Chapter 7: Clustering
(Unsupervised Data Organization)

7.1 Hierarchical Clustering

7.2 Flat Clustering

7.3 Embedding into Vector Space for Visualization
7.4 Applications

Clustering:  unsupervised grouping (partitioning) of objects
Into classes (clusters) of similar objects
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Clustering Searcl Results
for Visualization and Navigation
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Example for Hierarchical Clustering

Man
Monkey
Dog

Fiz
Eabbit
Fangaroo

Horse

Donkey

FPekin [hacl
Pizeon
Chicken

Fang Pengnn
snapping Turtle
Fattlesnake
Tuna
sorewnarorin Fly
Moth

Balker's Mouald
Bread Yeast

skin Fungas
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Hierarchical classification of species based on proteins
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Example for Hierarchical Clustering

Comoosition of nulk of 25 maramals
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Example for Hierarchical Clustering

M sz A
Edradour: B
Balvenie: C
(ilengoyne: D
Bunnahabhain: E
Bushmills: F

Oilentiddieh: G
Cilenmoraneie: H -
Hizhland Park: 1

Laphroaig: |
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Clustering: Classification based on
Unsupervised Learning
agiven:.
n m-dimensional data recordsdj LUD LJ dom(Al)x ... x dom(Am)
with attributes Ai (e.g. term frequency vectotsN, x ... X N)
or ndata points with pair-wisedistances (similarities) in ametric space

wanted:

. . 1 1 .=
averagentra-cluster similarity =>| —— > sm(d,Cy)
CliDck

k clusterscl, ..., ck and an assignment-b{cl, ..., ck} such that the

Is high and
the averagenter-cluster similarity (k —1) izj SIm(G.Cj)
is low, . 'l

(_fk - — Zd

where thecentroid ¢, of ck is: | Ci |d’DCk
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Desired Clustering Properties

A clustering function f maps a dataset D onto a partitioning
["2P of D, with pairwise disjoint members 6fand(l, f(x) = D,
based on a (metric or non-metric) distance functionxDD R,*
which is symmetric and satisfies d(x,y)=0 x=y

Axiom 1: Scale-Invariance
For any distance function d and amyO0: f,(x) = f 4 (X) for all xUD

Axiom 2: Richness (Expressiveness)

For every possible partitioning of D there is a distance function d
such that f produced

Axiom 3: Consistency

d is al -transformation of d if for all X,y In same & : d(x,y) < d(X,y)
and for all x, y in different S, & I': d'(x,y) = d(Xx,y).

If f , produced then {; produced, too.

Impossibility Theorem (J. Kleinberg: NIPS 2002):
For each dataset D with £ there is no clustering function f that
satisfies Axioms 1,2, and 3 for every possible choice of d
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Hierarchical vs. Flat Clustering

Hierarchical Clustering:
e detailed and insightful
e hierarchy built
In natural manner
from fairly simple algorithms
e relatively expensive
* N0 prevalent algorithm

IRDM WS 2005

Flat Clustering:
e data overview & coarse analysis
* level of detall depends
on the choice of the
number of clusters
e relatively efficient
 K-Means and EM are simple
standard algorithms
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7.1 Hierarchical Clustering:
Agglomerative Bottom-up Clustering (HAC)

Principle:
e start with each dorming its own singleton cluster c
* In each iteration combine the most similar clusters;c

Into a new, single cluster

for1:=1 to n do ¢:= {d.} od;

C :={c, ..., ¢}; /* set of clusters */

while |C| > 1 do
determine ¢ g U C with maximal inter-cluster similarity;
C:=C—{g ¢} O{c,Oc}h

od;
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Divisive Top-down Clustering
Principle:
o start with a single cluster that contains all data records
* In each iteration identify the least ,coherent” cluster
and divide it into two new clusters

c,:={dy ..., d};

C :={c,}; I* set of clusters */

while there is a cluster, €1 C with [g|>1 do
determine cwith the lowest intra-cluster similarity;
partition ¢cinto g, and ¢, (.,e.g=¢, LU c,and ¢ n ¢, =0J)
such that the inter-cluster similarity betweenand ¢,
IS minimized;

od;

For partitioning a cluster one can use another clustering method
(e.g. a bottom-up method)

IRDM WS 2005
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Alternative Similarity Metrics for Clusters

given: similarity on data records - simxD — R oder [0,1]
define: similarity between clusters — sin¥X2P . R or [0,1]

Alternatives:

e Centroid method: sim (c,c’) = sim(d, d*) with centroid d of c
and centroid d* of ¢!

 Single-Link method: sim(c,c') = sim(d, d*) with d_c, d‘Lc’,
such that d and d‘ have the highest similarity

e Complete-Link method: sim(c,c‘) = sim(d, d‘) with dc, d‘Lic’,
such that d and d‘ have the lowest similarity

e Group-Average method 1 S sm(d,d’)

C e} gé de

For hierarchical clustering the following axiom must hold:
max {sim(c,c’), sim(c,c*)}=sim(c, ctl ¢c*) forall c, ¢’, c* O 2P
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Example for Bottom-up Clustering
with Single-Link Metric (Nearest Neighbor)

run-time:
O(rv)
L with space
N RN ETNT
N PR NG, %
4 e s —
3
2 /:\ /:\
1 /.e Qf o /0g Qh %
A A N A ?/

1 2 3 4 3} 6 7 8

emphasizes ,local“ cluster coherence (chaining effect)
- tendency towards long clusters
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Example for Bottom-up Clustering
with Complete Link Metric (Farthest Neighbor)

run-time:
O(r¢log n)
S S with space
= b\ A c  _d) o)
“

YR AN
1 \/.e .f
o e

1 2 3 4 5 6 7 8
emphasizes ,global” cluster coherence

- tendency towards round clusters with small diameter
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Relationship to Graph Algorithms

Single-Link clustering:

e corresponds to construction miaximum (minimum) spanning tree
for undirected, weighted graph G = (V,E) with V=D, ExD
and edge weight sim(d,d") (dist(d,d")) for (d,dt

 from the maximum spanning tree the cluster hierarchy can be derive:
by recursively removing the shortest (longest) edge

Single-Link clustering Is related to the problem of finding
maximal connected componentgZusammenhangskomponenten)
on a graph that contains only edges (d,d")
for which sim(d,d‘) is above some threshold

Complete-Link clustering Is related to the problem
of finding maximal cliquesin a graph.
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Bottom-up Clustering
with Group-Average Metric (1)

Merge step combines those clusterar ¢
for which the intra-cluster similarity c: 5 €] ¢
S(c) = S sim(d,d") becomes maximal

clc—1 4 grc
dzd’

naive implementation has run-time Gfn
n-1 merge steps each with G(rromputations
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Bottom-up Clustering
with Group-Average Metric (2)

efficient implementation — with total run-time Gjn-
for cosine similarity with length-normalized vectors,
l.e. using scalar product for sim

precompute similarity of §II document pairs
and compute S(C):= 2.d
for each cluster after g\%ry merge step
Then: _ (8(c) +(c))ds(c) +5(c) - (e +[c))
S(c, O¢;) =
(e +‘Cj ‘) (5| + ‘Cj ‘ -1)

Thus each merge step can be carried out in constant time.
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Cluster Quality Measures (1)

With regard toground truth:
known class labeld,, ..., L, for data points d ..., d;
L(d) =L OfL 4, ..., Ly}

With cluster assignmenmt(d,), ...,I'(d,) Uc,, ..., G
cluster ¢haspurity max,_, ([{dUc, [L(d)=L,}|/|c |

Complete clustering has purit)Z 1k purity(c,)/k

Alternatives: lc.nL, | . |
N J vV J
e Entropy within clusterzvzl__g |

2
S |

* Ml between cluster and classes
lcnL|/n lc|[|L|/n
Dt o log,
IRDM WS 2005 CD{Cj’Cj}’LD{Ll """ Lg}lcl[ILlln |Cﬂ Llln 7-19




Cluster Quality Measures (2)
Without any ground truth:

ratio of intra-cluster to inter-cluster similarities

( A
Z

1 .
sm(d,c ) | / ssim(c,C.)
|C kld%:ck ‘ \k(k_l)i’zi.: J)
i ]

or othercluster validity measures of this kind
(e.g. considering variance of intra- and inter-clugiistances)
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/.2 Flat Clustering: Simple Single-Pass Method

given:data records di, ..., dn
wanted:(up to) k clusters C:={c1, ..., ck}

C = {{d1}}; /* random choice for the first cluster */
fori:=2tondo
determine cluster d¢jl C with the largest value of
sim(di, cj) (e.g. sim(di€j ) with centrofd );
If sim(di, cj) = threshold
then assign di to cluster cj
else if |C| <k
then C := CJ {{di}}; /* create new cluster */
else assign di to cluster cj
fi
fi
od
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K-Means Method for Flat Clustering (1)

|dea:
e determine prototype vectors, one for each cluster

e assign each data record to the most similar prototype vector

and compute new prototype vector
(e.g. by averaging over the vectors assigned to a prototype)

o iterate until clusters are sufficiently stable

randomly choose k prototype vectors,...,Cy
while not yet sufficiently stable do
fori:=1tondo
assign di to cluster cj for whichsim(di ,Cj) Isminimal
od;
forj;=1tokdo Cj=— >d od;
od;
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Example for K-Means Clustering

K=2 ® datarecords [ prototype vectors
5 5
4 4 >
2 o F 2 i
1 ' 1
1 2 3 456 7 8 1 2 3 456 7 8
after 1st iteration after 2nd iteration
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K-Means Method for Flat Clustering (2)

 run-time is O(n) (assuming constant number of iterations)
e a suitable number of clusters, K, can be determined experimentally
or based on the MDL principle
e the Initial prototype vectors could be chosen by using another
— very efficient — clustering method
(e.g. bottom-up clustering on random sample of the data records).
e for sim any arbitrary metric can be used
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Choice of K (Model Selection)

 application-dependent (e.g. for visualization)

e driven by empirical evaluation of cluster quality
(e.g. cross-validation with held-out labeled data)

e driven by quality measure without ground truth

e driven by MDL principle

IRDM WS 2005 7-25



LS| and pLSI Reconsidered

LS| and pLSI can also be seen as

unsupervised clustering methodpdctral clustering):
simple variant for k clusters
e map each data point into k-dimensional space
e assign each point to its highest-value dimension

(strongest spectral component)

Conversely, we could compute k clusters

for the data points (using any clustering algorithm)
and project data points onto k centroid vectors (,axes" of k-dim. space

to represent data in LSI-style manner
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EM Method for Model-based Soft Clustering

(Expectation Maximization)
Approach:
 generalize K-Means method such that each data record
belongs to a cluster (actually all k clusters) with a certain probability
based on a parameterized multivariate prob. distribution f
- random variable /=1 if d belongs to ¢ 0 otherwise
 estimate parametesof the prob. distribution f],x) such that
the likelihood that the observed data is indeed a sample from
this distribution is maximized
- Maximum-Likelihood Estimation (MLE):
maximize L(d,...,d,, 0) = P[d, ..., 4 Is a sample from f,x)]
or maximize log L;
If analytically intractable- useEM iteration procedure

Postulate probability distribution e.qg.
mixture of k multivariate Normal distributions
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EM Clustering Method with Mixture of k
Multivariate Normal Distributions

Assumptiondata records are a sample from a mixture of k
multivariate Normal distributions with the density:

f()‘(’,ﬂl,...,nk,ﬁl,...,ﬁk,zl,...,zk)

K i
:Z T (X, Aj,2) = Zﬂj 1 e 2
= J(Z’T)m‘ZJ‘

with expectation valueg
and invertible, positive definite, symmetric
mXxm covariance matriceszj

— maximize log-likelihood function:

n Kk
log L(%q,.... X, 6) —|09|'| Pl [6] = 2| log 2. 77 n(K,ﬁj,Zj)}
=1 1=1 j=1
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EM Iteration Procedure (1)

Introduce latent variables Z;: point x; generated by cluster |

Initialization of EM method, for example, by:
settingry=...==1/k, using K-Means cluster centroids for
and unity matrices (1s on diagonal) B ...,%, - Mk

iterate until parameter estimations barely change anymore:
1) EXxpectation step (E step)
compute E[Z] based on the previous round’s estimation
for 6, i.e.m, ...,T,, [, Hx and, ...,2,
2) Minimization step (M step):
Improve parameter estimation féibased on
the previous round's values for E[F

convergence Is guaranteed, but may result in
local maximum of log-likelihood function
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EM Iteration Procedure (2)
Expectation step (E step):

hj = ElZ; |%,6] = knj P[% In;(6) ]

271 PIX In (9)]

Maximization step (M step):

>hi% Sohy (% = )% - @)’
aj =5 2y == .
2.h; 2.h;
1=1 n n 1=1
2.0 2h
7. =171 —1=1
J K n N
2. 2.0

IRDM WS 2005
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Example for EM Clustering Method

given:

n=20 terms from articles of the New York Times:
ballot, polls, Gov, seats, profit, finance, payments, NFL, Reds,
Sox, Inning, quarterback, score, scored, researchers, science,
Scott, Mary, Barbara, Edward

with m=20-dimensional feature vectais

with d; = # articles that contain both term i and term |

Resultof EM clustering for the estimation of; ior k=5:

1 2 3 4 5 1 2 3 4 5
ballot 0.63 0.12 0.04 0.09 0.11 inning 0.03 0.01 0.93 0.01 0.02
polls 0.58 0.11 0.06 0.10 0.14 quarterback 0.06 0.02 0.82 0.03 0.07
Gov 0.58 0.12 0.03 0.10 0.17 score 0.12 0.04 0.65 0.06 0.13
seats 0.55 0.14 0.08 0.08 0.15 scored 0.08 0.03 0.79 0.03 0.07
profit  0.11 0.59 0.02 0.14 0.15 researchers 0.08 0.12 0.02 0.68 0.10
finance 0.15 0.55 0.01 0.13 0.16 science 0.12 0.12 0.03 0.54 0.19
payments 0.12 0.66 0.01 0.09 0.11 Scott 0.12 0.12 0.11 0.11 0.54
NFL 0.13 0.05 0.58 0.09 0.16 Mary 0.10 0.10 0.05 0.15 0.59
Reds 0.05 0.01 0.86 0.02 0.06 Barbara 0.15 0.11 0.04 0.12 0.57
Sox 0.05 0.01 0.86 0.02 0.06 Edward 0.16 0.18 0.02 0.12 0.51
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Clustering with Density Estimator

: m
Infl_uence function gy (X): (R{{) SR
Influence of data record y

on a point x In its local environment
_dist(x,y)?

2 . 1
X)=e %9 ith dist(x,y) :=

m
Density function f(X): (Ra’) SR
density at point x: sum of all influences y on x

F(x)= 2 9y(X)

yL1D

clusters correspond to local maxima of the density function
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Example for Clustering with Density Estimator

Source: D. Keim and A. Hinneburg, Clustering Techesjfor Large Data Sets, Tutorial, KDD Conf. 1999
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Incremental DBSCAN Method
for Density-based Clustering [Ester et al.: KDD 1996]

DBSCAN = Density-Based Clustering for Applications with Noise

simplified version of the algorithm:
for each data point d do {
Insert d into spatial index (e.g., R-tree);
locate all points with distance to d ax_dist;
If these points form a single cluster then add d to this cluster
else {
If there are at leashin_points data points
that do not yet belong to a cluster
such that for all point pairs the distancensx_dist
then construct a new cluster with these points };

I

average run-time is O(n * log n);

data points that are added later can be easily assigned to a cluster;
points that do not belong to any cluster are considered ,noise”
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7.3 Self-Organizing Maps (SOMs, Kohonen Maps)

similar to K-Means

butembeds data and clusters in a low-dimensional spa¢e.g. 2D) and
alms topreserve cluster-cluster neighborhood — for visualization

(recall: clustering does not assume a vector space, only a metric space)

clusters cl, c2, ... and data x1, x2, ... are pointis gistance function
sim (xi, X|), sim (ci, Xj), sim (ci, cj)

Initialize map with k cluster nodes arbitrarily placed
(often on a triangular or rectangular grid)
for each x determine node C(x) closest to x and smalkrsed N(x) close to X
repeat
for randomly chosen x
update all nodes &N(x): ¢":=C'+A(t) [sm(c',C(x)) [(X—C")
under influence of data point x (with learning raig))
(,data activates neuron C(x) and other neurons ¢’ ingighborhood*)
until sufficient convergence (with gradually reducgd)
assign data point x to the closest cluster (,winner nero
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SOM Example (1) the Country Names
ATG Mg OTM Cuscmeh TEL  Fiom Fommad
AL Ampals MEC  Targ Kang OAY  Twiemn, [him
ALTT Allen'm MET  Tardym MY [mam
ART  Tmhad Amh Fmimton TTT Tt TAE Paknrtsn
AT Arg=nTms ATH  Torgers TAF Tanwmn
AR Ausanlin M0 TuikiimTaeu F-T. Faxa
ALT  SUmTw X lndamems FllL  Fhimmes
o7 Thromdi K1 Tadw P00 Papow Fxm Coinca
.  Thiginm Ml.  Tidsnd BT Pland
Tk Tlamin el n Tint, mlvmia L. FAT  Partogel
THID Tyl Moy Tim F1¥ Fuimg mur
THIE.  Thgatim ™1 Tmel AOM Tamah
THIT. ThamAas ML Tinly AL Twmdm
T Tm=l TAM  Twirars RAT, Baodi Awmhw
TTF  Thrim A Tmdw FM¥  Radn
THT. Mywmmnr e Tammn FEF  Bencanl
T Thammns KT Hepgm T A'npwpuns
LiAlr  Lemml Atcsn M KIM Lambadm WLl Nermlate
CAY  Camads KO Korem, Ter BV Tl Balmdm
M Revwerhnd KWT Rt RNM Rl
.  Chia A0 TaaTRR R%TE  Rwalan
O Chim LT Tadminn T Agvmn M’ Ty
LY Lok clware L4 Lakers T Lhad
Tl Camcwacn LTY  Tilm TIO T
Nl Conga LEA  BA.amin TITA Theibmd
T Calomb RN Towatha TTN  Trimided mad Trhage
CMT  CamnTlea MAT. Moacea TLY Tmminh
(3K Crahnnsts M0 T e onr TN Toroy
TET  Comam M™X Mernea TEL Twvream
BEL | SWE S TKE  Temmark M M IT Tamncw
THNW Tanirian e WY Wmgals T Tirmgmay
AUTche v gpy A Algew MIZ  Mammbhiga IRA  Timisad Btwan
DEU FRA -
T Temsddr MIT  WARITERIW TIE  Wemerah
P lgnpt ARk dep. MLE MmaTiTOe YARM Vil PAT
ESP FEF  Emn M#&  Makwi VEN Vemor, Rea
TTT Tikarm MYE  Makomin AME YVorwmm
DNI EGU T  Tinknd KAM  Knnibin TAT  Raoh Arim
GBRA  FIN  IRL URY ARG TR P KR Kga FAT. Tz
NOR AT Cabar FOM TgETR AT FaThh
OIT.  TmTe Hmgdom KT} Kiamgw EAT  Fmhwhwe
KOR zat T4 Ghenn KTD  Ketherlande
OF Coinaa KOTR Koy
CAN coL O Croeee KTT. Kol
uUsa = pER PM -
MUS
AUIS o
MZL CHL PAN alb ™M . . .
from http://www.cis.hut.fi/
HKG CRI JAM
veN M S research/som-research/worldmap.html

see also http://maps.map.net/ for another - interactive - example
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SOM Example (2): WWW Map (2001)

Source: www.antarcti.ca, 2001
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SOM Example (3): Hyperbolic Visualization

45 Mulan
Beauty and -
/ ‘ﬂ'aman the‘ begsto‘ﬁ.nastasua
b a
-... AngmuleﬁPccahuntas : e
adin S
A «DAtIanlrs. T

;f\ South Park

1 \Taman

Source: J. Ontrup, H. Ritter: Hyperbolic Self-Orgamg Maps for Semantic Navigation, NIPS 2001
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SOM Example (4): ,Islands of Music*

limp—clnk
lirmp—polution

limp—sour

pr-snakes

anywhergis
Iu1r5}5inﬂ1niuir
rockisdead

Emp—nobody,
pr—broken
pr-revenge

allioyou
loo jehnnyb
madlydesnky

ga—gogan fos—mochafella

fos—island
j:ﬂihl:lJSEl‘l-ﬂl fos—soulsurfing

itsinhiskiss fbs—kalifomia

dschinghiskhan

s boogiewoogia | nehnehneh = - in ba.kfy' R
3&' feliznavidad shoopshoopsongs oA i i

deepiiyuu-lué o - o R gintnosLnshipe
la mate

hrisimas pl.'—-;‘.!E.'il:ibEﬂ SOOCON

lrins onup

dontta ::Iwnor:e br—fiction cabanst \:5 r oy ma onday
r;;L .-;"_;‘:; icouldfly grossvaler diamonds  walkininmemphis®™ 5 n-:?ia! n biue
ranfyund rem—endoftheworld e hel 5 S AE

ga—namantit
imp—lesson | ge—moneymilk

br—gEnerator
nm—]‘mmngiim—nnbodyluva ga—innocent
nMa—war [pr-eEverenoug ga—time
g

joeschau
vennika

o . '. d3—loseq

.—yuu di—needyo
WE’L"“‘
T Byer

griechisc
dEII!quJEEﬂ

lastdance
veg tiety]
te—butierfy

IirrE:a_hE::;:.:'rﬁg - pinkpar ; ; alifariove
S vm—classicalgas
) g WM toccats

allymecheal
zillestaler

duellmgiol
powenofiowe

lemaonines
m—red

frozen
e|dumagstmi meges

behnfrei

Eﬂ- TEWVEYOLng

br—skyscraper
verve—juckyman

drummerboy
Sinshineofife EhERE
—iSeason

nmaT5ist

unbreskmyheart

friend
herziemn
Cp—parcelain
smi—adia
esterday—b

icanily

ifanhy
missathing
fimewamnm

newyork

TeMm—Grange:

Br—i
fbs—nghthere
remi-teligion

Source: E. Pampalk: Islands of Music: Analysis, &igation, and Visualization of Music Archives,
Master Thesis, Vienna University of Technology

http://www.ofai.at/~elias.pampalk/music/
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Multi-dimensional Scaling (MDS)

Goal:
map data (from metric space) into low-dimensional vector space
such that the distances of dajare approximately preserved
by the Euclidean distances of the images =) ftxthe vector space
~ ~ : 2
_Z_(Hxi —X; ‘ — dist(Xj, X))
~ minimize stress =

ZdiSt(Xi ,Xj)2
]
- solve iteratively with hill climbing:

start with random (or heuristic) placement of data in vector space
find point pair with highest tension

move points locally so as to reduce the stress
(on a fictitious spring that connects the points)

O(r¥) run-time in each iteration, impractical for very large data sets
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FastMap

|dea.
pretend that the data are points in an unknown n-dim. vector space

and project them into a k-dimensional space by
determining their coordinates in k rounds, one dimension at a time

Algorithm:
determine tw@ivot objects a and b(e.g. objects far apart)
conceptuallyproject all data points x onto the line between a and b

~ solve for x: dist(b,x)? = dist(a, x)? +dist (3,b)? — 2xdist (a,b)
(cosine law)

considernn-1)-dim. hyperplane perpendicular to the projection line

with new distances: dist,,_; (x, y)? = dist, (X, y)? - (X1 — yl)2
(Pythagoras)

recursively call FastMap for (n-1)-dimensional data
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7.4 Applications:
Cluster-based Information Retrieval

for user query Q:
e compute ranking of cluster centroids with regard to g
 evaluate query g on the cluster or clusters

with the most similar centroid(s)

(possibly in conjunction with relevance feedback by user)

cluster browsing:
user can navigate through cluster hierarchy
> sim(d',d)

dOC, —{d'}
IS maximal (or has highest similarity to cluster centroid)

each cluster gis represented by itsiedoid:
the document dic, for which the sum
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Automatic Labeling of Clusters

e Variant 1:
classification of cluster centroid  Cy
with a separate, supervised, classifier
e Variant 2:
using term or terms with the highest
(tf*idf-) weight in the cluster centroid Cy
e Variant 2"
computing an approximate centroiG based
on m‘ (m' << m) terms with the highest weights in the cluster‘s docs
and using the highest-weight term or terms €
e Variant 3:
identifying most characteristic terms or phrases for each cluster,
using MI or other entropy measures
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Clustering Query Logs

Motivation:
o statistically identify FAQs (for intranets and portals),
taking into account variations in query formulation
e capture correlation between queries and subsequent clicks

Model/Notation:

auser session is a pair (g, DHwith a query q and

D+ denoting the result docs on which the user clicked;
len(q) Is the number of keywords in g
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Similarity Measures between User Sessions

o tf*Idf based similarity between query keywords only

e edit distance based similarity: sim(p,q) = 1 — ed(p,q) / max(len(py)len

Examples: Where does silk come from? Where does dew come from?
How far away is the moon? How far away is the nearest star?

+ +
|Dy n Dy |
max(|Dy |, Dq )

Example: atomic bomb, Manhattan project, Nagasaki, Hiroshimagamueieapon

e similarity based on common clickssim(p,q) =

e similarity based on common clicks and document hierarchy:

\
gm(p,q):;[[ >, max{s(d'.d"")|d"OD;} |/|D} |+ max{s(d',d"nd"DD;}]/lDJ I]

! + . +
d DDp ) d DDq

level(Ica(d',d''))—1 p=law of thermodynamics
maxlevel —1 D+ = {/Science/Physics/Conservation Laws, ...
q:RIewton law
D+, = {/Science/Physics/Gravitation, ...}

e [inear combinations of different similarity measures
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Query Expansion based on Relevance Feedback

Given: a query g, a result set (or ranked list) D,
a user's assessment u.-D{+, -}
yielding positive docs ELID and negative docsDID

Goal: derive query g‘ that better captures the user's intention
or a better suited similarity function, e.g., by
- changing weights in the query vector or
- changing weights for different aspects of similarity
(color vs. shape in multimedia IR, different colors,
relevance vs. authority vs. recency)

Classical approacliRocchio method (for term vectors)

. V& y
g=aq+ - >d-—"— >d
|D |dDD+ |D |dDD‘

with a, 3, y U [0,1] and typicallya > 3>y
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Pseud-Relevance Feedbac

based on J. Xu, W.B. Croft: Query expansion using local and
global document analysis, SIGIR Conference, 1996

Lazy users may perceive feedback as too bothersome

Evaluate query and simply view top n results as positive docs:
Add these results to the query and re-evaluate or
Select ,best” terms from these results and expand the query
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Experimental Evaluation

on MS Encarta corpus,
with 4 Mio. query log entries and 40 000 doc. subset

Considers short queries and long phrase gueries, e.g.:

Michael Jordan Michael Jordan in NBA matches

genome project Why is the genome project so crucial for humans?
Manhattan project What is the result of Manhattan project on Word War 11?
Windows What are the features of Windows that Microsoft brings us?

(Phrases are decomposed into N-grams that are in dictionary)

Query expansionwith related terms/phrases:
Avg. precision [%] at different recall values:

Short queries: Long queries:

Recall g alone PseudoRF Query Log Recall g alone PseudoRF Query Log
(n=100,m=30) (m=40) (n=100,m=30) (m=40)

10%  40.67 45.00 62.33 10%  46.67 41.67 57.67

20%  27.00 32.67 44.33 20%  31.17 34.00 42.17

30% 20.89 26.44 36.78 30% 25.67 27.11 34.89

100% 8.03 13.13 17.07 100% 11.37 13.53 16.83
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