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Chapter 4: Advanced IR Models

4.1 Probabilistic IR
4.2 Statistical Language Models (LMs)

4.2.1 Principles and Basic LMs

4.2.2 Smoothing Methods

4.2.3 Extended LMs

4.3 Latent-Concept Models
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4.2.1 What is a Statistical Language Model?
generative model for word sequence

(generates probability distribution of word sequences,
or bag-of-words, or set-of-words, or structured doc, or ...)

Example: P[„Today is Tuesday“] = 0.001
P[„Today Wednesday is“] = 0.000000001
P[„The Eigenvalue is positive“] = 0.000001

LM itself highly context- / application-dependent

Examples:
• speech recognition: given that we heard „Julia“ and „feels“,

how likely will we next hear „happy“ or „habit“?
• text classification: given that we saw „soccer“ 3 times and „game“

2 times, how likely is the news about sports?
• information retrieval : given that the user is interested in math,

how likely would the user use „distribution“ in a query?



IRDM  WS 2005 4-3

Source-Channel Framework [Shannon 1948]

Source Transmitter
(Encoder)

Noisy
Channel

Receiver
(Decoder) Destination

P[X] P[Y|X] P[X|Y]=?

X Y X‘

][]|[maxarg]|[maxargˆ XPXYPYXPX XX ==
X is text → P[X] is language model

Applications:
speech recognition X: word sequence Y: speech signal
machine translation X: English sentence Y: German sentence
OCR error correction X: correct word Y: erroneous word
summarization X: summary Y: document
information retrieval X: document Y: query
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Text Generation with (Unigram) LM

...
text 0.2
mining 0.1
n-gram 0.01
cluster 0.02
...
food 0.000001
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LM for
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Basic LM for IR

...
text ?
mining ?
n-gram ?
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...
food ?
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food ?
nutrition ?
healthy ?
diet ?
...

text
mining
paper

food
nutrition
paper
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query q:
data mining algorithms
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to generate q?
(better explains q)
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IR as LM Estimation

P[R|d,q]
user likes doc (R)
given that it has features d
and user poses query q
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Multi-Bernoulli vs. Multinomial LM

Multi-Bernoulli:
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with Xj(q)=1 if j ∈∈∈∈q, 0 otherwise

Multinomial:

)(

||21

)(
)(...)()(

||
]|[ qf

jqj
q

jdp
jfjfjf

q
dqP ∈Π





=

with f j(q) = f(j) = relative frequency of j in q

multinomial LM more expressive and usually preferred
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LM Scoring by Kullback-Leibler Divergence
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4.2.2 Smoothing Methods

possible methods:
• Laplace smoothing
• Absolute Discouting
• Jelinek-Mercer smoothing
• Dirichlet-prior smoothing
• ... 
most with their own parameters

absolutely crucial to avoid overfitting and make LMs useful
(one LM per doc, one LM per query !)

choice and
parameter setting
still pretty much
black art
(or empirical)
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Laplace Smoothing and Absolute Discounting

estimation of θθθθd: pj(d) by MLE would yield 

Additive Laplace smoothing:
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Jelinek-Mercer Smoothing

Idea:
use linear combination of doc LM with
background LM (corpus, common language);

could also consider query log as background LM for query
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Dirichlet-Prior Smoothing 
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where µµµµ1=sP[1|C],  ..., µµµµm=sP[m|C] are the parameters
of the underlying Dirichlet distribution, with constant s > 1
typically set to multiple of document length

with MLEs
P[j|d], P[j|C]

derived by MAP with Dirichlet distribution as prior
for parameters of multinomial distribution
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(Dirichlet is conjugate prior for parameters of multinomial distribution:
Dirichlet prior implies Dirichlet posterior, only with d ifferent parameters)
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4.2.3 Extended LMs

large variety of extensions:

• Term-specific smoothing
(JM with term-specific λλλλj, e.g. based on idf values)

• Parsimonious LM 
(JM-style smoothing with smaller feature space)

• N-gram (Sequence) Models (e.g. HMMs)
• (Semantic) Translation Models
• Cross-Lingual Models
• Query-Log- & Click-Stream-based LM
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(Semantic) Translation Model
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with word-word translation model P[j|w]

Opportunities and difficulties:
• synonymy, hypernymy/hyponymy, polysemy
• efficiency
• training

estimate P[j|w] by overlap statistics on background corpus
(Dice coefficients, Jaccard coefficients, etc.)
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Query-Log-Based LM (User LM)
Idea:
for current query q k leverage
prior query history Hq = q1 ... qk-1 and
prior click stream Hc = d1 ... dk-1 as background LMs
Example:
qk = „Java library“ benefits from qk-1 = „cgi programming“
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Simple Mixture Model with Fixed Coefficient Interpolation:

More advanced models with Dirichlet priors in the literature
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Additional Literature for Chapter 4
Statistical Language Models:

• Grossman/Frieder Section 2.3
• W.B. Croft, J. Lafferty (Editors): Language Modeling for Information Retrieval,

Kluwer, 2003
• C. Zhai: Statistical Language Models for Information Retrieval, Tutorial Slides,
• SIGIR 2005
• X. Liu, W.B. Croft: Statistical Language Modeling for Information Retrieval,

Annual Review of Information Science and Technology 39, 2004
• J. Ponte, W.B. Croft: A Language Modeling Approach to Information Retrieval,

SIGIR 1998 
• C. Zhai, J. Lafferty: A Study of Smoothing Methods for Language Models

Applied to Information Retrieval, TOIS 22(2), 2004
• C. Zhai, J. Lafferty: A Risk Minimization Framework for Information Retrieval,

Information Processing and Management 42, 2006
• X. Shen, B. Tan, C. Zhai: Context-Sensitive Information Retrieval Using 

Implicit Feedback, SIGIR 2005
• M.E. Maron,  J.L. Kuhns:  On Relevance, Probabilistic Indexing, and Information

Retrieval, Journal of the ACM 7, 1960


