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1. Introduction

Achieving scalability is one of the goals of the database research community at present.
The Internet is estimated to have a few hundreds of nodes, yet the largest database systems in
the world scale up to at most a few hundred nodes. Supporting large databases is still a
challenge because of the lack in the degree of distribution. The main goal is for databases to
scale over Internet, thus making easy for applications (e.g. e-commerce) to develop.

Scalable databases mean scalable data size, speed, workload and transaction cost. Three
primary factors for operational databases are: huge number of concurrent users, the need for
continuous availability and extremely large stored data volume.

We define in what follows some requirements needed for (linear) scalability:

Size-up. This means that if a database size increases by a factor of X, given a constant
hardware configuration, then the query response time should increase by no more than a
factor of X.

Speed-up. If the hardware configuration’s capacity is increased by a factor of X, then
the query response time should decrease by no less than a factor of X.

Scale-up. If the workload on the system is increased by a factor of X then the system
should be able to keep the query response time unmodified by increasing the hardware
capacity by no more than a factor of X.

Transaction cost. There are two considerations with transaction cost in a scalable
system. First, workload increases should not increase the transaction cost. Second, if data
size increases by a factor of X, transaction cost should increase by no more than a factor of X.

Since traditional database systems fail (for the moment) to achieve scalability, the
authors claim to have found a compromise solution to this problem: PIER (Peer-to Peer
Information Exchange and Retrieval) — a query engine that comfortably scales up to
thousands of participating nodes. The key idea is to marry traditional relational database
query processing with peer-to-peer inspired technology (the engine is built on top of a
Distributed Hash Table).

2. Querying the Internet

Applications

A motivating application for massively distributed database functionality is presented in
what follows.

Despite of the many “questionably” legal Peer-to-Peer systems, there exist natural (and
legal) applications for in situ distributed querying, where data is generated in a standard way
in many locations instead of being centralized. Warehousing can be unattractive for many
reasons. They are best suited for historical analysis, while some applications prefer live data,
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they are expensive to administer, requiring large storage capacity and large bandwidth to
scale.

An interesting application is Network Monitoring. Network protocols like IP, SMTP,
HTTP tend to have standard representations, thus providing with structured data that could be
used for query processing. To be more precise, network behaviors can be characterized by
“fingerprints”: sequences of port accesses (to detect port scanners), port numbers and packet
contents (for buffer overrun attacks or web robots), or application-level information on
content (for e-mail spam). If standard servers and applications would distribute structured
“fingerprints” over the network, then intrusion detection could be possible by simply
querying for frequent fingerprints that match recently experienced attacks. One can determine
the threat level in the network, detect similar fingerprints, how many reports on attacks exist,
etc.

For example, say that a fingerprint table is distributed among users. A summary of
widespread attacks can be obtained by computing an aggregation function over this table:

SELECT I fingerprint, count (*) AS cnt
FROM intrusions I

GROUP BY I.fingerprint

HAVING cnt > 10;

For refined results, assume that some users are more reliable in the network than others,
thus their reports being given more credit. An additional reputation table is thus distributed
among users. The results will be weighed according to the reputations of the publishers:

SELECT I fingerprint, count (*) * sum (R.weight) AS went
FROM intrusions I, reputation R

WHERE R .address = [.address

GROUP BY I fingerprint

HAVING wcent > 10;

Design Principles

Traditional databases fail to achieve massive distribution because of a series of
assumptions, such as consistency, availability, etc. PIER uses relaxed design principles in
order to achieve scalability:

Relaxed consistency

Since the goal is to design a query engine for Internet-scale database systems,
transactional consistency is given up in favor of availability and tolerance of network
partitions (it should work on whatever subset of the network is reachable). As compensation,
PIER provides best-effort results and measure them using precision, recall, etc.

Organic Scaling

PIER tries to avoid an architecture where a priori allocation of a data center is required.
This is both expensive and an obstacle against scalability. Peer-to-Peer —like technology is a
good means to achieve organic scaling.

Natural habitats of data

Data is no longer loaded into a database, instead it remains in its “natural habitat” — e.g.
a file system. Wrappers must provide with structured data to be used by the query engine.
This structured information is temporarily copied in the query system’s storage space.

Standard Schemas via Grassroots Software

Internet-scale distributed database systems assume availability of structured information
among thousands of users. At a first glance, this is not a very easy task to accomplish and can
appear discouraging. One interesting idea of the authors is to use the structured information
naturally produced by popular, widely used software.
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3. Content Addressable Network (CAN)

PIER is build on top of a distributed hash table. The authors chose a particular
architecture for a DHT, namely Content Addressable Network. The design and functionality
of CAN have been introduced by Silvia Rtnasamy, Paul Francis, Mark Handley, Richard
Karp and Scott Shenker from University of California, Berkeley [2]. They argue that CAN is
scalable, fault-tolerant and completely self-organizing, thus appearing to be a useful
instrument for PIER. Nevertheless, PIER has been deployed also over another DHT, Chord.

The basic operations performed on a CAN are insertion, lookup and deletion of (key,
value) pairs. CAN is composed by many individual nodes, each storing a zone of the entire
hash table. In addition, a node holds information about a small number of “adjacent” zones in
the table. Requests (insert, lookup or delete) for a particular key are routed by intermediate
CAN nodes towards the CAN node whose node contains that key. CAN is completely
distributed (it requires no centralized control, coordination or configuration), scalable (nodes
maintain only a small amount of control state that is independent of the number of nodes in
the system), and fault-tolerant (nodes can route around failures).

The design centers around a virtual d-dimensional Cartesian coordinate space. This
coordinate space is completely logical and is not related to any physical coordinate system.

At any point in time, the entire coordinate space is dynamically partitioned among all the
nodes in the system such that every node owns its individual, distinct zone. For example,
Figure 1 shows a 2-dimensional coordinate space partitioned among 5 CAN nodes.

The virtual coordinate space is used to store (key, value) pairs as follows: to store a pair
(k, v), key k is deterministically mapped onto a point onto a point P in the coordinate space
using a uniform hash function:

S )= (k) f ok ) [ (k)

The corresponding key-value pair is then stored at the node that owns the zone in which
point P lies.

To retrieve an entry corresponding to a key ., any node can apply the same deterministic
function to map k onto a point P and then retrieve the corresponding value from the point P.
If this point is not owned by the requesting node or by one of its immediate neighbors, the
request must be routed through the CAN infrastructure until it reaches the node in whose
zone P lies.

A node learns and maintains as its set of neighbors the IP address of those nodes that hold

coordinate zones adjoining its own zone. This set of immediate neighbors serves as a
coordinate routing table that enable routing between arbitrary points in the coordinate space.
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Figure 1. Example 2-d coordinate overlay with 5
nodes

Routing in CAN

Intuitively, routing in a Content Addressable Network works by following a straight line
path through the Cartesian space from source to destination coordinates.

A CAN node maintains a coordinate routing table that holds the IP address and virtual
coordinate zone of each of its neighbors in the coordinate space. In a d-dimensional space,
two nodes are neighbors if their coordinate spans overlap along d-/ dimensions. This logical
neighbor state is sufficient to route between two arbitrary nodes in the coordinate space. A
CAN message includes the destination coordinates. Using its neighbor coordinate set, a node
routes a message towards its destination by simply greedy forwarding to the neighbor with
coordinates closest to the destination coordinates. Figure 2 shows a sample routing path.

For a d-dimensional coordinate space partitioned into n zones, the average routing path
length is thus:

1
nd

ENY

and individual nodes maintain 2d neighbors. These scaling results mean that for a d-
dimensional space, the number of nodes can grow without increasing per node state while the
path length grows as:

o(n )

Since many different paths exist between two points in the space, even if one or more of
a node’s neighbors were to crash, a node would automatically route along the next best
available path. Further mechanisms of repairing the routing scheme in case all neighbors in a
certain direction of a node fail at a moment are described in [2].

Joining in CAN

To allow the CAN to grow incrementally, a new node that joins the system must be
allocated its own portion of the coordinate space. This is done by an existing node splitting its
zone in half, retaining half and handing the other half to the new node. This process takes
three steps:
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- First the new node must find a node already in the CAN

A list of existing nodes in the CAN is supposed to be published and available.

- Next, using the CAN routing mechanisms, it must find a node whose zone will be
split.

The new node randomly chooses a point P in the space and sends a join request destined

for node P. This message is sent into the CAN via an existing CAN node. The message

is routed until it reaches the node in whose zone P lies. This current occupant then splits

its zone in half and assigns one half to the new node. The split is done by assuming a

certain ordering of the dimensions in deciding along which dimension a zone is to be

split, so that zones can be re-merged when nodes leave. The key-value pairs from the

half-zone to be handed over are also transferred to the new node.

- Finally, the neighbors of the split zone must be notified so that routing can include
the new node.

Having obtained its zone, the new node learns the IP addresses of its neighbors from the

previous occupant. Similarly, the previous occupant updates its routing table. Finally,

their neighbors must be informed on this reallocation of the space. Figures 2 and 3 show

an example of node 7 joining the CAN.
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Figure 2: Example 2-d space before node s
joins

7 joins

Node departure, Recovery and CAN maintenance

When nodes leave CAN, one need to ensure that the zones they occupied are taken over
by the remaining nodes. The normal procedure for this is for a node to explicitly hand over its
zone and the associated (key, value) database to one of its neighbors.

If the zone of one of the neighbors can be merged with the departing node’s zone to
produce a valid single zone, then this is done. If not, then the zone is handed to the neighbor
whose zone is currently the smallest, and that node will temporarily handle both zones.

The CAN needs to be robust to node or network failures. This is handled through an
immediate takeover algorithm that ensures one of the failed node’s neighbors takes over the
zone. However, in this case the (key, value) pairs will be lost until the state is refreshed by
the holders of the data.

Refined algorithms are proposed to solve the problem of high fragmentation of the
space (see [2]).
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4. PIER Architecture

In what follows, PIER’s architecture will be presented. PIER is a three-tier database-
style query-engine, as shown in Figure 4. Applications interact with the PIER Query
Processor, built on top of a DHT. An instance of each DHT and PIER component is run on
each node.

Matwaork Cihear User o
Manitoring Apps Applications

Care PIER

Relational
Catalog EIEB'_"“{'”
Manager Engine

— Provider
lamager,
c DHT

Owerlay
Routing

Figure 4: PIER architecture

As some applications have already been presented in section 2, next sections will present
the other two layers in detail.

4.1.DHT design

For the simulations presented in the article, the authors used CAN as a DHT design,
with the dimension of the space being d = 4. However, the reason for which CAN is chosen is
not well argued. Although one of the main intended qualities of CAN’s design is scalability
(as stated by its authors, in [2]), the designers of PIER argue that the scalability results could
be improved via another DHT.

The DHT design is factored in three layers: Routing Layer, Storage Manager and the
Provider.

Routing Layer

The routing layer is responsible for mapping keys into the IP address of the node
currently responsible for that key. The API contains 3 functions.

lookup function has a key as input parameter and returns (asynchronously) the IP
address of the node in the system responsible in whose zone the key is hashed.

join function is called when a new node wants to join the DHT and it knows a
landmark already in the network.

The locationMapChange callback notifies higher levels asynchronously when the set of
keys mapped locally has changed, frequent situation as nodes join and leave the network.
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lookup(key) — ipaddr
join(landmark)

leave()
locationMapChange()

Table 1: Routing Layer API

Storage manager

This layer is responsible for the storage of the hashed data while the node is connected
to the network.

The data in the DHT is highly distributed among users, thus in many applications each
machine will store a relatively small amount of data. Communication with the storage
manager is realized via a simple API

store(key, item)
retrieve(key) — item
remove(key)

Table 2: Manager API

Provider

The provider ties the routing layer and the storage manager together. It also provides
with an interface to applications.

Naming scheme for DHT-based data: each object has a namespace, resourcelD and an
instancelD. The DHT key of an object is the hashing of the namespace and the resourcelD.

Namespaces semantically correspond to relations (tables), for query processing.

ResourcelDs are typically related to the primary key of the relation to which it belongs.

Namespaces need not be a priori defined; they are created in the moment the first tuple
is inserted and destroyed when all tuples expire. Since a namespace and a resourcelD do not
necessarily uniquely define a tuple, a random instancelD is generated by the application in
order to make a difference.

The semantics of put and get functions in the provider API are straightforward. One
observation is maybe needed: the get function may return multiple items, as it is key-based,
not instance-based.

The “lifetime” argument of the function put gives the DHT a bound on how long an
item should be stored after receipt. Producers of the data can prologue the life of one piece of
information by invoking renew function. This instrument is also useful when nodes fail and
information is temporarily lost, in order to restore it.

When a query is run, the multicast function provides the means to contact all users that
hold data in a particular namespace.

Data stored locally can be scanned by the Iscan iterator. When run in parallel on all
nodes serving a particular namespace, this serves the purpose of scanning a relation.

The newData callback informs the application when a new item belonging to a
particular namespace has arrived.
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get(namespace, resourcelD) — item

put(namespace, resourcelD, instancelD, item, lifetime)
renew(namespace, resourcelD, instancelD, item, lifetime) — bool
multicast(namespace, resourcelD, item)

Iscan(namespace) — iterator

newData(namespace) — item

Table 3: Provider API

4.2.Query Processor

As the goal of PIER is to achieve scalability, the query processor supports simultaneous
execution of multiple operations, pipelined together.

The query processor is ‘read-only’; it implements operators for selection, projection,
distributed joins, grouping and aggregation. Insert, update, delete are performed directly via
the DHT interface.

In order to hide network latency, the query execution is done as much as possible in
parallel. Operators are not linked together like in traditional databases. Instead, operators
produce results (push) that are immediately enqueued for the next operator (pull).

As a future improvement, the authors admit that a query optimizer is necessary and
could be added on top of the existing query processor. Further extension could provide insert,
update and delete of items and tables facilities directly in the query processor.

As stated previously, scalability is achievable, but on the expense of transactional
consistency.

The reachable snapshot is defined as the set of data published by reachable nodes at the
time the query is sent from the client node.

Instead of that, the relaxed notion of correct data set is defined by the dilated reachable
snapshot: union of local snapshots of data published by reachable nodes, where each local
snapshot is from the time of query message arrival at that node.

The correct data set is now slightly time-dilated, which may lead to a low consistency,
due to failures and partitions.

5. DHT — Based Distributed Joins

The join algorithms used by PIER are adaptations of regular parallel distributed join
algorithms.

The equi-join algorithm is essentially a DHT-based version of the pipelining symmetric
hash join. Consider, for the sake of the example that a join on tables R and S is issued by a
query initiator and that these tables are stored in the DHT under separate namespaces: Nk and
Ns.

The query initiator multicasts the query to all nodes that hold items in the R or S
namespaces. All these nodes scan their relations (with Iscan) to find tuples that mach the
query. Each tuple that satisfies the local selection predicates is copied (with only the relevant
columns remaining) and rehashed in a new (temporary) namespace, say No.

When rehashing, the put function is used:

put (namespace, resourcelD, instancelD, item, lifetime)

where:
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namespace = NQ
resourcelD = the join attributes concatenated
item = the actual record, with additional tag regarding the namespace it comes from (R

or S)

lifetime = the amount of time the record will be available in the O namespace.

Once an item is produced, it is immediately pushed into the temporary namespace
(which plays the role of a queue). The beautiful part is that the hashing scheme for the
matching tuples from the two relations will hash on the same node, because the namespace
and resourcelD will coincide. Whenever a newData callback is issued on the nodes in the
temporary namespace saying that a tuple from S (or R) table has arrived, a get is called in
order to search for a matching tuple from the other relation R (or S). The get function is
expected to be local. Even if some failures have happened, this can be overcome at the
expense of an additional round trip.

These steps are all done in parallel.

Whenever matching tuples are found, they are immediately pulled to the query initiator.

The symmetric hash join algorithm requires all matching data to be rehashed, which
may need much bandwidth. Fetch matches, Symmetrical Semi-Join Rewrite and Bloom Filter
Rewrite algorithms can improve Symmetric Hash-Join in this matter.

6. Validation and Performance Evaluation

Validation setup
The query used for simulations was the following:

SELECT R.pkey, S.pkey, R.pad
FROMR, S
WHERE R.numl = S.pkey
AND R.num?2 > constantl
AND S.num?2 > constant2
AND f (R.num3, S.num3) > constant3

Tables S and R are synthetically generated. R has 10 times more tuples than S, and the
attributes for R and S are uniformly distributed. The constants in the predicates are chosen to
produce a selectivity of 50%. The R.pad attribute is used to insure that all result tuples are
1KB in size.

The simulator allows a scaling up to 10.000 nodes, after which it no longer fits in RAM
- which results in a limitation of the simulation, not of the PIER architecture itself.

Two different topologies are used in the simulations. First, a fully connected network,
where the latency between any two nodes is 100ms and the inbound link capacity of each
node is 10Mbps. This is a simulation of homogeneously nodes spread throughout the Internet.
Another more realistic topology is also used, but the results are qualitatively similar.

Simplifying assumptions: the focus is on the bandwidth and latency bottlenecks and
computation and memory overheads of query processing are ignored. Also, data changes at a
rate higher than the rate of incoming queries.

Experiments are run on a cluster of 64 PCs connected by a 1-Gbps network.
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Scalability

The purpose of this test is to prove that PIER is able to scale its performance (in terms
of query response time) while the number of nodes in the system increase and the workload
proportionally increases.

Assume that each node is responsible for 1Mb of data.

In order to measure the response time, the authors decided to measure the time passed
until the 30" tuple has arrived. They argue their choice by the following reason: if the arrival
of the first item is considered, then if this item were local the experiment would not capture
network limitations. They do not consider the last item either, as increasing the load and
network size implies increasing the number of results for each query. This would mean then
measuring a constant — the network capacity of the node where all results arrive, which is not
interesting.
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Figure 5: Average time to receive the 3 0" result tuple when both
the size of the network and the load are scaled up. Each
data point is averaged over three independent simulations.

The simulations were run several times, with various numbers of computation nodes
(the nodes in the temporary “queue” namespace). The number of computation nodes can be
manipulated by restricting the naming scheme for the temporary namespace such that the
items would be hashed onto a certain number of nodes.

If all nodes are used, the scalability results look pretty good. If the number of nodes in
the network is increased 10 000 times, then the query response time increases only four
times. Perfect scalability would imply the same response time. Why the four times increase?
Remember that the average path length in CAN is:

O(n )

The experiments used d = 4. Thus, an increase of a factor of 10 000 in the number of
nodes result in an increase of 10 times in the average routing path length. Yet, there is some
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constant time added to the overall query response time, which comes from the sending back
the data to the query initiator. All these lead to the factor of 4 increase.

On the other hand, if the number of computation nodes increase, the results do not look
as good as before. This is because the load per computation node increases significantly.

Effects of Soft State

As consistency has been traded off for scalability, precise measurements of the damage
this implies are needed.

The parameters would be the Rate of Failures and the Average Recall (average
percentage of the tuples retrieved for the given query from all tuples that match the query in
the distributed database).

Some observations are needed: first, some explanations on the DHT mechanism that
deals with failures.

Each node sends periodically 'keep-alive' messages to its neighbors. If it doesn't receive
several consecutive answers from one of these neighbors, the node decides that neighbor has
failed. Detecting a node's failure thus takes some time, which depends on the frequency of the
keep-alive messages. During this time, all data sent to this node is lost. A simple algorithm to
counteract this effect is for all producers of data to periodically renew their tuples. Data is
rehashed from time to time.

Does this scheme work?

Simulation results prove that average recall does not decrease so dramatically with
failure rate if the refresh rate is high (but this costs traffic).

The parameters of the experiments are: 4096 nodes in the network, 15 sec to detect a
node failure, refresh rate varying between 30 sec and 225 sec.
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Figure 6: Average Recall for different refresh periods
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7. Conclusions

The paper presents the architecture of PIER — a relational query engine built on top of a
DHT. The aim is the ability of running queries on Internet-scale databases.

The authors suggest a nice, possible application that could use such a query engine:
Network Monitoring. The feasibility of this application is well argued, even software that
could produce structured data to be used by PIER are specified.

Achieving scalability is done on the expense of relaxed consistency. The correctness of
data set is redefined. Recall is measured in order to understand the prejudice of relaxed
consistency. High Recall is yet obtained by frequently rehashing data. This may result in an
overload of the network. The authors admit that further optimization of this algorithm is
required. Better techniques of replication of DHT-based data will significantly improve the
scalability.

PIER implements a particular DHT — Content Addressable Network. Its design also
aims at scalability, a good, promising, sign in this direction being the fact that the size of the
routing table of each node is independent on the number of nodes in the network. Still, due to
the fact that the average routing path length increases with the number of nodes, the query
response time increases, too. So CAN may not be the 'perfect' choice for a DHT. Chord is
reminded, but no detailed results are presented, if Chord is chosen instead of CAN.

PIER has a three-tier architecture. To my opinion, it is well structured, in the sense that
future improvements — such as a query optimizer — can be easily integrated.

The central topic of the paper are the distributed join algorithms. They are derived from
classical, parallel joins on distributed databases [3]. One strategy is to avoid an iterator model
that links operators together. Instead, results should be used as quickly as they are produced.
This may hide network latency. On the other hand, all tuples that match the local join
conditions are rehashed, and this operation can consume a lot of bandwidth. Improvements of
the symmetrical hash join algorithm are proposed: Fetch Matches, Symmetrical Semi-Join
rewrite and Bloom Filter Rewrite. These perform better with respect to query response time
and bandwidth need.

Although many improvements are welcome, the architecture looks promising, from the
point of view of the simulation results.
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