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Key ldea of Latent Concept Models

Objective:
Transformation of document vectors from
high-dimensional term vector space into
lower-dimensionatopic vector spacewith
« exploitation of term correlations
(e.g. ,Web" and ,Internet” frequently occur in together
 implicit differentiation of polysems that exhibit
different term correlations for different meanings
(e.g. ,Java“ with ,Library* vs. ,Java“ with ,Kona Blend“s. ,Java“ with ,Borneo®)

mathematically:
given: m terms, n docs (usually n > m) and a
mxn term-document similarity matrix A,
needed: largely similarity-preserving mapping
of column vectors of A
Into k-dimensional vector space (k << m) for given k
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4.3.1 Foundations from Linear Algebra

A set S of vectors is calldthearly independentif no

X U S can be written as a linear combination of other vectors in S.
Therank of matrix A i1s the maximal number of

linearly independent row or column vectors.

A basisof an rxn matrix A is a set S of row or column vectors

such that all rows or columns are linear combinations of vectors from
A set S of x1 vectors is amrthonormal basisif for all x, y US:

n
|4, = Sx?=1=|y|, and xy=0
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Eigenvalues and Eigenvectors

Let A be a real-valued>n matrix, x a real-valuedxi vector,
andA a real-valued scalar. Solutions x andf the equation

A x X = Ax are called artigenvectorandEigenvalueof A.
Eigenvectors of A are vectors whose direction is preserved
by the linear transformation described by A.

The Eigenvalues of A are the roots (Nullstellen) of the
characteristic polynom &) of A: f(A)=|A-Al|=0

with the determinant (developing the i-th row):

A = % (-1)"* & ‘A( I )‘ where matrix A is derived from A by
i= J removing the i-th row and the j-th column

The real-valued »n matrix A issymmetric if ai:qF for all 1, J.

A Is positive definiteif for all nx1 vectors % 0: x' XA x x > 0.

If A Is symmetric then all Eigenvalues of A are A real.

If A Is symmetric and positive definite then all Eigenvalues are p@siti
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lllustration of Eigenvectors
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Principal Component Analysis (PCA)

Spectral Theorem:
(PCA, Karhunen-Loewe transform
Let A be a symmetric xn matrix with Eigenvaluegl, ...,An
and Eigenvectors x1, ..., Xn such t%&tﬁl =1 for all I.
The Eigenvectors form an orthonormal basis of A.
Then the following holds:

D=Q"xA xQ,
where D is a diagonal matrix with diagonal elemetits...,An
and Q consists of column vectors x1, ..., Xn.

often applied to covariance matrix of n-dim. data points
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Singular Value Decomposition (SVD)

Theorem:

Each real-valued m/m matrix A with rank r can be decomposed
Into the formA =U x A x VT

with anmxr matrix U with orthonormal column vectors,

anrxr diagonal matrix A, and

annxr matrix V. with orthonormal column vectors.

This decomposition is called singular value decomposition
and is unique when the elements ffor sorted.

Theorem:
In the singular value decomposition A =X x VT of matrix A
the matrices UA, and V can be derived as follows:
A consists of the singular values of A,
l.e. the positive roots of the Eigenvalues diAA,
 the columns of U are the Eigenvectors okAT,
 the columns of V are the Eigenvectors of AA.
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SVD for Regression

Theorem:

Let A be an mxn matrix with rank r, and let, = U, x A, x VT,

where the kk diagonal matriXj, contains the k largest singular values
of A and the mrk matrix U, and the mk matrix V, contain the
corresponding Eigenvectors from the SVD of A.

Among all mkn matrices C with rank at most k
A, Is the matrix that minimizes the Frobenius norm

HA—C\F—ZZMJ -G )? Y
1=1j=1

Example: °
m=2, n=8, k=1 O
projection onto X axis @

minimizes ,error” or @ o
maximizes ,variance* ° o

In k-dimensional space
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4.3.2 Latent Semantic Indexing (LSI)Deerwester et al. 199Q]
Applying SVD to Vector Space Model

A Is the nxn term-document similarity matrix. Then:

« U and | are the mxr and nmxk term-topic similarity matrices,

* VV and V, are the ixr and i<k document-topic similarity matrices,

 AXAT and AXA,T are the mxm term-term similarity matrices,

* ATXA and A"xA, are the n document-document similarity matrice

- latent
A dO:C J U, top:ic t 2, 4 doc j
: 01 0o
—— ........... -~ X %'ck’ X | ooeeaeinnnn S ;(I(?Ft)ciecn%
. OI‘
mxn ' -k kxk kxn

mapping of nx1 vectors into latent-topic s.pace:dj RN UkT X dj = d,- '

q-> U xg=:q
scalar-product similarity in latent-topic spacg’8q’ = ((AV,')4)" x q’
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Indexing and Query Processing

* The matrixd, V, " corresponds to gopic index” and
IS stored In a suitable data structure.
Instead ofp, V, T the simplerindex V, " could be used.
 Additionally theterm-topic mapping U, must be stored.
e A query g (an nx1 column vector) in the term vector space
IS transformed into querg'= U, " x g (a kx1 column vector)
and evaluated in the topic vector space (i.8. V
(e.g. by scalar-product similarity, ¥ x g or cosine similarity)
* A new document d(an nk1 column vector) is transformed into
d'=U," xd (a kxl column vector) and
appended to the ,index“ Y as an additional columffolding-in®)
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Example 1 for Latent Semantic Indexing

m=5 (interface, library, Java, Kona, blend), n=7
(1215000 /058 000)

1215000 058 000
964 000 018 036 018 090 000 000 000
1215000 =| 058 000 |x X
0000231 000 071 000 529 000 000 000 000 053 080 027
U

guery g = (0 0 1 0 0)s transformed into
g'=UTxqg=(0.58 0.00)and evaluated onV

ne new document d8 = (1 1 0 0@ transformed into

d8'=U" xd8 = (1.16 0.00)and appended toV

IRDM WS 2005 4-11



Example 2 for Latent Semantic Indexing

m=6 terms n=5 documents
t1: bak(e,ing) d1: How to bake bread without recipes
t2: recipe(s) d2: The classic art of Viennese Pastry
t3: bread d3: Numerical recipes: the art of
t4: cake scientific computing
t5: pastr(y,ies) d4: Breads, pastries, pies and cakes:
t6: pie quantity baking recipes

d5: Pastry: a book of best French recipe:

(0.577< 0.000C 0.000C 0.408Z 0.0000"
0.5774 0.00001.0000 0.4082 0.7071
0.5774 0.0000 0.0000 0.4082 0.0000
0.0000 0.0000 0.0000 0.4082 0.0000
0.00001.0000 0.0000 0.4082 0.7071
. 0.0000 0.0000 0.0000 0.4082 0.0000;
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Example 2 for Latent Semantic Indexing (2)

(0.2670 —0.2567 0.5308 —0.2847)
0.7479 -0.3981-0.5249 0.0816
0.2670 - 0.2567 0.5308 —0.2847
01182 -0.0127 02774 0.6394
05198 0.8423 0.0838 —0.1158

0.1182 -0.0127 0.2774 0.6394)

(1.6950 0.0000 0.0000 0.0000)
0.00001.1158 0.0000 0.0000
0.0000 0.0000 0.8403 0.0000

. 0.0000 0.0000 0.0000 0.4195/

(04366 0.3067 04412 0.4909 0.5288)
—0.4717 0.7549-0.3568 —0.0346 0.2815
03688 0.0998 -0.6247 0.5711-0.3712

\—0.6715-0.2760 0.1945 0.6571 -0.0577,
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Example 2 for Latent Semantic Indexing (3)

[ 0.4971-0.0330 0.0232 0.4867 —0.0069
0.6003 0.0094 0.9933 0.3858 0.7091
B 04971 -0.0330 0.0232 0.4867 —0.0069 T
g = 0.1801 0.0740-0.0522 02320 0.0155| — Uz xA3zxV3
—0.0326 0.9866 0.0094 0.4402 0.7043
. 01801 0.0740 -0.0522 0.2320 0.0155,
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Example 2 for Latent Semantic Indexing (4)

guery g. baking bread
g=(1010007

transformation into topic space with k=3
qg'= U/ xq=(0.5340 -0.5134 1.06716)

scalar product similarity in topic space with k=3:
sim (q, d1) = Vk, " x g =0.86 sim (q, d2) = VKT x q=-0.12
sim (g, d3) = V7 x ' =-0.24 etc.

Folding-in of a new document d6:
algorithmic recipes for the computation of pie
d6=(0 0.7071 0 O 0 0.707)

transformation into topic space with k=3
d6‘'=U,"xd6= (0.5 -0.28 -0.15)

d6' is appended to Vkas a new column
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Multilingual Retrieval with LSI

 Construct LSI model (4 4A,, V, ) from
training documents that are available in multiple larppsa
 consider all language variants of the same document
as a single document and
e extract all terms or words for all languages.
e Maintain index for further documents by ,folding-in“gl.
mapping into topic space and appending 0.V
e Queries can now be asked in any language, and the
guery results include documents from all languages.

Example:

d1: How to bake bread without recipes.

Wie man ohne Rezept Brot backen kann.
d2: Pastry: a book of best French recipes.

Geback: eine Sammlung der besten franzosischempkeze
Terms are e.g. bake, bread, recipe, backen, BragpReetc.
Documents and terms are mapped into compact topic space.

IRDM WS 2005 4-16



Towards Self-tuning LSI [Bast et al. 2005]
Project data to its top k eigenvectors (SVD): A=<U, x ¥, x VT,

- latent concepts (LSI)
This discovers hidden term relations in U x U, T

— proof / provers: -0.68
— voronoi / diagram: 0.73
— logic / geometry: -0.12

Central question: which k is the best?

 proof / provers |

I T T T I
ﬂ | | |

voronoi /
diagram

relatedness —»

[ logic / geometry:

o =200 100 [=lelel o =200 2400 [=Jels] o =200 100 SO0

Assess the shape of the graph, not specific values!

- hew ,dimension-less* variant of LSI:
use 0-1-rounded expansion matrix Yx U, T to expand docs
— outperforms standard LSI
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Summary of LSI

+ Elegant, mathematically well-founded model
+ ,Automatic learning”“ of term correlations
(incl. morphological variants, multilingual corpus)
+ Implicit thesaurus (by correlations between synonyms)
+ Implicit discrimination of different meanings of polysems
(by different term correlations)
+ Improved precision and recall on ,closed” corpora
(e.g. TREC benchmark, financial news, patent databases, etc.)
with empirically best k in the order of 100-200
— In general difficult choice of appropriate k
— Computational and storage overhead for very large (sparse) matr
— No convincing results for Web search engines (yet)
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4.3.3 Probabilistic LS| (pLSI)

dandw
| PIw|d] =) P[z|d]P[w]|Z] it
\ economic JEn 2

|

Imports

|

embargo

documents d latent conceptsz terms w
IROM WS 2005 (aspects) (words)



Relationship of pLSI to LSI
P[d,w] = P[d|z] - P[z] - P[w|Z]

q

kxn

doc probs concept term probs
per concept probs per concept

Key difference to LSI: Key difference to LMs:
e NON-negative matrix decomposition ¢ no generative model for docs
e with L1 normalization e tied to given corpus
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Power of Non-negative Matrix
Factorization vs. SVD

X2 X2

»X1

»X1

SVD of data matrix A NMF of data matrix A
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Expectation-Maximization Method (EM)

Key idea:

when L@, X, ..., X)) (where the Xand8 are possibly multivariate)
IS analytically intractable then
e introducelatent (hidden, invisible, missing) random variable(s) Z

such that
e thejoint distribution J(X, ..., X, Z, ) of the ,complete” data
IS tractablgoften with Z actually being Z ..., Z)
« derive the incomplete-data likelihood@,(X,, ..., X)) by
Integrating (marginalization) J:

ey

f=argmayy )  J[O0.% ,..)4 .Z|Z z]P[Z# z
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EM Procedure

Initialization: choose start estimate féf)

lterate (t=0, 1, ...) until convergence:

E step (expectation):

estimate posterior probability of Z: P[Z | X.., X, 61]
assumind were known and equal to previous estim@ite
and compute E v, . xneg 109 I(X, ..., X, Z2110)]

by integrating over values for Z

M step (maximization, MLE step):
Estimatef™1) by maximizing

B, x1. . xnow 109 I(Xy, ... X, Z2[0)]

convergence is guaranteed
(because the E step computes a lower bound of the truedtidun,

and the M step yields monotonically non-decreasingihked),
but may result in local maximum of log-likelihood function
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EM at Indexing Time
(pLSI Model Fitting)

observed data:n(d,w) — absolute frequency of word w in doc d
model params:P|z|d], P[w|z] for concepts z, words w, docs d

maximize log-likelihood D4 _,,N(d, W) (og P[dw]

E step: posterior probability of latent variables

P[z|d]P[w] Z] prob. that occurrence of
Plz|d,w] = word w in doc d can be
Zy Ply[d]Pw]y] explained by concept z

M step: MLE with completed data
Plw|z] ~ > n(d,w)P[z|d,w] P[z|d] ~ ) n(d,w)P[z]|d,w]

freq. of w associated with z freq. of d associated with

actual procedure ,perturbs” EM for ,smoothing”
(avoidance of overfitting) — tempered annealing
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EM Detalls (pLSI Model Fitting)

P[y | d] Plw] y] (E)
- n(d Wi [z|d W
>, ,n(d,u)P[z[d,u] (M1)

_ an(d,W@d,\WD
Plz|d] = Zw,y”(d,W)m] (M2)

or equivalently compute P[z], P[d|z], P[w]|z] in M step
(see S. Chakrabarti, pp. 110/111)
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Folding-in of Queries

keep all estimated parameters of the pLSI model fixed
and treat query as a ,new document” to be explained
- find concepts that most likely generate the query
(query is the only ,document®, and P[w | z] is kept invariant)
- EM for query parameters

Plz| o] plw| 2
> Plylalpiw| y]

_ 2.,N@wW)P[z|g,w]
2, (@ WPy | g, W]

Plz]g.w] =

Plz|q]
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Query Processing

Once documents and queries are both represented as
probability distributions over k concepts
(l.e. kx1 vectors with L1 length 1),
we can use any convenient vector-space similarity measure
(e.g. scalar product or cosine or KL divergence).
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Experimental Results: Example

» Concepts (100f 128) extracted from Science Magazine

articles (12K)

drug
patients
drugs
clinical
treatment
trials
therapy
trial
disease
medical

00672
0.0493
0.0444
00346
0,028
0.0277
00213
0.0164
00157
000957

utiverse 004259
A | zalames 00375
= clusters 00279
E matter 00233
< calay 0.02s2
a cluster 0.0214
COSTIC 0.0137
i dark 00131
hight 0.010%9
density 001
bactena 00983
& | bacteral 00561
— resistance 00431
NT | et 0.0381
2| | strains 0.025
s microbiol  0.0214
ricrobial 0.01%6
@ |ctran 00165
salmonella 00163
resistant 0.0145
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male
females
temale
males

SEH

reproductive

offapring
zezmal

reproduction

Bgos

0.0558
0.0541
0.052%
0.0477
0.0338
0.0172
00168
0.0166
0.0143
0.0138

cells 0.0675 SEqUEnCE 00818

stem 0.0478 sequences 0.045%

human 0.0421 ZENOME 0.033

cell 0.0309 dna 00257

ZEnE 0.025 sequencing 00172

tissue 0.0185 map 0.0123

clomnng 0.0169 ZENES 00122 record

transfer 0.0155 chromosome 0.011% early

bload 00113 regions 00119 ballion

embiyos 0.0111 human 0.0111 history

theory 00811 mrnune 0.0%09 | | stars 0.0524
physics 00782 response 00375 | star 0.0458
physicists  0.0146 || system 00358 | astrophys  0.0237
einstein 00142 TESpONSEs 0.0322 | | mass 0.021
uriversity 0.013 antigen 00263 | disk 0.0173
cravity 0013 atitioens 0.0184 | | black 00161
black 0.0127 || wwounty Q0176 | gas 0.0149
theoties 0.01 mmmunology  0.0145 | | stellar 0.0127
aps 0.00987|| antibeody 0.014 astron 00125
matter 000954| | autorrmune  0.0128 | | hole 0.00824

Source: Thomas Hofmann, Tutorial at ADFOCS 2004
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Average Precision

50%
45%

35%
30%
25%

Relative Gain in Average Prec.

Experimental Results: Precision

Medline

CRAN

CACM

Cisl

TREC

40% |

20% |
15% {1

2298

Medline

CRAN

CACM

CI51

TREC

W VSM |
BLSA
B PLSA

EVSM
| mLSA

W PLSA

Summary of quantitative
evaluation

q Consistent improvements

of retrieval accuracy

g Relative improvements of

average precision 15-
45%

g OnTREC3: 18%

Improvement compared

to SMART retrieval
metric

VSM:

simple tf-based
vector space
model (no idf)

Source: Thomas Hofmann, Tutorial ,Machine Learning in Information Retriev al®,
presented at Machine Learning Summer School (MLSS) 2004, Berderlend, France
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Experimental Results: Perplexity

Perplexity measure (reflects generalization potential, as omsed

to overfitting): 2H(freq(w,d),P[W|d]) — Z_Zw’d freq(w,d)bg,P[wd]
with freq on new data

(a) (b)
i — T T e = . ' ;
3000 [} 1 1300 ] :
B l r
! : 1200 |
o500} = : 1
\ I 1100 :
! : )
z % : Z 1000+ u
= e = Q00 ¢ \ :
o s o
1500 800 i
i
EM 700} s LSA
ol T T e , o - - l
1000 ¢ 600+ PLSA
TEM
: ' : ' ~ 500 : : :
200 400 600 800 1000 500 1000 1500

Figure 6.

models (K

IRDM WS 2005

Latent space dimensions

Latent space dimensions

Perplexity results as a function of the latent space dimensionality for (a) the MED data (rank 1033) and
(b) the LOB data (rank 1674). Plotted results are for LSA (dashed-dotted curve) and PLSA (trained by TEM =
solid curve. trained by early stopping EM = dotted curve). The upper baseline is the unigram model corresponding
to marginal independence. The star at the right end of the PLSA denotes the perplexity of the largest trained aspect

= 2048).

Source: T. Hofmann, Machine Learning 42 (2001)
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pLSI Summary

+ Probabilistic variant of LSI
(non-negative matrix factorization with L1 normalization)
+ Achieves better experimental results than LSI
+ Very good on ,closed®, thematically specialized corpora,
Inappropriate for Web
— Computationally expensive (at indexing and querying time)
— may use faster clustering for estimating P[d|z] instead of EM
— may exploit sparseness of query to speed up folding-in
— pLSI does not have a generative model (rather tied to fixed corpus
- LDA model (Latent Dirichlet Allocation)
— number of latent concept remains model-selection problem
— compute for different k, assess on held-out data, choose best
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Additional Literature for Chapter 4

Latent Semantic Indexing:

 Grossman/Frieder Section 2.6

e Manning/Schltze Section 15.4

« M.W. Berry, S.T. Dumais, G.W. O'Brien: Using Linealgebra for
Intelligent Information Retrieval, SIAM Review Vol/3No.4, 1995

« S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. baled, R. Harshman:
Indexing by Latent Semantic Analysis, JASIS 41{8Q0

 H. Bast, D. Majumdar: Why Spectral Retrieval WorRH:1R 2005

« W.H. Press: Numerical Recipes in C, Cambridge UsixgPress,
1993, available online at http://www.nr.com/

« G.H. Golub, C.F. Van Loan: Matrix Computationshddiopkins
University Press, 1996

pLSI and Other Latent-Concept Models:

« Chakrabarti Section 4.4.4

 T.Hofmann: Unsupervised Learning by ProbabilisticdratSemantic
Analysis, Machine Learning 42, 2001

 T.Hofmann: Matrix Decomposition Techniques in MaxghlLearning and
Information Retrieval, Tutorial Slides, ADFOCS 2004

« D. Blei, A. Ng, M. Jordan: Latent Dirichlet Allogah, Journal of Machine
Learning Research 3, 2003

« W. Xu, X. Liu, Y. Gong: Document Clustering basedon-negative
Matrix Factorization, SIGIR 2003
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