3.3 Index Access Schedulir

Given:

* Index scans over m lists (i=1..m), with current positions pps
e score predictors for score(pos) and pos(score) for each L

» selectivity predictors for documentldL,

e current top-k queue T with k documents

e candidate queue Q with ¢ documents (usually ¢ >> k)

e min-k threshold = min{worstscore(d) [id}

Questions/Decisions:

» Sorted-access (SA) scheduling:
for the next batch of b scan steps, how many steps in which list?
(b; steps in Lwith > b. = b)

 Random-access (RA) scheduling:
when to Iinitiate probes and for which documents?

e Possible constraints and extra considerations:
some dimensions | may support only sorted access or only random
access, or have tremendous cost ratia/Cq,

IRDM WS 2005

3-1

Combined Algorithm (CA)

assume cost ratio G,/Cgp =T

perform NRA (TA-sorted)
with [worstscore, bestscore] bookkeeping in priority queue Q
and round-robin SA to m index lists

after every r rounds of SA (I.e. m*r scan steps)
perform RA to look up all missing scores of hest candidaté in Q
(where ,best” is In terms of
bestscore, worstscore, or E[score], or P[score > min-k])

costcompetitivenesaw.r.t. ,optimal schedule”
(scan until Z; high; < min{bestscore(d) | dl final top-k},
then perform RAs for all d* with bestscore(d‘) > min-k): 4m + k

IRDM WS 2005 3-2

Sorted-Access Scheduling

available info:
Ll L2 L3 I—4
I—i
2.2 100 22100 ﬁloo _ﬁloo
os.| SCore 200 200 200 200
P2} (pos) 0.8 0.6
300 300 1300 =300
L.

_________ | 5 0.6/, 0.8, 15 0.8), ., 0.4,100
pgsi score —msoo —msoo —msoo _moo
+b. (b.+

& 0.4 0.7} 4 0.41 1 0.2500
0-3i700 %8700 E?OO 00
0.2l 0.6l 0.1,y |-0.08800
[m
0.1, 05, 0.08,,, |-0.01900
goal:
eliminate candidates quickly

aim for quick drop in highbounds

IRDM WS 2005 3-3

SA Scheduling: Objective and Heuristics

plan next by, ..., b, Index scan steps

for batch of b steps overall s.t.Z_, ., b,=Db
and benefit(b,, ..., b,) Is max!

possible benefit definitions:

benefi(b.b,)=)> A with A =(high -scorg(pos+h))/b

.m |
score gradient

benefitb.b,) =2, , .4 with g =score(pos) - score(pos +h)

score reduction

Solve knapsack-style NP-hard optimization problem
(e.g. for batched scans) or use greedy heuristics:

b, := b * benefit(b,=b) / ¥, .. benefit(b,=b)

IRDM WS 2005 3-4

SA Scheduling: Benefit Aggregation Heuristics

Consider current top-k T and andidate queue Q;
foreach dOJTOUQ we know E(d)J 1..m, R(d) = 1..m — E(d),
bestscore(d), worstscore(d), p(d) = P[score(d) > min-k]

benefit(d,b,..b) =

> Sscore

SUI‘p|US(d)_1 liimz(d)(highi - SCOI‘E(pos + bi)) current top-k candidates in

A Q N

+ gap(d)™ liiDE(d)'ui L :|:\ : bestscgr@(d)
22
with surplus(d) = bestscore(d) — min-k I l _ %T

gap(d) = min-k — worstscore(d) aEb U ok
U = E[score(]) | | L/[pos, post+bi]]

(p)deb

benefi(b,.b,) = Z dDTDQbenefi(d b.b.) WU B
weighs documents and dimensions in benefit function

IRDM WS 2005

3-5

Random-Access Scheduling: Heuristics

Perform additional RAs when helpful
1) to increase min-k (increase worstscore of d top-k) or
2) to prune candidates (decrease bestscore of dQ)

For 1) Top Probing:
 perform RAs for current top-k (whenever min-k changes),
« and possibly for best d from Q
(in desc. order of bestscore, worstscore, or P[score(d)>min-k])

For 2) 2-Phase Probing:

perform RAs for all candidates at point t

total cost of remaining RAs = total cost of SAs up to t
(motivated by linear increase of SA-cost(t) and
sharply decreasing remaining-RA-cost(t))

IRDM WS 2005 3-6

Top-k Queries over Web Sources

Typical example:
Address = ,2590 Broadway* and Price = $ 25 and Rating = 30
Issued against mapguest.com, nytoday.com, zagat.com

Major complication:
some sources do not allow sorted access
highly varying SA and RA costs

Major opportunity:
sources can be accessed in parallel

— extension/generalization of TA

distinguish S-sources, R-sources, SR-sources

IRDM WS 2005 3-7

Source-Type-Aware TA

For each R-source 8 S ... S,;,sethigh:=1
Scan SR- or S-sources S S,
Choose SR- or S-source;3or next sorted access
for object d retrieved from SR- or S-sourcedo {
E(d) := E(d)U {i}; high; := si(q,d);
bestscore(d) := aggr{x1, ..., xm) with xi := si(q,d) fai&(d), highfor i JE(d);
worstscore(d) := aggr{x1, ..., xm) with xi := si(q,d) fatk(d), O for ILE(d); };
Choose SR- or R-source Si for next random access
for object d retrieved from SR- or R-sourcedo {
E(d) := E(d)U {I};
bestscore(d) := aggr{x1, ..., xm) with xi := si(q,d) fai&(d), highfor i UE(d);
worstscore(d) := aggr{x1, ..., xm) with xi := si(q,d) fatk(d), O for ILE(d); };
current top-k := k docs with largest worstscore;
min-k := minimum worstscore among current top-k;
Stop when bestscore(d | d not in current top-k resdlta)n-k ;
Return current top-k;

essentially NRA with choice of sources

IRDM WS 2005 3-8

Strategies for Choosing the Source for Next Access

for next sorted acccess:
Escore(Li) := expected si value for next sorted access to Ll
(e.g.: high
rank(Li) := w * Escore(Li) / g,(LI)
/I w, I1s weight of Li in aggr
Il csa(LI) 1S source-specific SA cost
choose SR- or S-source with highest rank(Li)

for next random acccess (probe):

Escore(Li) := expected si value for next random access to Ll
(e.g.: (high-low;) / 2)

rank(Li) := w * Escore(Li) / G(LI)

choose SR- or R-source with highest rank(LI)

or use more advanced statistical score estimators

IRDM WS 2005 3-9

The Upper Strategy for Choosing
Next Object and SourcgMmarian et al.: TODS 2004)

iIdea: eagerly prove that candidate objects cannot qualify for top-k

for next random acccess:
among all objects with E(d)] and R(d)L
choose d‘ with the highest bestscore(d");
If bestscore(d’) < bestscore(v) for object v with E(M)$hen
perform sorted access next (i.e., don‘t probe d)
else {
A ;= bestscore(d‘y min-k;
If A> 0 then {
consider Li asredundant“for d‘ if for all Y 0 R(d‘) — {Li}
2ioy W; * high, + w * high, = A = >, w, * high; 2 A ;
choose, non redundant sourceith hlghest rank(Ll) }
else choose source with lowesgt,@Li);

%

IRDM WS 2005

3-10

The Parallel Strategy pUpper(marian et al.: TODS 2004)

iIdea: consider up to MPL(LI) parallel probes to the same R-source Ll
choose objects to be probed based on
bestscore reduction and expected response time

for next random acccess:
probe-candidates ;= m objects d with E{d)and R(d)#L]
such that d is among the m highest values of bestscore(d);
for each object d in probe-candidates do {
A ;= bestscore(dy min-k;
If A> 0 then {
choose subset Y(d) R(d) such that 5, w; * high, =A
and expected response time
Yiov@ (I{d* | bestscore(d)>bestscore(d) and Y{af)(d*) z0}|
T *epa(L) /MPL(L))
IS minimum };
¢
engueue probe(d) to queue(Li) for alL1Y(d)
with expected response time as priority;

IRDM WS 2005 3-11

Experimental Evaluation

O pUpper @ plipper-NoSubseets 0 pTA

E000 -—

4020

3000

2000 - i i
1000 4
a ; -
Uit Saussan

Ziphon

{a) Parallel probing time,

melaiec [

M

Fienre 19: Effect of the attribute score

OpTA

HpUpper

OUpper

il

1 5
K

{a) Parallel time #;.,.; as a function of & (pR(D;) =

2%

10

25

Pasanal B baney
] & [

OpUpper @ pUpper-NoSubsets CpTA

(b Parallel efficiency,

chistribution on performanee.

OpTA BEplpper

450 1
400

350

300

250

tlfﬁﬂ

150

1 2 5
pR(Di)

(b) Parallel time ¢,,,,; as a function of pR(D;) (k =

5.

pTA:

parallelized TA

(with asynchronous probes,
but same probe order as TA)

synthetic data

real Web sources

SR: superpages (Verizon
yellow pages)

subwaynavigator

mapquest

altavista

zagat

nytoday

0000

from: A. Marian et al., TODS 2004

Figure 24: Effect of the mumber of objects requested k (a) and the munber of accesses per source pffiD;) (b)

o the performmance of pTA, pUpper, and Upper over real web sources.

3-12

3.4 Index Organization and
Advanced Query Types

Richer Functionality:

* Boolean combinations of search conditions
e Search by word stems

* Phrase gueries and proximity queries
 Wild-card queries

e Fuzzy search with edit distance

Enhanced Performance:
e Stopword elimination

e Static index pruning
 Duplicate elimination

IRDM WS 2005 3-13

Boolean Combinations of Search Conditions

combination of AND and ANDish: (t; AND ... AND t)) t;,; ti.,... t
* TA family applicable with mandatory probing in AND lists

- RA scheduling
* (worstscore, bestscore) bookkeeping and pruning

more effective with “boosting weights” for AND lists

combination of AND, ANDish and NOT:

NOT terms considered k.o. criteria for results

TA family applicable with mandatory probing for AND and NOT
- RA scheduling

combination of AND, OR, NOT in Boolean sense:

 best processed by index lists in Docld order

e construct operator tree and push selective operators down;
needs good query optimizer (selectivity estimation)

IRDM WS 2005 3-14

Search with Morphological Reduction
(Lemmatization)

Reduction onto grammaticglound form:
nouns onto nominative, verbs onto infinitive,
plural onto singular, passive onto active, etc.
Examples (in German):
e Winden* onto ,,Wind*, ,Winde* or ,winden*
depending on phrase structure and context
o finden* and ,gefundenes* onto ,finden®,
 .Gefundenes” onto ,Fund”

Reduction of morphological variations ontmrd stem:

flexions (e.g. declination), composition, verb-to-noun, etc.

Examples (in German):

o Flussen®, ,einflol3en” onto ,Fluss®,

o finden* and ,Gefundenes” onto ,finden”

e .Du brachtest ... mit“ onto ,mitbringen®,

« .Schweinkram®, ,Schweinshaxe" and ,,Schweinebraten®
onto ,,Schwelin* etc.

 Feinschmecker® and ,geschmacklos* onto ,schmecken®

IRDM WS 2005

3-15

Stemming

Approaches:
 Lookup in comprehensive lexicon/dictionary (e.g. for German)
« Heuristic affix removal (e.g. Porter stemmer for English):
remove prefixes and/or suffixes
based on (heuristic) rules
Example:
stresses- stress, stressing stress, symbols, symbol
based on rules: sses ss, INg- €, S - €, etc.

The benefit of stemming for IR is debated.
Example:
Bill is operating a company.
On his computer he runs the Linux operating system.

IRDM WS 2005 3-16

Phrase Queries and Proximity Queries

phrase queries such as:
,George W. Bush*, ,President Bush*, ,The Who", ,Evil Empire“,

,PhD admission®, ,FC Schalke 04, ,native American music®,
,{0 be or not to be*, ,The Lord of the Rings"®, etc. etc.

difficult to anticipate and index all (meaningful) phrases
sources could be thesauri (e.g. WordNet) or query logs

- Standard approach:

combine single-term index with separate position index

term doc score

term doc offset

é'mpire 77
0 £ empire 39
S8 || evil 49
A S || evil 39
evil 12

evil 77

IRDM WS 2005

0.85
0.82

0.81
0.78
0.75

0.12

empire 39
empire 77
evil 12
evil 39
evil 39
evil 49

evil 77

191
375

45
190
194
190

190

20p ‘WJ3) Uo

93l) +9g

3-17

Thesaurus as Phrase Dictionary
Example: WordNet (Miller/Fellbaum), http://wordnet.princeton.ed u

7 WordNet 2.1 Browser I I LE

File: Higtory Options Help

Redizplay Ower:

Search ‘Word: [asaistant profeszor
Senses: |

Searches for aszistant professor. Moun |

| senze of agsistant professor

metse 1
assistant professor -- (a teacher or lower ranks than an associate profezsor)

== professor, prof -- (someone who 12 a metmber of the faculty at a college or undversity)
== acadermcian, acadermic, faculty member -- (an educator who works at a college or untversity)
== educator, pedagogue, pedagog -- (someone who educates young peaple)
== professional, professional person -- (a person engaged in one of the learned professions)

== adult, grownup -- (a fully developed person from maturity onward)
== person, mdividual, someone, somebody, mortal, soul -- (a human being; "there was too much for one person to do")

== organism, being -- (a living thing that has (or can develop) the ability to act or function independently)

== liwing thing, animate thing -- (a living (or once living) entity)
== object, physical object -- (a tangible and wisible entity; an entity that can cast a shadow;, "it was full of rackets, ba

and other ohjects")
== physaical entity -- (an entity that has physical existence)
=z entity -- (that which iz percerved or known or mferred to have itz own distinct exastence (lnng or nonliving

== causal agent, cause, causal agency -- (any entity that produces an effect or 12 responsible for events or results)

== physical entity -- (an entity that has physical existence)
== entity -- (that which iz percerved or known or mferred to have s own distinct esnstence (loang or nonliving))

IRDM WS 2005 3-18

Biword and Phrase Indexing

build index over all word pairs:
Index lists (terml, term2, doc, score) or
for each terml nested list (term2, doc, score)

variations:
e freat nearest nouns as pairs,
or discount articles, prepositions, conjunctions
 Index phrases from guery logs, compute correlation statistics

guery processing:
e decompose even-numbered phrases into biwords
e decompose odd-numbered phrases into biwords
with low selectivity (as estimated by df(term1l))
e may additionally use standard single-term index if necessary

Examples:
to be or not to be- (to be) (or not) (to be)
The Lord of the Rings» (The Lord) (Lord of) (the Rings)

N-Gram Indexing and Wildcard Queries

Queries with wildcards (simple regular expressions),
to capture mis-spellings, name variations, etc.
Examples:

Brit*ney, Sm*th*, Go*zilla, Marko*, reali*ation, *raklion

Approach:

e decompose words into N-grams of N successive letters
and index all N-grams as terms

 guery processing computes AND of N-gram matches

Example (N=3):

Brit*ney - Bri AND rit AND ney

Generalization: decompose words into frequent fragments
(e.g., syllables, or fragments derived from mis-spelling statistics)

IRDM WS 2005 3-20

Refstring Indexing (schek 1978)

In addition to indexing all N-grams for some small N (e.g. 2 or 3),
determine frequent fragments —refstrings r IR — with properties:
e df(r) is above some threshol®
e If r IR then for all substrings s of r: $1 R
unless df(shr) = |{docs d | d contains s but not r}& 6

Refstring index build:

1) Candidate generation- preliminary set R:
generate strings r with [r|[>N in increasing length, compute df(r);
remove r from candidates if r=xy with df(x)< 6 or df(y)< 6

2) Candidate selectionconsider candidate rLIR with |r|=k and sets
left(r)={xr | xr O R O|xr|=k+1}, right(n)={ry | ry 0O R O|ry|=k+1},
left=(r)={xr | xr O R O |xr|=k+1}, right ~(r)={ry | O R O|ry|=k+1}
select r if weight(r) = df(r) — max{leftf(r), rightf(r)} =0 with
eftf(r) = Zqoiene) Af(A) + Zqgen-¢ max{lefti(q).rightf(q)} and
rightf(t) = Zqcngniy 0 + Zqnigni - max{leftf(a),rightf(c)}

QP decomposes term into small number of refstrings contained in t

Fuzzy Search with Edit Distance

ldea:
tolerate mis-spellings and other variations of search terms

and score matches based on editing distance

Examples:
1) query: Microsoft
fuzzy match: Migrosatft
score ~ edit distance 3
2) query: Microsoft
fuzzy match: Microsiphon
score ~ edit distance 5
3) query: Microsoft Corporation, Redmond, WA
fuzzy match at token level: MS Corp., Redmond, USA

IRDM WS 2005 3-22

Similarity Measures on Strings (1)

Hamming distanceof strings s1, s212* with |s1|=[s2]:
number of different characters (cardinality of {i; £1s2})

Levenshtein distance (edit distancegf strings s1, sZ12*:
minimal number of editing operations on sl
(replacement, deletion, insertion of a character)
to change s1 into s2

For edit (I, J): Levenshtein distance of s1[1..1]] and s2[1..] it holds:
edit (0, 0) =0, edit (i, 0) =1, edit (0,) =]
edit (i,) = min { edit (-1, J) + 1,
edit (i, J-1) + 1,
edit (i-1, j-1) + diff (i, j) }
with diff (i,) = 1 if s1; # s2, O otherwise
- efficient computation by dynamic programming

IRDM WS 2005 3-23

Similarity Measures on Strings (2)

Damerau-Levenshtein distancef strings s1, sZ1>*:
minimal number of replacement, insertion, deletion, or
transposition operations (exchanging two adjacent characters)
for changing sl into s2

For edit (i, J): Damerau-Levenshtein distance of s1[1..i]] and s2[1..]] :
edit (0, 0) =0, edit (i, 0) =1, edit (0,) =]
edit (i,) = min { edit (I-1, J) + 1,
edit (i, J-1) + 1,
edit (i-1, j-1) + diff (i, j),
edit (-2, J-2) + diff(i-1,) + diff(i,]-1) +1 }
with diff (i,) = 1 if s1; # s2, O otherwise

IRDM WS 2005 3-24

Similarity based on N-Grams

Determine for string s the set of its N-Grams:
G(s) = {substrings of s with length N}
(often trigrams are used, i.e. N=3)

Distance of strings s1 and s2:
|G(s1)] + [G(s2)] - 2|G(sh)G(s2)]

Example:

G(rodney) = {rod, odn, dne, ney}
G(rhodnee) = {rho, hod, odn, dne, nee}
distance (rodney, rhodnee) =4 +5-2*2=5

Alternative similarity measures:
Jaccard coefficient: |G(s1hG(s2)| / |G(s1)G(s2)]
Dice coefficient: 2 |G(s1pG(s2)|/ (|G(s1)| + |G(s2)])

IRDM WS 2005

3-25

N-Gram Indexing for Fuzzy Search

Theorem (Jokinen and Ukkonen 1991):.
for query string s and a target string t,
the Levenshtein edit distance is bounded by the N-Gram overlap:

edit(s,t) <d = |[Ngramg(s) n Ngramg(t)| = |s|-(N —-1)- dN

- for fuzzy-match queries with edit-distance tolerance d,
perform top-k query over Ngrams,
using count for score aggregation

IRDM WS 2005 3-26

Phonetic Similarity (1)

Soundexcode:

Mapping of words (especially last names) onto 4-letter codes

such that words that are similarly pronounced have the same code
e first position of code = first letter of word

e code positions 2, 3,4 (a, e, I, 0, U, y, h, w are generally ignored):

b1 p1 f,V - 1 C1 81 g1j1 k1 q,X,Z - 2
d, t - 3 | - 4
m, n - 5 r - 6

e Successive identical code letters are combined into one letter
(unless separated by the letter h)

Examples:

Powers- P620, Perez, P620
Penny- P500, Penee. P500
Tymczak - T522, Tanshik- T522

IRDM WS 2005 3-27

Phonetic Similarity (2)

Editex similarity:
edit distance with consideration of phonetic codes

For editex (i, J): Editex distance of s1[1..i] and s2[1..j] it holds:
editex (0, 0) = 0,
editex (I, 0) = editex (I-1, 0) + d(s1[i-1], s1]i]),
editex (0, J) = editex (0, J-1) + d(s2[}-1], s2[}]),
editex (I, |) = min { editex (i-1, J) + d(s1[i-1], s1]i]),

editex (1,]-1) + d(s2[j-1], s2[j]),
edit (i-1, j-1) + diffcode (i, j) }
with diffcode (i, J)) = 0 if s1=s2,
1 if group(s))= group(s3, 2 otherwise
und d(X, Y)=1if X£Y and Xish orw,
diffcode (X, Y) otherwise

with group:
{aelouy} {bp} {cka} {dt} {lr},
{mn}, {95 {fpvh{sxz}{csz}

IRDM WS 2005 3-28

3.4 Index Organization and
Advanced Query Types

Richer Functionality:

e Boolean combinations of search conditions
e Search by word stems

* Phrase gueries and proximity queries
 Wild-card queries

e Fuzzy search with edit distance

Enhanced Performance:
e Stopword elimination

e Static index pruning
 Duplicate elimination

IRDM WS 2005 3-29

Stopword Elimination

Lookup in stopword list
(possibly considering domain-specific vocabulary,
e.g. ,definition” or ,theorem" in math corpus

Typical English stopwords
(articles, prepositions, conjunctions, pronouns,
,overloaded" verbs, etc.):
a, also, an, and, as, at, be, but, by,
can, could, do, for, from, go,
have, he, her, here, his, how,
l, I, In, Into, It, ItS,
my, of, on, or, our, say, she,
that, the, their, there, therefore, they,
this, these, those, through, to, until,
we, what, when, where, which, while, who, with, would,

you, your

IRDM WS 2005 3-30

Static Index Pruning (carmel et al. 2001)

Scoring function S' Is ang-variation of scoring function S if
(1-€)S(d) < S'(d) < (1+¢)S(d) forall d

Scoring function S, for query q is (k, €)-goodfor S if
there Is ang-variation S’ of S, such that
the top-k results for S;° are the same as those for S'.
S, for query qis (o, €)-goodfor S, If
there Is ang-variation S’ of S, such that
the top- d results for S;° are the same as those for S,
where top- o results are all docs with score abové*score(top-1)

Given k and g, prune index lists so as to guarantee (kr)-good
results for all queries g with r terms where r < 1/¢.

— for each index list Li, let g, be the rank-k score;
prune all Li entries with score <€* s;,

IRDM WS 2005 3-31

Efficiency and Effectiveness
of Static Index Pruning

Precision vs. Pruning Avg. Query time
2 L = -

b :;:.‘_"::L: — . 0.5 ‘_m_-‘_—‘_‘_“-t__
8 BB . — e 0.4 =
7 _
r— 024 t___. — — -
o 022 e = S s

RN » a 02
2 - - =
— =
0.18 T T T T T T T 0.1 » - .""u.__‘_.
O 10 20 30 40 50 60 70 &8O 0 . _ :
Pruning (%) 0 a0 40 B0 80
. - Pruning(%
|—o—P@10term-based —a— P@10:uniform uningten)
+— AvgPrec term-based -a- AvgPrec:uniform _ ‘—0— Long queries —s Short queries‘

Figure 2: Precision of search results at varying levels Figure 4: Average query processing time at varying
of pruning. levels of pruning.

from: D. Carmel et al., Static Index Pruning for Information Retrievat&8ys, SIGIR 2001

IRDM WS 2005 3-32

Duplicate Elimination (Broder 1997)

duplicates on the Web may be slightly perturbed
crawler & indexing interested in identifying near-duplicates

Approach:

 represent each document d as set (or sequence) of
shingles (N-grams over tokens)

» encode shingles by hash fingerprints (e.g., using SHA-1),
yielding set of numbers S(d)d [1..n] with, e.g., n=24

e compare two docs d, d’ that are suspected to be duplicates by

~|S(d) n S(d*)
e resemblance: S(d) 0 S(d")

S(d) n S(d")
| S(d)]
 drop d’ if resemblance or containment is above threshold

e containment:

IRDM WS 2005 3-33

Min-Wise Independent Permutations (MIPs)

set of ids
1721 3 12 24 §
4 MIPs MIPs
h,(X) = 7x + 3 mo - 7 (1 — 52)
20] 48 24 3 @/’ '-’
9 9| «— 24
h,(X) = 5 + 6 mod-51" -| 7N 33| «— 45
L 15 24 46| mm) 9‘)| @4 —— 247
T —) 36| «— |48
hy(X) =3 MIPts 9| «— |13
‘ vector:

1] 18 4b 30 33 minima estimated
compute N random of perm. resemblance = 2/6
permutations with: | P[min{ 1q(x)[xOS}=mu(Xx)]

=1/|S|

MIPs are unbiased estimator of resemblance:
P [min {h(X) | XA} = min {h(y) | yLIB}] = [AnB| / |ALB|
MIPs can be viewed as repeated sampling of x, y from A, B

IRDM WS 2005

Efficient Duplicate Detection
In Large Corpora

avoid comparing all pairs of docs

Solution:
1) for each doc compute shingle-set and MIPs
2) produce (shinglelD, docID) sorted list
3) produce (doclD1, doclD2, shingleCount) table
with counters for common shingles
4) ldentify (doclD1, doclD2) pairs
with shingleCount above threshold
and add (doclD1, docIiD2) edge to graph
5) Compute connected components of graph (union-find)
— these are the near-duplicate clusters

Trick for additional speedup of steps 2 and 3:
e compute super-shingles (meta sketches) for shingles of each doc
 docs with many common shingles have common super-shingle w.h.f

IRDM WS 2005 3-35

Additional Literature for Chapter 3

Top-k Query Processing:

« Grossman/Frieder Chapter 5

 Witten/Moffat/Bell, Chapters 3-4

 A. Moffat, J. Zobel: Self-Indexing Inverted Files for Fasixt Retrieval,
TOIS 14(4), 1996

« R. Fagin, A. Lotem, M. Naor: Optimal Aggregation Algorithros Middleware,
J. of Computer and System Sciences 66, 2003

« S. Nepal, M.V. Ramakrishna: Query Processing Issues indrffgltimedia)
Databases, ICDE 1999

« U. Guentzer, W.-T. Balke, W. Kiessling: Optimizing MufeatureQueries in
Image Databases, VLDB 2000

« C. Buckley, A.F. Lewit: Optimization of Inverted Vector Segaes, SIGIR 1985

« M. Theobald, G. Weikum, R. Schenkel: Top-k Query Processing with
Probabilistic Guarantees, VLDB 2004

« M. Theobald, R. Schenkel, G. Weikum: Efficient and Self-Tuning
Incremental Query Expansion for Top-k Query Processing, SIGIR 2005

« X.Long, T. Suel: Optimized Query Execution in Large Search
Engines with Global Page Ordering, VLDB 2003

« A. Marian, N. Bruno, L. Gravano: Evaluating Top-k Queries over
Web-Accessible Databases, TODS 29(2), 2004

IRDM WS 2005 3-36

Additional Literature for Chapter 3

Index Organization and Advanced Query Types:

« Manning/Raghavan/Schutze, Chapters 2-6, http://informationretriegal.or

« H.E. Williams, J. Zobel, D. Bahle: Fast Phrase Qugwirth Combined Indexes,
ACM TOIS 22(4), 2004

« WordNet: Lexical Database for the English Language, http://waonomeceton.edu/

« H.-J. Schek: The Reference String Indexing Method, ECI 1978

« D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscouicg. Maarek, A. Soffer:
Static Index Pruning for Information Retrieval Systems, SIGIR 2001

« G. Navarro: A guided tour to approximate string matching,
ACM Computing Surveys 33(1), 2001

« G. Navarro, R. Baeza-Yates, E. Sutinen, J. Tarhio: IndeéM&thods for
Approximate String Matching. IEEE Data Engineering Builiétd(4), 2001

« A.Z. Broder: On the Resemblance and Containment of Documents,
Compression and Complexity of Sequences Conference 1997

« A.Z. Broder, M. Charikar, A.M. Frieze, M. Mitzenmach#tin-Wise
Independent Permutations, Journal of Computer and System Sciences 60, 2000

IRDM WS 2005 3-37

