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Improving Precision by Authority Scores

Goal:

Higher ranking of URLs with high authority regarding

volume, significance, freshness, authenticity of information content
— Improve precision of search results

Approaches (all interpreting the Web as a directed graph G):
e citation or impact rank (g)lindegree (q)

 PageRankby Lawrence Page)

e HITS algorithm(by Jon Kleinberg)

Combining relevance and authority ranking:
by weighted sum with appropriate coefficients (Google)
e by initial relevance ranking and iterative

Improvement via authority ranking (HITS)
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Web Structure: Small Diameter

Small World Phenomenon (Milgram 1967)
Studles on Internet Connectlwty (1999)

Source: Bill Cheswick and Hal Burch, Source: KC Claffy,
http://research.lumeta.com/ches/map/index.htnfittp://www.caida.org/outreach/papers/1999/Nae/Nad.h

suggested small world phenomenon: low-diameter graph
( diameter = max {shortest path (x,y) | nodes x and y} )
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Web Structure: Connected Components
Study of Web Graph (Broder et al. 2000)
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Source: A.Z. Broder et al., WWW 2000
e strongly connected core tends to have small diameter
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Web Structure: Power-Law Degrees
Study of Web Graph (Broder et al. 2000)
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« power-law distributed degrees: P[degree=k] ~ (L/k)
with a = 2.1 for indegrees anal = 2.7 for outdegrees
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Power-Law Distributions

Zipf distribution 1 frequently observed
forO<k<n: f(K)~— for ranksin
K SOCI0-economic systems

" 1

Iscrete f (k) ~— frequently observed
Pareto distribution K for absolute valuesin
for 0 < k: SOCi 0-economic systems
continuous .
Pareto distribution ¢ (K) = a ‘1(%)
for X, < X: X, \ X

Pareto distribution is heavy-tailed
(E[XX] defined if and only if o > k+1)
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Example Zipf Distribution
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FIGURE I
Log Size versus Log Rank of the 135 largest U. 5. Metropolitan Areas in 1991
Source: Statistical Abstract of the United States [1993].
Source: Denise Pumain, Scaling Laws and Urban Distributies, 2003
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Example Pareto Distribution
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Source: Mark Crovella et al., Heavy-tailed Probability
Distributions in the World Wide Web, 1998
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Page Rank r(q)

given:directed Web graph G=(V,E) with |[V|=n and
adjacency matrix A: A= 11f (i,)) UE, O otherwise

ldea: r(q)=k > r(p)/outdecree p)
( PA)UG

Def.. r(q)=¢&/n +(1-¢) > r(p)/outdecreg p)
( PQ)HG with 0 <€ <0.2

Theorem: With A*; = 1/outdegree()) If (J,IJE, O otherwise:
F=t +(1-e)AT - F:(% 1" +(1—£)A'jF
n
l.e.r is Eigenvectorof a modified adjacency matrix

lterative computation of r(q) (after large Web crawl):

e Initialization: r(q) := 1/n
* Improvement by evaluating recursive equation of definition;
typically converges after about 100 iterations
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Google‘'s PageRank

|ldea: incoming links are endorsements & increase page authority,
authority is higher if links come from high-authority pages

PR(gq)=¢0(q)+(1-¢)L
pDI%(q)F’R(lo)Eﬂ(m)Q ]

/<§

Authority (page q) =
stationary prob. of visiting g

random walk: uniformly random choice of links + random jumps
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PageRank as Eigenvector of Stochastic Matrix

A stochastic matrixis an nxn matrix M
with row sum 2,_; | M; =1 for each row |

Random surfer follows a stochastic matrix

Theorem:

For every stochastic matrix M

all EigenvaluesA have the property p|<1

and there is an Eigenvector x with Eigenvalue 1 s.t.20 and ||x|] = 1

Suggests power iteration D = MT xO

But: real Web graph
has sinks, may be periodic, Is not strongly connected
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Markov Chains in a Nutshell

— p0=0.657, pl=0.2, p20.143

p0O + pl +p2 = 1

state set: finite or infinite  time: discrete or continuous

state transition prob‘s: p;  state prob's in step t: p = P[S(t)=i]
Markov property: P[S(t)=1 | S(0), ..., S(t-1)] = P[S(D)=I | S(t-1)]

Interested in stationary state probabilities:
p; :=lim p“)—nmz i p P =§ PPy  Xp=1

t_;OO _;OO k

j
guaranteed to exist for |rredu0|ble, aperiodic, finite Markov chains
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Digression: Markov Chains

A stochastic processs a family of
random variables {X(t) I T}.

T Is called parameter space, and the domain M of X(t) is called
state space. T and M can be discrete or continuous.

A stochastic process is callédharkov processif
for every choice of ..., t,, from the parameter space and
every choice of x ..., x.,, from the state space the following holds:

P X(th+1) = Xn+al X(t1) =% L X(t2) =X L...LX(th ) =X |
= P X(th+1) = Xn+2| X(th ) = X |

A Markov process with discrete state space is cdlledkov chain.
A canonical choice of the state space are the natural numbers.
Notation for Markov chains with discrete parameter space:

X, rather than X(f) withn=20, 1, 2, ...
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Properties of Markov Chains
with Discrete Parameter Space (1)

The Markov chain Xn with discrete parameter space Is

homogeneoudf the transition probabilities
p; := P[Xn.1 =1 | X=1] are independent of n

irreducible If every state is reachable from every other state
vgoith positive probability:

Y>P[X,=]lXp=i]>0 forallli,]

n=1

aperiodic If every state | has period 1, where the

period of 1 Is the gcd of all (recurrence) values n for which

P[ X, =i OXy #i fork =1,...n-1| Xq =i ] >0
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Properties of Markov Chains
with Discrete Parameter Space (2)

The Markov chain Xn with discrete parameter space Is

positive recurrent if for every state I the recurrence probability
IS 1 and the mean recurrence time Iis finite:

SP[X,=i0X #ifork=1..n-1|Xgy=i]=1
n=1

>NP[ X, =1U0X #1 fork=1,...n=1]| Xy =1] <o
n=1

ergodicif it is homogeneous, irreducible, aperiodic, and
positive recurrent.
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- Results on Markov Chains
with Discrete Parameter Space (1)

For then-step transition probabilities
p.(Jn) =P[ Xy =]|Xo=1] the following holds:

pljn) _Z Pik 1) Pkj with p|(J ):= Pik

—Z pl"") pli) fori<l<n-1
in matrix notation: P( ) =p"

For thestate probabilities after n steps

A\™ :=P[ X, =j] the following holds:

(”) —Zn(o) p(”) with initial state probabilities 72’
Chapman-
in matrix notation: (") =n(9)p(n) f(olm%gorov
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~ Results on Markov Chains
with Discrete Parameter Space (2)

Every homogeneous, irreducible, aperiodic Markov chain
with a finite number of states Is positive recurrent and ergodic.

For every ergodic Markov chain there exist
stationary state probabilities

These are independent dfl ©
and are the solutions of the following system of linear equations:

7= lim 2™
J . J

T =27 p; forall | (balance
i equations)
an =1
J
In matrix notation: [1=MNP

(with 1xn row vector1) —
MN1=1
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Page Rank as a Markov Chain Model

Model arandom walk of a Web surfer as follows:
e follow outgoing hyperlinks with uniform probabilities
 perform ,random jump* with probabilitg
- ergodic Markov chain
ThePageRankof a URL Is thestationary visiting
probability of URL In the above Markov chain.
Further generalizations have been studied
(e.g. random walk with back button etc.)

Drawback of Page rank method:

Page rank is query-independent and orthogonal to relevance
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Example: Page Rank Computation
/0.0 0.5 0.5)
c=0.2 P=/0.10.0 09
0.9 0.1 00,
0333\ 0.333)" 0439\ 0.332)
N9 = 0333 = NM=|0.200/= nN(?=|0212| = N3 =| 0253
0.333) 0.466, 0.346, L0.401,
(0.385\ T (0.491\
— N =lo0176| = N(® =| 0244
m = 0.112 + 0.9™3 \0.527, . 0.350)
T =051 + 0.118
M3 = 0.5m + 0.9
M +T0 +T8 = 1 — 111 = 0.3776 T2 = 0.2282 T3 = 0.3942
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5.2 HITS Algorithm:
Hyperlink-Induced Topic Search (1)

ldea:

Determine ¢ good content sourcésithorities ES.
(high indegree)

 good link sourceddubs
(high outdegree)

Find e better authorities that have good hubs as predecesso!
 better hubs that have good authorities as successors

For Web graph G=(V,E) define for nodes p.,1y

authority score  Xg = > Yo and

(PQ)UE
hub score Yo= 2 Xg

( p9)E
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HITS Algorithm (2)

Authority and hub scores in matrix notation:
x=Aly y=AX

Iteration with adjacency matrix A:
X::ATy::ATAX y::AX::AATy

x and y arezigenvectorsof ATA and AAT, resp.

Intuitive interpretation:

M (8Uth) .= AT A s the cocitation matrix: MUt is the
number of nodes that point to both | and |

M (hub)-— A AT is the bibliographic-coupling matrix: Lol
IS the number of nodes to which both 1 and j point
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Implementation of the HITS Algorithm

1) Determine sufficient number (e.g. 50-200) of ,root pages
via relevance ranking (e.g. using tf*idf ranking)
2) Add all successors of root pages
3) For each root page add up to d predecessors
4) Compute iteratively
the authority and hub scores of this ,base set"
(of typically 1000-5000 pages)
with initialization x, := y, := 1 / |base set]
and normalization after each iteration
— converges to principal Eigenvector (Eigenvector with
largest Eigenvalue (in the case of multiplicity 1)
5) Return pages in descending order of authority scores
(e.g. the 10 largest elements of vector x)

Drawback of HITS algorithm:
relevance ranking within root set is not considered
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Example: HITS Algorithm

base set
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Improved HITS Algorithm

Potential weakness of the HITS algorithm:
e irritating links (automatically generated links, spam, etc.)
e topic drift (e.g. from ,Jaguar car” to ,car“ in general)

Improvement:
* Introduceedge weights
O for links within the same host,
1/k with k links from k URLs of the same host to 1 URL (xweight)
1/m with m links from 1 URL to m URLs on the same host (yweight)
e Considerelevance weightaw.r.t. query topic (e.g. tf*idf)

- lterative computation of

authority score  Xg= 2. Yp™topicscoreg p)* xweigh( p,q)
( p.a)UE

hub score Yo= 2. Xq*topicscor¢q)* yweigh( p,q)
( pa)UE
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Finding Related URLs

Cocitation algorithm:
e Determine up to B predecessors of given URL u
 For each predecessor p determine up to BF successors
e Determine among all siblings s of u those
with the largest number of predecessors that
point to both s and u (degree of cocitation)

Companion algorithm:
e Determine appropriate base set
for URL u (,vicinity” of u)
e Apply HITS algorithm to this base set
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Companion Algorithm
for Finding Related URLs

1) Determinédase setu plus
e up to B predecessors of u and
for each predecessor p up to BF successarplus
e up to F successors of u and
for each successor c up to FB predecessaors
with elimination of stop URLs (e.g. www.yahoo.com)
2) Duplicate elimination:
Merge nodes both of which have more than 10 successors
and have 95 % or more overlap among their successors
3) Computeauthority scores
using the improved HITS algorithm
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SimRank [Jeh/widom 2002]

ldea: pages x and y are similar if referenced by similar pages

C
SHX,VY) = SH D,
XY = GO I o, 2 PO

with constant ¢ < 1 and SR(x,y)=1 for x=y and O otherwise,
or SR(X,y) set to content similarity of x and y

solved by iteration procedure,
conceptually operating on G graph of all node pairs
with edge (a,b)- (c,d) if G has edges a c and b-d

can be extended to bipartite graphs (e.g. customers and products)
or even more general typed graphs
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HITS Algorithm for ,Community Detection*

Root set may contain multiple topics or ,communities®,
e.g. for queries ,jaguar”, ,Java“, or ,randomized algorithm®“

Approach:

e Compute k largest Eigenvalues of A
and the corresponding Eigenvectors X

 For each of these k Eigenvectors x
the largest authority scores indicate a
densely connected ,community*
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SALSA: Random Walk on Hubs and Authorities

View each node v of the link graph as two nodgand v,

Construct bipartite undirected graph G'(V*,E*) from link graph G(V,E):
V' ={v | vV and outdegree(v)>0} {v, | vLIV and indegree(v)>0}

E* = {(viy Wy | (v,w) OE}

. . 1 1
Stochastic hub matrix H: h, :Z _
< degreq(l, ) degregk,)
for hubs 1, j and k ranging over all nodes with &), (k,, J;) U E’

1 1
Stochastic authority matrix A: ZZ ;
< degreq(l,) degregk, )
for authorities I, | and k ranging over all nodes with ki), (k., J,) U E

The corresponding Markov chains are ergodic on connected compone

The stationary solutions for these Markov chains are:
m{v,] ~ outdegree(v) for H andmjv,] ~ indegree(v) for A
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