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Chapter 4: Advanced IR Models

4.1 Probabilistic IR

4.2 Statistical Language Models (LMs)

4.3 Latent-Concept Models
4.3.1 Foundations from Linear Algebra
4.3.2 Latent Semantic Indexing (LSI)
4.3.3 Probabilistic Aspect Model (pLSI)
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Key Idea of Latent Concept Models 
Objective:
Transformation of document vectors from
high-dimensional term vector space into
lower-dimensionaltopic vector spacewith
• exploitation of term correlations

(e.g. „Web“ and „Internet“ frequently occur in together)

• implicit differentiation of polysems that exhibit
different term correlations for different meanings
(e.g. „Java“ with „Library“ vs. „Java“ with „Kona Blend“ vs. „Java“ with „Borneo“)

mathematically:
given: m terms, n docs (usually n > m) and a

m×n term-document similarity matrix A,
needed: largely similarity-preserving mapping

of column vectors of A
into k-dimensional vector space (k << m) for given k
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4.3.1 Foundations from Linear Algebra

A set S of vectors is calledlinearly independent if no
x ∈ S can be written as a linear combination of other vectors in S.
Therank of matrix A is the maximal number of
linearly independent row or column vectors.
A basisof an n×n matrix A is a set S of row or column vectors
such that all rows or columns are linear combinations of vectors from S.
A set S of n×1 vectors is an orthonormal basis if for all x, y ∈S: 
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Eigenvalues and Eigenvectors
Let A be a real-valued n×n matrix, x a real-valued n×1 vector,
and λ a real-valued scalar. Solutions x and λ of the equation
A × x = λx are called an Eigenvectorand Eigenvalueof A.
Eigenvectors of A are vectors whose direction is preserved
by the linear transformation described by A.

The Eigenvalues of A are the roots (Nullstellen) of the
characteristic polynom f(λ) of A: 0=−= IA)(f λλ

The real-valued n×n matrix A issymmetric if aij=aji for all i, j. 
A is positive definite if for all n×1 vectors x ≠ 0: xT ×A × x > 0. 
If A is symmetric then all Eigenvalues of A are A real.
If A is symmetric and positive definite then all Eigenvalues are positive.

with the determinant (developing the i-th row):
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1 where matrix A(ij) is derived from A by
removing the i-th row and the j-th column
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Illustration of Eigenvectors

Matrix
2 1

1 3
A

 
=   

describes
affine transformation
x Axa

Eigenvector
x1 = (0.52  0.85)T
for Eigenvalueλ1=3.62

Eigenvector
x2 = (0.85  -0.52)T
for Eigenvalueλ2=1.38
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Principal Component Analysis (PCA)

Spectral Theorem: 
(PCA, Karhunen-Loewe transform):
Let A be a symmetric n×n matrix with Eigenvaluesλ1, ..., λn 
and Eigenvectors x1, ..., xn such that for all i. 
The Eigenvectors form an orthonormal basis of A. 
Then the following holds: 

D = QT × A × Q,  
where D is a diagonal matrix with diagonal elementsλ1, ..., λn 
and Q consists of column vectors x1, ..., xn. 

2
1ix =

often applied to covariance matrix of n-dim. data points
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Singular Value Decomposition (SVD)
Theorem:
Each real-valued m×n matrix A with rank r can be decomposed
into the form A = U ×××× ∆∆∆∆ ×××× VT

with an m××××r matrix U with orthonormal column vectors,
an r××××r diagonal matrix ∆∆∆∆, and 
an n××××r matrix V with orthonormal column vectors.
This decomposition is called singular value decomposition
and is unique when the elements of  ∆ or sorted.

Theorem:
In the singular value decomposition A = U × ∆ × VT of matrix A
the matrices U, ∆, and V can be derived as follows:
• ∆ consists of the singular values of A, 

i.e. the positive roots of the Eigenvalues of AT × A,
• the columns of U are the Eigenvectors of A × AT,
• the columns of V are the Eigenvectors of AT × A.
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SVD for Regression
Theorem:
Let A be an m×n matrix with rank r, and letAk = Uk ×××× ∆∆∆∆k ×××× Vk

T,
where the k×k diagonal matrix∆k contains the k largest singular values
of A and the m×k matrix Uk and the n×k matrix Vk contain the
corresponding Eigenvectors from the SVD of A.

Among all m×n matrices C with rank at most k
Ak is the matrix that minimizes the Frobenius norm
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Example:
m=2, n=8, k=1
projection onto x‘ axis
minimizes „error“ or
maximizes „variance“
in k-dimensional space
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4.3.2 Latent Semantic Indexing (LSI) [Deerwester et al. 1990]:
Applying SVD to Vector Space Model

A is the m×n term-document similarity matrix. Then:
• U and Uk are the m×r and m×k term-topic similarity matrices,
• V and Vk are the n×r and n×k document-topic similarity matrices,
• A×AT and Ak×Ak

T are the m×m term-term similarity matrices,
• AT×A  and Ak

T×Ak are the n×n document-document similarity matrices
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mapping of m×1 vectors into latent-topic space: T
j k j jd U d : d '× =a

T
kq U q : q'× =a

scalar-product similarity in latent-topic space: dj‘T×q‘ = ((∆kVk
T)*j )T × q’
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Indexing and Query Processing

• The matrix∆∆∆∆k Vk
T corresponds to a „topic index“ and

is stored in a suitable data structure.
Instead of ∆k Vk

T the simpler index Vk
T could be used.

• Additionally theterm-topic mapping Uk must be stored.
• A query q (an m×1 column vector) in the term vector space

is transformed into queryq‘= Uk
T ×××× q (a k×1 column vector) 

and evaluated in the topic vector space (i.e. Vk) 
(e.g. by scalar-product similarity VkT × q‘ or cosine similarity)

• A new document d(an m×1 column vector) is transformed into
d‘ = Uk

T ×××× d (a k ×1 column vector) and
appended to the „index“ VkT as an additional column(„folding-in“)
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Example 1 for Latent Semantic Indexing
m=5 (interface, library, Java, Kona, blend), n=7





=

1320000

1320000

0005121

0005121

0005121

A ××



=

27.080.053.000.000.000.000.0

00.000.000.090.018.036.018.0

29.500.0

00.064.9

71.000.0

71.000.0

00.058.0

00.058.0

00.058.0

U
VT∆

the new document d8 = (1 1 0 0 0)T is transformed into
d8‘ = UT × d8 = (1.16  0.00)T and appended to VT

query q = (0 0 1 0 0)T is transformed into
q‘ = UT × q = (0.58  0.00)T and evaluated on VT
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Example 2 for Latent Semantic Indexing

m=6 terms
t1: bak(e,ing)
t2: recipe(s)
t3: bread
t4: cake
t5: pastr(y,ies)
t6: pie

n=5 documents
d1: How to bake bread without recipes
d2: The classic art of Viennese Pastry
d3: Numerical recipes: the art of

scientific computing
d4: Breads, pastries, pies and cakes:

quantity baking recipes
d5: Pastry: a book of best French recipes



















=

0000.04082.00000.00000.00000.0

7071.04082.00000.00000.10000.0

0000.04082.00000.00000.00000.0

0000.04082.00000.00000.05774.0

7071.04082.00000.10000.05774.0

0000.04082.00000.00000.05774.0

A
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Example 2 for Latent Semantic Indexing (2)

=A

×

4195.00000.00000.00000.0

0000.08403.00000.00000.0

0000.00000.01158.10000.0

0000.00000.00000.06950.1

 −−−
−−

−−−
×

0577.06571.01945.02760.06715.0

3712.05711.06247.00998.03688.0

2815.00346.03568.07549.04717.0

5288.04909.04412.03067.04366.0











−
−

−
−−

−−
−−

6394.02774.00127.01182.0

1158.00838.08423.05198.0

6394.02774.00127.01182.0

2847.05308.02567.02670.0

0816.05249.03981.07479.0

2847.05308.02567.02670.0

U

∆

VT
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Example 2 for Latent Semantic Indexing (3)

=3A 









−
−

−
−−

−−

0155.02320.00522.00740.01801.0

7043.04402.00094.09866.00326.0

0155.02320.00522.00740.01801.0

0069.04867.00232.00330.04971.0

7091.03858.09933.00094.06003.0

0069.04867.00232.00330.04971.0

TVU 333 ×∆×=
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Example 2 for Latent Semantic Indexing (4)

query q: baking bread
q = ( 1 0 1 0 0 0 )T

transformation into topic space with k=3
q‘ = Uk

T × q = (0.5340  -0.5134  1.0616)T

scalar product similarity in topic space with k=3:
sim (q, d1) = Vk*1T × q‘ ≈ 0.86 sim (q, d2) = Vk*2T × q ≈ -0.12
sim (q, d3) = Vk*3T × q‘ ≈ -0.24 etc.

Folding-in of a new document d6: 
algorithmic recipes for the computation of pie
d6 = ( 0  0.7071  0  0  0  0.7071 )T

transformation into topic space with k=3
d6‘ = Uk

T × d6 ≈ ( 0.5  -0.28  -0.15 )

d6‘ is appended to VkT as a new column



IRDM  WS 2005 4-16

Multilingual Retrieval with LSI
• Construct LSI model (Uk, ∆k, Vk

T) from
training documents that are available in multiple languages:

• consider all language variants of the same document
as a single document and

• extract all terms or words for all languages.
• Maintain index for further documents by „folding-in“, i.e.

mapping into topic space and appending to Vk
T.

• Queries can now be asked in any language, and the
query results include documents from all languages.

Example:
d1: How to bake bread without recipes. 

Wie man ohne Rezept Brot backen kann.
d2: Pastry: a book of best French recipes.

Gebäck: eine Sammlung der besten französischen Rezepte.
Terms are e.g. bake, bread, recipe, backen, Brot, Rezept, etc.
Documents and terms are mapped into compact topic space.
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Towards Self-tuning LSI  [Bast et al. 2005]
• Project data to its top k eigenvectors (SVD): A ≈≈≈≈ Uk ×××× ΣΣΣΣk ×××× VT

k
→→→→ latent concepts (LSI)

• This discovers hidden term relations in Uk ×××× Uk
T :

– proof / provers: -0.68
– voronoi / diagram: 0.73
– logic / geometry: -0.12

• Central question: which k is the best?proof / provers voronoi / diagram logic / geometryrelatedness dimension dimension dimensionAssess the shape of the graph, not specific values!          
→ new „dimension-less“ variant of LSI: 

use 0-1-rounded expansion matrix Uk ×××× Uk
T to expand docs

→→→→ outperforms standard LSI
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Summary of LSI

+ Elegant, mathematically well-founded model
+ „Automatic learning“ of term correlations

(incl. morphological variants, multilingual corpus)
+ Implicit thesaurus (by correlations between synonyms)
+ Implicit discrimination of different meanings of polysems

(by different term correlations)
+ Improved precision and recall on „closed“ corpora

(e.g. TREC benchmark, financial news, patent databases, etc.)
with empirically best k in the order of 100-200

– In general difficult choice of appropriate k
– Computational and storage overhead for very large (sparse) matrices
– No convincing results for Web search engines (yet)
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4.3.3 Probabilistic LSI (pLSI)

documents d latent concepts z
(aspects)

terms w
(words)

TRADE

economic

imports

embargo

∑ ⋅=
z

zwPdzPdwP ]|[]|[]|[
d and w 
conditionally
independent
given z
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Relationship of pLSI to LSI

∑=
z

wdP ],[ P[d|z] · P[z] ·P[w|z]

Key difference to LSI:
• non-negative matrix decomposition
• with L1 normalization
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Key difference to LMs:
• no generative model for docs
• tied to given corpus
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Power of Non-negative Matrix 
Factorization vs. SVD

x1

x2

x1

x2

SVD of data matrix A NMF of data matrix A
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Expectation-Maximization Method (EM)
Key idea:

when L(θ, X1, ..., Xn) (where the Xi and θ are possibly multivariate)

is analytically intractable then

• introducelatent (hidden, invisible, missing) random variable(s) Z

such that

• the joint distribution J(X1, ..., Xn, Z, θθθθ) of the „complete“ data

is tractable(often with Z actually being Z1, ..., Zn)

• derive the incomplete-data likelihood L(θ, X1, ..., Xn) by

integrating (marginalization) J:

1 nz
ˆ arg max J [ ,X ,...,X ,Z | Z z ]P[ Z z ]θθ θ= = =∑
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EM Procedure

E step (expectation): 
estimate posterior probability of Z:  P[Z | X1, …, Xn, θ(t)]
assumingθ were known and equal to previous estimateθ(t), 
and compute EZ | X1, …, Xn, θ(t) [log J(X1, …, Xn, Z | θ)]
by integrating over values for Z

Initialization: choose start estimate forθ(0)

Iterate (t=0, 1, …) until convergence:

M step (maximization, MLE step): 
Estimateθ(t+1) by maximizing
EZ | X1, …, Xn, θ(t) [log J(X1, …, Xn, Z | θ)]

convergence is guaranteed
(because the E step computes a lower bound of the true L function, 
and the M step yields monotonically non-decreasing likelihood),

but may result in local maximum of log-likelihood function
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EM at Indexing Time
(pLSI Model Fitting)

actual procedure „perturbs“ EM for „smoothing“
(avoidance of overfitting)   →→→→ tempered annealing

observed data:n(d,w) – absolute frequency of word w in doc d
model params:P[z|d], P[w|z] for concepts z, words w, docs d

E step: posterior probability of latent variables

M step: MLE with completed data

∑=
y

ywPdyP

zwPdzP
wdzP

]|[]|[

]|[]|[
],|[

prob. that occurrence of
word w in doc d can be
explained by concept z

∑d
wdzPwdnzwP ],|[),(~]|[ ∑w

wdzPwdndzP ],|[),(~]|[

freq. of w associated with z freq. of d associated withz

maximize log-likelihood ∑ ∑ ⋅
d w

dwPwdn ][log),(
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EM Details (pLSI Model Fitting)

∑=
y

ywPdyP

zwPdzP
wdzP

]|[]|[

]|[]|[
],|[

∑
∑=

ud

d

udzPudn

wdzPwdn
zwP

,
],|[),(

],|[),(
]|[

∑
∑=

yw

w

wdyPwdn

wdzPwdn
dzP

,
],|[),(

],|[),(
]|[

(E)

(M1)

(M2)

or equivalently compute P[z], P[d|z], P[w|z] in M step
(see S. Chakrabarti, pp. 110/111)
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Folding-in of Queries
keep all estimated parameters of the pLSI model fixed

and treat query as a „new document“ to be explained

→ find concepts that most likely generate the query

(query is the only „document“, and P[w | z] is kept invariant)

→ EM for query parameters

∑=
y

ywpqyP

zwpqzP
wqzP

]|[ˆ]|[

]|[ˆ]|[
],|[

∑
∑=

yw

w

wqyPwqn

wqzPwqn
qzP

,
],|[),(

],|[),(
]|[
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Query Processing

Once documents and queries are both represented as 
probability distributions over k concepts

(i.e. k×1 vectors with L1 length 1),
we can use any convenient vector-space similarity measure

(e.g. scalar product or cosine or KL divergence).
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Experimental Results: Example

Source: Thomas Hofmann, Tutorial at ADFOCS 2004
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Experimental Results: Precision

Source: Thomas Hofmann, Tutorial „Machine Learning in Information Retriev al“,
presented at Machine Learning Summer School (MLSS) 2004, Berder Island, France

VSM:
simple tf-based
vector space
model (no idf)
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Experimental Results: Perplexity
Perplexity measure (reflects generalization potential, as opposed

to overfitting):

Source: T. Hofmann, Machine Learning 42 (2001) 

]|[log),(])|[),,(( , 222
dwPdwfreqdwPdwfreqH dw∑=

⋅−

with freq on new data
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pLSI Summary
+ Probabilistic variant of LSI

(non-negative matrix factorization with L1 normalization)

+ Achieves better experimental results than LSI

+ Very good on „closed“, thematically specialized corpora,

inappropriate for Web

– Computationally expensive (at indexing and querying time)

→ may use faster clustering for estimating P[d|z] instead of EM

→ may exploit sparseness of query to speed up folding-in

– pLSI does not have a generative model (rather tied to fixed corpus)

→ LDA model (Latent Dirichlet Allocation) 

– number of latent concept remains model-selection problem

→ compute for different k, assess on held-out data, choose best
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