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Scalability of Database SystemsScalability of Database Systems

• Internet - hundreds million nodes
• The largest database systems - only few hundred nodes
• Scalability - ‘the ability to grow your system smoothly and economically as your 
requirements increase’

• Parameters: data size, speed, workload, transaction cost
• Goal: huge number of concurrent users, continuous availability, large-stored data volume
• Measuring for scalability success:

Workload

Hardware
config

Query 
response 

time
DB size

• size-up

• speed-up

• scale-up
• cost
- workload increase should 
not increase transaction cost
- X(data size) implies ≤ X (cost)

≤ XX

X

≤1/X
X

≤ X
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Querying the InternetQuerying the Internet

• Application example - Network Intrusion Detection

• attack ‘fingerprints’: sequences of port accesses (port scanners), port numbers 
numbers and packet contents (buffer-overrun attacks, web robots), application level 
information on content (email spam) …

• one can detect similar fingerprints, frequently reported
SELECT I.fingerprint, count(*)*sum(R.weight) AS wcnt
FROM intrusions I, reputation R
WHERE R.address = I.address
GROUP BY I.fingerprint
HAVING wcnt > 1.5

IP address      fingerprint      attribute1

1                       F1                   ...

2                       F1                   ...

3                       F2                   ...

1                       F2                   ...

3                       F1                   ...

Table 1: intrusions

IP address   weight   attribute2

1                 0.8             ...

2                 0.5             ...

3                 0.2             ...

Table 2: reputation

fingerprint          wcnt

F1                     4.5

F2                     2.0

Table 3: join result
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Querying the InternetQuerying the Internet

• Relaxed principles for scaling

• Relaxed consistency

• Organic Scaling

• Natural Habitats for Data

• Standard Schemas via Grassroots Software

7



MotivationMotivation

Querying the InternetQuerying the Internet

CAN CAN -- A particular DHT A particular DHT 
• Design, construction, joining, routing… (quick overview)

PIERPIER

Validation and performance evaluationValidation and performance evaluation

8



Content-addressable Network (CAN)Content-addressable Network (CAN)

• CAN is a particular DHT

• virtual d-dimensional Cartesian coordinate space 
partitioned among the nodes in the system

C D E

A B

(0.0) (1.0)

(0.1) (1.1)

(0.0-0.0, 0.0-0.5) (0.5-1.0, 0.0-0.5)

(0.0-0.5, 0.5-1.0)

Node B’s coordinate zone
IP_addr(A)

IP_addr(D)

IP_addr(E)

B’s routing table

• store (key, value) pairs using a hash function:

• key → (f_1(key), … , f_d(key))

• key is mapped to a point in the coordinate space

• (key, value) will be stored by the node 
responsible for the zone in which the point lies.

• each node maintains as its set of neighbors 
the IP addresses of node with adjoining zones
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Content-addressable Network (CAN) - continuedContent-addressable Network (CAN) - continued
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• Routing in CAN

• hash(key) = (x, y)

• ‘simulate’ a straight line from source to 
destination nodes

• Joining 

• a new node randomly chooses a point 
in the space (say (x,y))

• sends a join request to an existing 
node in CAN (say 6)

• the message is routed until the zone in 
which the point lies is reached 

• the zone is split 

• For a d-dimensional space partitioned 
in n equal zones:

neighbors 2 maintains node individualan  -

 
4

 :length path  routing average  the-
1

d

nd d

• More on CAN: Node departure, 
Recovery ...

(x,y)

7
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Physical Network

Network

IP 
Network

Overlay Network

Storage
Manager

Provider 

Overlay
Routing

DHT

PIER ArchitecturePIER Architecture

Query Plan

►◄

►◄ get

scan(I)         scan(R)

PIER

Core Relational
Execution Engine

Query 
Optimizer Catalog 

Manager

Applications

Network 
Monitoring

Other User 
Apps

Declarative Queries
SELECT I.fingerprint, 

count(*)*sum(R.weight) AS wcnt
FROM intrusions I, reputation R
WHERE I.address = R.address
GROUP BY I.fingerprint
HAVING wcnt > 1.5
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DHT DesignDHT Design

• Routing Layer 

Mapping for keys

Dynamic as nodes join and leave

• Storage Manager

DHT based data

• Provider

Storage access interface for higher levels

• Any particular DHT can be used (CAN, Chord ...)
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Routing LayerRouting Layer

• Maps a key into the IP address of the node currently responsible for that key. 

• Provides exact lookups, callbacks higher levels when the set of keys has changed.

• Routing Layer API

lookup (key) → ipaddr 

join (landmark)

leave ()

locationMapChange()

14



Storage ManagerStorage Manager

• Stores and retrieves records, which consist of (key, value) pairs. 

• Keys are used to locate items and can be any data type or structure supported

• Storage Manager API

store (key, item) 

retrieve (key) → item     

remove (key)
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ProviderProvider

• Ties routing and storage manager layers and provides an interface to applications
• Each object in the DHT has a namespace, resourceID and instanceID
• namespace: application or group of objects, table or relation
• resourceID: primary key or any  attribute
• instanceID: integer to separate items with the same namespace and the same resourceID
• DHT key : hash (namespace, resourceID) 

• Provider API
get (namespace, resourceID) → item
put (namespace, resourceID, instanceID, item, lifetime) 
renew (namespace, resourceID, instanceID, item, lifetime) → bool
multicast (namespace, resourceID, item)
lscan (namespace) → iterator
newData (namespace) → item
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Query ProcessorQuery Processor

• Performs selection, projection, join, grouping, aggregation

• Items are inserted, updated, deleted via DHT interface

• Operators produce results as quick as possible (push)

• Enqueue the data for the next operator (pull)

• reachable snapshot:  the set of data published by reachable nodes at the time the 
query is sent from the client node

• dilated reachable snapshot:  union of local snapshots of data published by 
reachable nodes

• local snapshot: data published at the time the query message arrived at the 
node
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DHT Distributed JoinsDHT Distributed Joins

• relational database join performed to some degree in parallel by a umber of 
processors (machines) containing different parts of the relations on which join is 
performed
• DHT distributed join example:
SELECT I.fingerprint, 

count(*)*sum(R.weight) AS wcnt
FROM intrusions I, reputation R
WHERE R.address = S.address
GROUP BY I.fingerprint

HAVING wcnt > 1.5

IR

I

I
R

R

I

• match records on different 
machines
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DHT Distributed Joins - continuedDHT Distributed Joins - continued
SELECT I.fingerprint, 

count(*)*sum(R.weight) AS wcnt

FROM intrusions I, reputation R

WHERE R.address = S.address

GROUP BY I.fingerprint

HAVING wcnt > 1.5

Entire DHT 
Network

Namespace NI = multicast 
group(I - group)

Table: intrusions

Query initiator
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DHT Distributed Joins - continuedDHT Distributed Joins - continued

Entire DHT 
Network

Namespace NR = multicast 
group(B - group)

SELECT I.fingerprint, 

count(*)*sum(R.weight) AS wcnt

FROM intrusions I, reputation R

WHERE R.address = S.address

GROUP BY I.fingerprint

HAVING wcnt > 1.5
Table: reputation
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DHT Distributed Joins - continuedDHT Distributed Joins - continued

Entire DHT 
Network

[1] multicast(I-group,’oper-j’,’SELECT I.fingerprint, ...’)
[2] multicast(R-group,’oper-j’,’SELECT I.fingerprint, ...’)[3] lscan:

For each tuple in I:
extract I.address, I.fingerprint
item = (I.address, 

I.fingerprint, ‘I’)
instanceID = random()
put(‘NQ’, I.address,  
instanceID, item, ‘60 min’)

[3] lscan:
For each tuple in R:
extract R.address, R.weight
item = (R.address, R.weight, 

‘S’)
instanceID = random()
put(‘NQ’, R.address,
instanceID, item, ‘60 min’)

NQ namespace

PUSH phase
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DHT Distributed Joins - continuedDHT Distributed Joins - continued

Entire DHT 
NetworkNQ namespace

PULL phase

[5] receive(‘oper-x’, (I.fingerprint, R.weight))
store received item in result table

[4]newData(‘NQ’, item)
for each call of newData()

get(‘NQ’, item.resourceID)
if get returns both an I-derived tuple and an R-derived tuple, then

send(‘oper-j’, hash(initiator), (I.fingerprint, R.weight))
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Simulation setupSimulation setup

• Workload:
SELECT R.pkey, S.pkey, R.pad
FROM R, S
WHERE R.num1 = S.pkey

AND R.num2 > constat1
AND S.num2 > constant2
AND f(R.num3, S.num3) > constant3

• R has 10 times more tuples than S
• attributes in S, R are uniformly distributed
• constants chosen as to produce 50% selectivity
• R.pad attribute assures that all tuples are 1KB in size

• 10 000 nodes network
• cluster of 64 PCs
• topology : fully connected network, 100ms latency , 10Mbps
• assumption: data changes at a rate higher than the rate of incoming queries  
• all measures: performed after CAN routing stabilizes, tables R, S are in the DHT
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Scalability evaluationScalability evaluation

• evaluate it by proportionally increasing the load with the number of nodes
• each node - 1MB data
• measure the response time for the  30-th tuple
• avoid to measure the first response time  

Average time to receive the 30th 
result tuple when both the size of the 
network and the load are scaled up.
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Effects of soft stateEffects of soft state

• evaluate the robustness of the system in the face of node failures
• assume it takes 15s to detect a node failure
• all data is lost when a node fails 
• periodically renew all tuples

Average recall for different refresh rates

Failure rate (failures/min)
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SummarySummary

• PIER - a distributed query engine based on widely distributed environments
• It is internally using a relational database format

• PIER aims to overcome the traditional database lack of scalability by using 
relaxed principles of consistency and a peer-to-peer like technology

• PIER is a read only system
• PIER is build on top of a DHT 
• CAN - particular DHT, based on hashing data onto a d-dimensional space
• Implements DHT- distributed joins algorithms - e.g. symmetric hash join 
• Operators are not enqueued:  results are produced as quickly as possible (push), 
and data is transferred for the next operator (pull) 
• Queries are optimized in order to minimize the response time  
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