
IRDM WS 2005 3-1

Chapter 3: Top-k Query Processing
and Indexing

3.1 Top-k Algorithms

3.2 Approximate Top-k Query Processing

3.3 Index Access Scheduling

3.4 Index Organization and Advanced Query Types

IRDM WS 2005 3-2

3.1 Top-k Query Processing with Scoring

professor

B+ tree on terms

17: 0.3
44: 0.4

...
research... xml...

52: 0.1
53: 0.8
55: 0.6

12: 0.5
14: 0.4

...

28: 0.1
44: 0.2
51: 0.6
52: 0.3

17: 0.1
28: 0.7

...

17: 0.3
17: 0.144: 0.4

44: 0.2

11: 0.6
index lists with
(DocId,
s = tf*idf)
sorted by DocId

Google:
> 10 mio. terms
> 8 bio. docs
> 4 TB index

q: professor
research
xml

Vector space model suggestsm×n term-document matrix,
but data is sparese and queries are even very sparse
→→→→ better use inverted index listswith terms as keys for B+ tree

terms can be full words, word stems, word pairs,
word substrings, etc.
(whatever „dictionary terms“ we prefer for the application)

queries can be conjunctive or „andish“ (soft conjunction)

IRDM WS 2005 3-3

DBS-Style Top-k Query Processing

Naive join&sort QP algorithm:

professor

B+ tree on terms

17: 0.3
44: 0.4

...

research... xml...

52: 0.1
53: 0.8
55: 0.6

12: 0.5
14: 0.4

...

28: 0.1
44: 0.2
51: 0.6
52: 0.3

17: 0.1
28: 0.7

...

17: 0.3
17: 0.144: 0.4

44: 0.2

11: 0.6
index lists with
(DocId,
s = tf*idf)
sorted by DocId

Given: query q = t1 t2 ... tz with z (conjunctive) keywords
similarity scoring function score(q,d) for docs d∈∈∈∈D, e.g.:
with precomputed scores (index weights) si(d) for which q i≠0

Find: top k results w.r.t. score(q,d) =aggr{si(d)}(e.g.: ΣΣΣΣi∈∈∈∈q si(d))

Google:
> 10 mio. terms
> 8 bio. docs
> 4 TB index

q d⋅⋅⋅⋅
�

�

q: professor
research
xml

top-k (
σσσσ[term=t 1] (index) ××××DocId
σσσσ[term=t 2] (index) ××××DocId
... ××××DocId

σσσσ[term=t z] (index) order by s desc)

IRDM WS 2005 3-4

Computational Model for Top-k Queries
over m-Dimensional Data Space

Assumelocal scores si for query q, data item d, and dimension i, and

global scores sof the form

with a monotonicaggregation function
m

i
i 1

s(q,d) s (q,d)∑
====

====

• process m index listsLi with sorted access (SA)to entries (d, si(q,d))
in ascending order of doc idsor descending order of si(q,d)

• maintain for each candidate d a set E(d) of evaluated dimensions
and a partial score „accumulator“

• for candidate d with incomplete E(d) consider
looking up d in Li for all i∈R(d) byrandom access (RA)

• terminate index list scans when enough candidates have been seen
• if necessary sort final candidate list by global score

is(q,d) max{ s (q,d)| i 1..m }= == == == =

is(q,d) aggr{ s (q,d)| i 1..m }= == == == =
]1,0[]1,0[: →→→→maggr

Examples:

Find top-k data items with regard to global scores:

IRDM WS 2005 3-5

Data-intensive Applications
in Need of Top-k Queries

Top-k results from ranked retrieval on
• multimedia data: aggregation over features like color, shape, texture, etc.
• product catalog data: aggregation over similarity scores for

cardinal properties such as year, price, rating, etc. and
categorial properties such as

• text documents: aggregation over term weights
• web documents: aggregation over (text) relevance, authority, recency
• intranet documents: aggregation over different feature sets such as

text, title, anchor text, authority, recency, URL length, URL depth,
URL type (e.g., containing „index.html“ or „~“ vs. containing „?“)

• metasearch engines: aggregation over ranked results from multiple
web search engines

• distributed data sources: aggregation over properties from different sites
e.g., restaurant rating from review site,
restaurant prices from dining guide, driving distance fromstreetfinder

• peer-to-peer recommendation and search

IRDM WS 2005 3-6

Index List Processing by Merge Join
Keep L(i) in ascending order of doc ids
Compress L(i) by actually storing the gaps between successive doc ids

(or using some more sophisticated prefix-free code)

QP may start with thoseL(i) lists that are short and have high idf
Candidate results need to be looked up in other lists L(j)
To avoid having to uncompress the entire list L(j),

L(j) is encoded into groups of entries
with a skip pointerat the start of each group
→ sqrt(n) evenly spaced skip pointers for list of length n

L i

L j

2 4 9 16 59 66 128 135 291 311 315 591 672 899

1 2 3 5 8 17 21 35 39 46 52 66 75 88

…

…

IRDM WS 2005 3-7

Efficient Top-k Search
[Buckley85, Güntzer/Balke/Kießling 00, Fagin01]

Index listsIndex lists

s(t1,d1) = 0.7
…
s(tm,d1) = 0.2

s(t1,d1) = 0.7
…
s(tm,d1) = 0.2

…

Data items:d1, …, dn

Query: q = (t1, t2, t3)

2.40.7d103

2.40.8d642

2.40.9d781

Best-
score

Worst-
score

DocRank

2.10.7d104

2.10.8d643

1.91.4d232

2.01.4d781

Best-
score

Worst-
score

DocRank

2.01.2d644

1.81.4d233

2.01.4d782

2.12.1d101

Best-
score

Worst-
score

DocRank

…

…

t1
d78
0.9

d1
0.7

d88
0.2

d10
0.2

d78
0.1

d99
0.2

d34
0.1

d23
0.8

d10
0.8

d1d1

t2
d64
0.8

d23
0.6

d10
0.6

t3 d10
0.7

d78
0.5

d64
0.4

STOP!STOP!

TA with sorted access only (NRA):
can index lists; consider d at posi in L i;
E(d) := E(d) ∪∪∪∪ {i}; high i := s(ti,d);
worstscore(d):= aggr{s(tνννν,d) | νννν ∈∈∈∈E(d)};
bestscore(d):= aggr{worstscore(d),

aggr{highνννν | νννν ∉∉∉∉ E(d)}};
if worstscore(d) > min-k then add d to top-k

min-k := min{worstscore(d’) | d’ ∈∈∈∈ top-k};
else if bestscore(d) > min-k then

cand := cand∪∪∪∪ {d}; s
threshold := max {bestscore(d’) | d’∈∈∈∈ cand};
if threshold ≤≤≤≤ min-k then exit;

threshold algorithms: efficient &
principled top-k query processing
with monotonic score aggr.

Scan
depth 1
Scan

depth 1
Scan

depth 2
Scan

depth 2
Scan

depth 3
Scan

depth 3

k = 1

keep L(i) in descending order of scores

IRDM WS 2005 3-8

Threshold Algorithm (TA, Quick-Combine, MinPro)
(Fagin’01; Güntzer/Balke/Kießling; Nepal/Ramakrishna)

scan all lists Li (i=1..m) in parallel:
consider dj at position posi in Li;
highi := si(dj);
if dj ∉∉∉∉ top-k then {

look up sνννν(dj) in all lists L νννν with ν≠ν≠ν≠ν≠i; // random access
compute s(dj) := aggr {sνννν(dj) | νννν=1..m};
if s(dj) > min score among top-k then

add dj to top-k and remove min-score d from top-k; };
threshold := aggr {highνννν | νννν=1..m};
if min score among top-k ≥≥≥≥ threshold then exit;

m=3
aggr: sum
k=2

f: 0.5
b: 0.4
c: 0.35
a: 0.3
h: 0.1
d: 0.1

a: 0.55
b: 0.2
f: 0.2
g: 0.2
c: 0.1

h: 0.35
d: 0.35
b: 0.2
a: 0.1
c: 0.05
f: 0.05

f: 0.75

a: 0.95

top-k:

b: 0.8

but random accesses
are expensive !

IRDM WS 2005 3-9

No-Random-Access Algorithm
(NRA, Stream-Combine, TA-Sorted)

scan index lists in parallel:
consider dj at position posi in Li;
E(dj) := E(dj) ∪∪∪∪ {i}; high i := si(q,dj);
bestscore(dj):= aggr{x1, ..., xm)

with xi := si(q,dj) for i ∈∈∈∈E(dj), highi for i ∉∉∉∉E(dj) ;
worstscore(dj) := aggr{x1, ..., xm)

with xi := si(q,dj) for i ∈∈∈∈E(dj), 0 for i ∉∉∉∉E(dj);
top-k := k docs with largest worstscore;
threshold := bestscore{d | d not in top-k};
if min worstscore among top-k≥≥≥≥ threshold then exit;

m=3
aggr: sum
k=2

a: 0.55
b: 0.2
f: 0.2
g: 0.2
c: 0.1

h: 0.35
d: 0.35
b: 0.2
a: 0.1
c: 0.05
f: 0.05

top-k:

candidates:

f: 0.5
b: 0.4
c: 0.35
a: 0.3
h: 0.1
d: 0.1

f: 0.7 + ? ≤≤≤≤ 0.7 + 0.1

a: 0.95

h: 0.35 + ? ≤≤≤≤ 0.35 + 0.5

b: 0.8

d: 0.35 + ? ≤≤≤≤ 0.35 + 0.5
c: 0.35 + ? ≤≤≤≤ 0.35 + 0.3

g: 0.2 + ? ≤≤≤≤ 0.2 + 0.4

h: 0.45 + ? ≤≤≤≤ 0.45 + 0.2

d: 0.35 + ? ≤≤≤≤ 0.35 + 0.3

IRDM WS 2005 3-10

Optimality of TA
Definition:
For a classA of algorithms and a classD of datasets,
let cost(A,D) be the execution cost of A∈A on D∈D .
Algorithm B is instance optimaloverA and D if

for every A∈A on D∈D : cost(B,D) = O(cost(A,D)),
that is: cost(B,D) ≤ c*O(cost(A,D)) + c‘
with optimality ratio (competitiveness) c.

Theorem:
• TA is instance optimal over all algorithms that are based on

sorted and random access to (index) lists (no „wild guesses“).
TA has optimality ratio m + m(m-1) CRA/CSA

with random-access cost CRA and sorted-access cost CSA

• NRA is instance-optimal over all algorithms with SA only.

if „wild guesses“ are allowed,
then no deterministic algorithm is instance-optimal

IRDM WS 2005 3-11

Execution Cost of TA Family

Run-time costis with arbitrarily high probability

(for independently distributed Li lists)

 ⋅⋅⋅⋅
−−−−

mm
m

knO
11

Memory cost is O(k) for TA

and O(n(m-1)/m) for NRA (priority queue of candidates)

IRDM WS 2005 3-12

3.2 Approximate Top-k Query Processing

3.2.1 Heuristics for Similarity Score Aggregation

3.2.2 Heuristics for Score Aggregation with Authority Scores

3.2.3 Probabilistic Pruning

IRDM WS 2005 3-13

Approximate Top-k Query Processing

A θθθθ-approximationT‘ for top-k query q withθ > 1
is a set T‘ of docs with:
• |T‘|=k and
• for each d‘∈T‘ and each d‘‘∉T‘: θ *score(q,d‘) ≥ score(q,d‘‘)

Modified TA:
...
Stop whenmink ≥≥≥≥ aggr(high1, ..., highm) / θθθθ

Approximation TA:

IRDM WS 2005 3-14

Pruning and Access Ordering Heuristics

General heuristics:
• disregard index lists with idf below threshold
• for index scans give priority to index lists

that are short and have high idf

IRDM WS 2005 3-15

3.2.1 Pruning with Similarity Scoring
(Moffat/Zobel 1996)

Focus on scoring of the form ∑
====

====
m

i
jiij dtsdqscore

1

),(),(

)()(),(),(jijijii didltidfdttfdts ⋅⋅⋅⋅⋅⋅⋅⋅====with

quit heuristics
(with doc-id-ordered or tf-ordered or tf*idl-ordered index lists):
• ignore index list L(i) if idf(ti) is below threshold or
• stop scanning L(i) if idf(ti)*tf(ti,dj)*idl(dj) drops belowthreshold or
• stop scanning L(i) when the number of accumulators is too high

Implementation based on a hash array of accumulators
for summing up the partial scores of candidate results

continueheuristics:
upon reaching threshold, continue scanning index lists,
but do not add any new documents to the accumulator array

IRDM WS 2005 3-16

Greedy QP
Assume index lists are sorted by tf(ti,dj) (or tf(ti,dj)*idl(dj)) values

Open scan cursors on all m index lists L(i)

Repeat

Find pos(g) among current cursor positions pos(i) (i=1..m)

with the largest value of idf(ti)*tf(ti,dj)

(or idf(ti)*tf(ti,dj)*idl(dj));

Update the accumulator of the corresponding doc;

Increment pos(g);

Until stopping condition

IRDM WS 2005 3-17

3.2.2 Pruning with Combined
Authority/Similarity Scoring (Long/Suel 2003)

Focus on score(q,dj) = r(dj) + s(q,dj)
with normalization r(⋅) ≤ a, s(⋅) ≤ b (and often a+b=1)

Keep index lists sorted in descending order of „static“ authority r(dj)

Conservative authority-based pruning:
high(0) := max{r(pos(i)) | i=1..m}; high := high(0) + b;
high(i) := r(pos(i)) + b;
stop scanning i-th index list when high(i) < min score of top k
terminate algorithm when high < min score of top k

effective when total score of top-k results is dominated by r

First-k‘ heuristics:
scan all m index lists until k‘ ≥ k docs have been found

that appear in all lists;
the stopping condition is easy to check because of the sorting by r

IRDM WS 2005 3-18

Separating Documents with Large si Values
Idea (Google):
in addition to the full index lists L(i) sorted by r,
keep short„fancy lists“ F(i) that contain the docs dj
with thehighest values of si(ti,dj) and sort these by r

Fancy first-k‘ heuristics:
Compute total score for all docs in ∩ F(i) (i=1..m)

and keep top-k results;
Cand := ∪i F(i) − ∩i F(i);
for each dj∈ Cand do {compute partial score of dj};
Scan full index lists L(i) (i=1..k);

if pos(i) ∈ Cand
{add si(ti,pos(i)) to partial score of pos(i)}

else {add pos(i) to Cand and set its partial score to si(ti,pos(i))};
Terminate the scan when k‘ docs
have a completely computed total score;

IRDM WS 2005 3-19

Authority-based Pruning with Fancy Lists
Guarantee that the top k results are complete by
extending the fancy first-k‘ heuristics as follows:

stop scanning the i-th index list L(i) not after k‘ results,
but only when we know that no imcompletely scored doc
can qualify itself for the top k results

Maintain:
r_high(i) := r(pos(i))
s_high(i) := max{si(q,dj) | dj∈ L(i) − F(i)}

Scan index lists L(i) and accumulate partial scores for all docs dj
Stop scanning L(i) iff

r_high(i) + Σi s_high(i) < min{score(d) | d ∈ current top-k results}

IRDM WS 2005 3-20

Probabilistic Pruning

Idea:
Maintain statistics about the distribution of si values
For pos(i)

estimate the probability p(i) that the rest of L(i) contains a doc d
for which the si score is so high that d qualifies for the top k results

Stop scanning L(i) if p(i) drops below some threshold

Simple „approximation“ by thelast-l heuristics:
stop scanning when the number of docs in ∪i F(i) − ∩i F(i)
with incompletely computed score drops below l (e.g., l=10 or 100)

IRDM WS 2005 3-21

Performance Experiments
Setup:
index lists for 120 Mio. Web pages distributed over 16 PCs

(and stored in BerkeleyDB databases)
query evaluation iterated over many sample queries

with different degrees of concurrency (multiprogramming levels)

Evaluation measures:
• query throughput [queries/second]
• average query response time [seconds]
• error for pruning heuristics:

strict-k error: fraction of queries for which the top k were not exact
loose-k error: fraction of top k results that do not belong to true top k

IRDM WS 2005 3-22

Performance Experiments: Fancy First-k’

from: X. Long, T. Suel, Optimized Query Execution in Large Search Engines with Global Page Ordering, VLDB 2003

IRDM WS 2005 3-23

Performance Experiments: Fancy First-k’

from: X. Long, T. Suel, Optimized Query Execution in Large Search Engines with Global Page Ordering, VLDB 2003

IRDM WS 2005 3-24

Performance Experiments:
Authority-based Pruning with Fancy Lists

from: X. Long, T. Suel, Optimized Query Execution in Large Search Engines with Global Page Ordering, VLDB 2003

IRDM WS 2005 3-25

3.2.3 Approximate Top-k with Probabilistic Pruning

scan
depth

drop d
from
priority
queue

� Approximate top-k with
probabilistic guarantees:

bestscore(d)

worstscore(d)

min-k

score
• Add d to top-k result, if

worstscore(d) > min-k
• Drop d only if bestscore(d) <

min-k, otherwise keep in PQ

TA family of algorithms based on invariant (with sum as aggr):

i i i
i E(d) i E(d) i E(d)

s (d) s(d) s (d) high∑ ∑ ∑
∈ ∈ ∉∈ ∈ ∉∈ ∈ ∉∈ ∈ ∉

≤ ≤ +≤ ≤ +≤ ≤ +≤ ≤ +

worstscore(d) bestscore(d)

i i
i E(d) i E(d)

p(d) : P [s (d) S]δδδδ∑ ∑
∈ ∉∈ ∉∈ ∉∈ ∉

= + >= + >= + >= + >

� Often overly conservative
(deep scans,
high memory for PQ)

discard candidates d from queue if p(d) ≤≤≤≤ εεεε

score predictor can use
LSTs & Chernoff bounds,
Poisson approximations,
or histogram convolution

⇒ E[rel. precision@k] = 1−ε−ε−ε−ε

IRDM WS 2005 3-26

Probabilistic Threshold Test

• postulating uniform or Zipf score distribution in [0, highi]
• compute convolution using LSTs
• use Chernoff-Hoeffding tail bounds or

generalized bounds for correlated dimensions (Siegel 1995)
• fitting Poissondistribution (or Poisson mixture)

• over equidistant values:
• easy and exact convolution

• distribution approximated by histograms:
• precomputed for each dimension
• dynamic convolution at query-execution time

)!1(
][

1

−−−−
========

−−−−
−−−−

j
evdP

j
ii

j
αααααααα

engineering-wise
histograms work best!

0

f2(x)

1 high2

Convolution
(f2(x), f3(x))

2 0δ(d)

f3(x)

high31 0

⊕⊕⊕⊕ →→→→
cand doc d
with
2 ∉ E(d),
3 ∉ E(d)

IRDM WS 2005 3-27

Coping with Convolutions
via moment-generation function for arbitray independent RV‘s,
including heterogeneous combinations of distributions

for dependent RV‘s
generalized Chernoff-Hoeffding bounds(Alan Siegel 1995):

consider X = X1 + ... + Xm with dependent RV‘s Xi
consider Y = Y1 + ... + Ym with independent RV‘s Yi such that
Yi has the same distribution as (the marginal distr. of) Xi

if Bi is a Chernoff bound for Yi, i.e., P[Yi ≥≥≥≥ δδδδi] ≤≤≤≤ Bi then

(e.g., with the δi values chosen proportional to the highi values)
{{{{ }}}}δδδδδδδδδδδδδδδδ ====++++++++≤≤≤≤≥≥≥≥ mmBBXP ...|}...,,max{inf][11

∫ −−−−====++++

z

YXYX dxxzFxfzF
0

)()()()()()(sMsMsM YXYX ====++++

∫
∞∞∞∞

========
0

][)()(sX
X

sx
X eEdxxfesM

{{{{ }}}}0|)(inf][≥≥≥≥≤≤≤≤≥≥≥≥ −−−− θθθθθθθθθθθθ
X

t MetXPChernoff-Hoeffding bound:

IRDM WS 2005 3-28

Prob-sorted Algorithm (ConservativeVariant)
Prob-sorted (RebuildPeriod r, QueueBound b):
...
scan all lists Li (i=1..m) in parallel:

…same code as TA-sorted…

// queue management (one queue for each possible set E(d))
for all priority queues q for which d is relevant do

insert d into q with priority bestscore(d);
// periodic clean-up
if step-number mod r = 0 then

// rebuild; multiple queues
if strategy = Conservative then

for all queue elements e in q do
update bestscore(e) with current high_i values;

rebuild bounded queuewith best b elements;
if prob[top(q) can qualify for top-k] < εεεε
then drop all candidates from this queue q;

if all queues are empty then exit;

Probabilistic Guarantees:
E[relative precision @ k] = 1-εεεε
E[relative recall @ k] = 1-εεεε

IRDM WS 2005 3-29

Prob-sorted Algorithm (Smart Variant)
Prob-sorted (RebuildPeriod r, QueueBound b):
...
scan all lists Li (i=1..m) in parallel:

…same code as TA-sorted…

// queue management (one global queue)
for all priority queues q for which d is relevant do

insert d into q with priority bestscore(d);
// periodic clean-up
if step-number mod r = 0 then

// rebuild; single bounded queue
if strategy = Smart then

for all queue elements e in q do
update bestscore(e) with current high_i values;

rebuild bounded queuewith best b elements;
if prob[top(q) can qualify for top-k] < εεεε then exit;

if all queues are empty then exit;

IRDM WS 2005 3-30

TA-sorted Prob-sorted (smart)
#sorted accesses 2,263,652 527,980
elapsed time [s] 148.7 15.9
max queue size 10849 400
relative recall 1 0.69
rank distance 0 39.5
score error 0 0.031

Performance Results for .Gov Queries
on .GOV corpus from TREC-12 Web track:
1.25 Mio. docs (html, pdf, etc.)

50 keyword queries, e.g.:
• „Lewis Clark expedition“,
• „juvenile delinquency“,
• „legalization Marihuana“,
• „air bag safety reducing injuries death facts“

speedup by factor 10
at high precision/recall
(relative to TA-sorted);
aggressive queue mgt.
even yields factor 100
at 30-50 % prec./recall

IRDM WS 2005 3-31

Performance Results for
.Gov Expanded Queries

on .GOV corpus with query expansion based on WordNet synonyms:
50 keyword queries, e.g.:
• „ juvenile delinquencyyouth minor crime law jurisdiction

offense prevention“,
• „ legalization marijuana cannabis drug soft leaves plant smoked

chewed euphoric abuse substance possession control pot grass
dope weed smoke“

TA-sorted Prob-sorted (smart)
#sorted accesses 22,403,490 18,287,636
elapsed time [s] 7908 1066
max queue size 70896 400
relative recall 1 0.88
rank distance 0 14.5
score error 0 0.035

IRDM WS 2005 3-32

Performance Results for IMDB Queries
on IMDB corpus (Web site: Internet Movie Database):
375 000 movies, 1.2 Mio. persons (html/xml)
20 structured/text queries with Dice-coefficient-based similarities
of categorical attributes Genre and Actor, e.g.:
• Genre ⊇⊇⊇⊇ {Western} ∧∧∧∧ Actor ⊇⊇⊇⊇ {John Wayne, Katherine Hepburn}

∧∧∧∧ Description ⊇⊇⊇⊇ {sheriff, marshall},
• Genre ⊇⊇⊇⊇ {Thriller} ∧∧∧∧ Actor ⊇⊇⊇⊇ {Arnold Schwarzenegger}

∧∧∧∧ Description ⊇⊇⊇⊇ {robot}

TA-sorted Prob-sorted (smart)
#sorted accesses 1,003,650 403,981
elapsed time [s] 201.9 12.7
max queue size 12628 400
relative recall 1 0.75
rank distance 0 126.7
score error 0 0.25

IRDM WS 2005 3-33

0.5

0.6

0.7

0.8

0.9

1

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.

1
0.

2
0.

3
0.

4
0.

5

e

macro-avg.
precision

(1-e) Prediction

TFIDF/Histograms

TFIDF/Poisson

TFIDF/Chernoff

TFIDF/Chernoff
Corr

Comparison of Probabilistic Predictors

IRDM WS 2005 3-34

consider expandable query„~professor and research = XML“
with score

Top-k Queries with Query Expansion

Σi∈q {max j∈exp(i) { sim(i,j)*s j(d) }}

dynamic query expansion with
incremental on-demand merging of additional index lists

+ much more efficient than threshold-based expansion
+ no threshold tuning
+ no topic drift

lecturer:
0.7

37: 0.9
44: 0.8

...

22: 0.7
23: 0.6
51: 0.6
52: 0.6

scholar: 0.6
92: 0.9
67: 0.9

...
52: 0.9
44: 0.8
55: 0.8

research:
XML

B+ tree index on tag-term pairs and terms

57: 0.6
44: 0.4

...

professor

52: 0.4
33: 0.3
75: 0.3

12: 0.9
14: 0.8

...

28: 0.6
17: 0.55
61: 0.5
44: 0.5

44: 0.4

thesaurus / meta-index

professor
lecturer: 0.7
scholar: 0.6
academic: 0.53
scientist: 0.5
...

IRDM WS 2005 3-35

Experiments with TREC-13 Robust Track

on Acquaint corpus (news articles):
528 000 docs, 2 GB raw data, 8 GB for all indexes

no exp. static exp. static exp. incr. merge
(εεεε=0.1) (θθθθ=0.3, (θθθθ=0.3, (εεεε=0.1)

εεεε=0.0) εεεε=0.1)
#sorted acc. 1,333,756 10,586,175 3,622,686 5,671,493
#random acc. 0 555,176 49,783 34,895
elapsed time [s] 9.3 156.6 79.6 43.8
max #terms 4 59 59 59
relative recall 0.934 1.0 0.541 0.786
precision@10 0.248 0.286 0.238 0.298
MAP@1000 0.091 0.111 0.086 0.110

with Okapi BM25 scoring model

50 most difficult queries, e.g.:
„transportation tunnel disasters“
„Hubble telescope achievements“

potentially expanded into:
„earthquake, flood, wind, seismology, accident, car, auto, train, ...“
„astronomical, electromagnetic radiation, cosmic source, nebulae, ...“

speedup by factor 4
at high precision/recall;
no topic drift, no need
for threshold tuning;
also handles TREC-13
Terabyte benchmark

IRDM WS 2005 3-36

Additional Literature for Chapter 3
Top-k Query Processing:
• Grossman/Frieder Chapter 5
• Witten/Moffat/Bell, Chapters 3-4
• A. Moffat, J. Zobel: Self-Indexing Inverted Files for Fast Text Retrieval,

TOIS 14(4), 1996
• R. Fagin, A. Lotem, M. Naor: Optimal Aggregation Algorithms for Middleware,

Journal of Computer and System Sciences 66, 2003
• R. Fagin: Combining Fuzzy Information from Multiple Systems,

Journal of Computer and System Sciences 58 (1999)
• S. Nepal, M.V. Ramakrishna: Query Processing Issues in Image (Multimedia)

Databases, ICDE 1999
• U. Guentzer, W.-T. Balke, W. Kiessling: Optimizing Multi-FeatureQueries in

Image Databases, VLDB 2000
• C. Buckley, A.F. Lewit: Optimization of Inverted Vector Searches, SIGIR 1985
• M. Theobald, G. Weikum, R. Schenkel: Top-k Query Processing with

Probabilistic Guarantees, VLDB 2004
• M. Theobald, R. Schenkel, G. Weikum: Efficient and Self-Tuning

Incremental Query Expansion for Top-k Query Processing, SIGIR 2005
• X. Long, T. Suel: Optimized Query Execution in Large Search

Engines with Global Page Ordering, VLDB 2003
• A. Marian, N. Bruno, L. Gravano: Evaluating Top-k Queries over

Web-Accessible Databases, TODS 29(2), 2004

