R.address, R.weight
item = (R.address, R.weight,

instapcel D = random()
put(‘Ny’, R.address,
instancel D, item, ‘60 min”)

EntireDHT
Networ k

21



DHT Distributed Joins - continued

=i

INFORMATIK

[4]newData(‘Nq’, item)
for each call of newData()
get(*Nq’, item.resourcelD)
if get returns both an I-derived tuple and an R-derived tuple, then
send(‘oper-j’, hash(initiator), (I.fingerprint, R.weight))
[5] receive(‘oper-x’, (I.fingerprint, R.weight))
storereceived item in result table

PULL phase

EntireDHT

Nq namespace Networ k

22



PR

I\IF(}RMATIK_
M otivation
Querying the I nter net
CAN - A particular DHT

PIEF

g L L L

Validation and performance evaluation

23



Simulation setup

=i

INFORMATIK

» Workload:
SELECT R.pkey, S.pkey, R.pad
FROM R, S
WHERE R.numl = S.pkey
AND R.num?2 > constatl
AND S.num?2 > constant2
AND f(R.num3, S.num3) > constant3

* R has 10 times more tuples than S

e attributes in S, R are uniformly distributed

* constants chosen as to produce 50% selectivity

* R.pad attribute assures that all tuples are 1KB in size

10 000 nodes network

* cluster of 64 PCs

* topology : fully connected network, 100ms latency , 10Mbps

 assumption: data changes at a rate higher than the rate of incoming queries

» all measures: performed after CAN routing stabilizes, tables R, S are in the DHT

24



Scalability evaluation

=i

INFORMATIK

» evaluate it by proportionally increasing the load with the number of nodes
* each node - IMB data

» measure the response time for the 30-th tuple

» avoid to measure the first response time

1000 —————— N —

s ' ' 1 Computation Mode —+— 7

2 Computation Modes —-st—- ]

8 Computation Modes ---#-- 1

16 Computation Nodes 1

= 100 k M Computgiion MNod / J

Average time to receive the 30th 2 I

result tuple when both the size of the = 10

E r

network and the load are scaled up. g :

= 1F 3

0.1 ol -

1 10 100 1000 10000
Fumber of Maodes

25



Effects of soft state

=i

_I'.‘\'l-‘f‘.' R ?\I.‘L'l‘II\C_
» evaluate the robustness of the system in the face of node failures

» assume it takes 15s to detect a node failure

* all data is lost when a node fails

« periodically renew all tuples

100 »

Average recall for different refresh rates

Aveee el 1)

L L 1 L
a o 1100 120 O =Ea
Foallurs FRate (fullurseed rmiln

Failurerate (failuresmin)

26



=i

INFORMATIK

Summary

* PIER - a distributed query engine based on widely distributed environments

« It is internally using a relational database format

* PIER aims to overcome the traditional database lack of scalability by using
relaxed principles of consistency and a peer-to-peer like technology

 PIER is a read only system

 PIER 1s build on top of a DHT

* CAN - particular DHT, based on hashing data onto a d-dimensional space
* Implements DHT- distributed joins algorithms - e.g. symmetric hash join

 Operators are not enqueued: results are produced as quickly as possible (push),
and data 1s transferred for the next operator (pull)

* Queries are optimized in order to minimize the response time

27



O
I

THANK YOU!

28



