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Chapter 7: Clustering
(Unsupervised Data Organization)

7.1 Hierarchical Clustering
7.2 Flat Clustering
7.3 Embedding into Vector Space for Visualization
7.4 Applications

Clustering: unsupervised grouping (partitioning) of objects
into classes (clusters) of similar objects
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Clustering Example 1
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Clustering Example 2
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Clustering SearchResults
for Visualization and Navigation

http://www.grokker.com/
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Example for Hierarchical Clustering

dendrogram
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Example for Hierarchical Clustering
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Example for Hierarchical Clustering
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Clustering: Classification based on
Unsupervised Learning

given: 
n m-dimensional data records dj ∈D ⊆ dom(A1) × ... × dom(Am) 
with attributes Ai (e.g. term frequency vectors⊆ N0 × ... × N0)
or n data points with pair-wisedistances (similarities) in a metric space

wanted: 

k clustersc1, ..., ck and an assignment D → {c1, ..., ck} such that the

averageintra-cluster similarity

is high and

the averageinter-cluster similarity

is low,

where thecentroid of ck is: ∑
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Desired Clustering Properties

Axiom 1: Scale-Invariance
For any distance function d and anyα>0: fd(x) = fαd (x) for all x∈D

Impossibility Theorem (J. Kleinberg: NIPS 2002):
For each dataset D with |D|≥2 there is no clustering function f that
satisfies Axioms 1,2, and 3 for every possible choice of d

A clustering function fd maps a dataset D onto a partitioning
Γ⊆2D of D, with pairwise disjoint members of Γ and ∪x∈D f(x) = D,
based on a (metric or non-metric) distance function d: D×D→R0

+

which is symmetric and satisfies d(x,y)=0 ⇔ x=y

Axiom 2: Richness (Expressiveness)
For every possible partitioningΓ of D there is a distance function d
such that fd producesΓ
Axiom 3: Consistency
d is a Γ-transformation of d if for all x,y in same S∈ Γ: d‘(x,y) ≤ d(x,y)
and for all x, y in different S, S‘∈ Γ: d‘(x,y) ≥ d(x,y).
If f d producesΓ then fd‘ producesΓ, too.
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Hierarchical vs. Flat Clustering

Hierarchical Clustering:
• detailed and insightful
• hierarchy built
in natural manner
from fairly simple algorithms

• relatively expensive
• no prevalent algorithm

Flat Clustering:
• data overview & coarse analysis
• level of detail depends
on the choice of the
number of clusters

• relatively efficient
• K-Means and EM are simple

standard algorithms
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7.1 Hierarchical Clustering:
Agglomerative Bottom-up Clustering (HAC)

for i:=1 to n do ci := {di} od;
C := {c1, ..., cn}; /* set of clusters */
while |C| > 1 do

determine ci, cj ∈ C with maximal inter-cluster similarity;
C := C – {ci, cj} ∪ {c i ∪ cj};

od;

Principle:
• start with each di forming its own singleton cluster ci

• in each iteration combine the most similar clusters ci, cj

into a new, single cluster
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Divisive Top-down Clustering

c1 := {d1, ..., dn};
C := {c1}; /* set of clusters */
while there is a cluster cj ∈ C with |cj|>1 do

determine ci with the lowest intra-cluster similarity;
partition ci into ci1 and ci2 (i.e. ci = ci1 ∪ ci2 and ci1 ∩ ci2 = ∅)
such that the inter-cluster similarity between ci1 and ci2
is minimized;

od;

Principle:
• start with a single cluster that contains all data records
• in each iteration identify the least „coherent“ cluster

and divide it into two new clusters

For partitioning a cluster one can use another clustering method
(e.g. a bottom-up method)
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Alternative Similarity Metrics for Clusters
given: similarity on data records - sim: D×D→R oder [0,1]
define: similarity between clusters – sim: 2D×2D→R or [0,1]

Alternatives:
• Centroid method: sim (c,c‘) = sim(d, d‘) with centroid d of c

and centroid d‘ of c‘
• Single-Link method: sim(c,c‘) = sim(d, d‘) with d ∈c, d‘∈c‘,

such that d and d‘ have the highest similarity
• Complete-Link method: sim(c,c‘) = sim(d, d‘) with d ∈c, d‘∈c‘,

such that d and d‘ have the lowest similarity
• Group-Average method: 

For hierarchical clustering the following axiom must hold:
max {sim(c,c‘), sim(c,c‘‘)} ≥ sim(c, c‘∪ c‘‘) for all c, c‘, c‘‘ ∈ 2D
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Example for Bottom-up Clustering
with Single-Link Metric (Nearest Neighbor)

1 2 3 4 5 6 7 8

1

2

3

4

5
a b c d

e f g h

emphasizes „local“ cluster coherence (chaining effect)
→ tendency towards long clusters

run-time:
O(n2)
with space
O(n2)
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Example for Bottom-up Clustering
with Complete-Link Metric (Farthest Neighbor)

1 2 3 4 5 6 7 8

1

2

3

4

5
a b c d

e f g h

emphasizes „global“ cluster coherence

run-time:
O(n2 log n)
with space
O(n2)

→ tendency towards round clusters with small diameter
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Relationship to Graph Algorithms

Single-Link clustering:
• corresponds to construction of maximum (minimum) spanning tree

for undirected, weighted graph G = (V,E) with V=D, E=D×D
and edge weight sim(d,d‘) (dist(d,d‘)) for (d,d‘)∈E

• from the maximum spanning tree the cluster hierarchy can be derived
by recursively removing the shortest (longest) edge

Single-Link clustering is related to the problem of finding
maximal connected components(Zusammenhangskomponenten)

on a graph that contains only edges (d,d‘) 
for which sim(d,d‘) is above some threshold

Complete-Link clustering is related to the problem
of finding maximal cliquesin a graph.
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Bottom-up Clustering
with Group-Average Metric (1)

naive implementation has run-time O(n3): 

n-1 merge steps each with O(n2) computations

Merge step combines those clusters ci and cj
for which the intra-cluster similarity c: = ci ∪ cj

becomes maximal∑
≠

∈−⋅
=

'
',

)',(
)1(

1
:)(

dd
cdd

ddsim
cc

cS



IRDM  WS 2005 7-18

Bottom-up Clustering
with Group-Average Metric (2)

efficient implementation – with total run-time O(n2) –
for cosine similarity with length-normalized vectors,
i.e. using scalar product for sim

precompute similarity of all document pairs

and compute

for each cluster after every merge step
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Thus each merge step can be carried out in constant time.
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Cluster Quality Measures (1)

With regard to ground truth:
known class labelsL1, …, Lg for data points d1, …, dn: 
L(di) = Lj ∈{L 1, …, Lg}

With cluster assignmentΓ(d1), …, Γ(dn) ∈ c1, …, ck

cluster cj has purity ||/|})(|{|max ..1 jjg cLdLcd νν =∈=

Complete clustering has purity kcpurity
kj j /)(

..1∑ =

Alternatives:
• Entropy within cluster

• MI between cluster and classes
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Cluster Quality Measures (2)

Without any ground truth:

ratio of intra-cluster to inter-cluster similarities

or othercluster validity measures of this kind
(e.g. considering variance of intra- and inter-clusterdistances)
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7.2 Flat Clustering: Simple Single-Pass Method

given:data records d1, ..., dn
wanted:(up to) k clusters C:={c1, ..., ck}

C := {{d1}}; /* random choice for the first cluster */
for i:=2 to n do

determine cluster cj∈ C with the largest value of
sim(di, cj) (e.g. sim(di,     )  with centroid );
if sim(di, cj) ≥ threshold
then assign di to cluster cj
else if |C| < k 

then C := C ∪ {{di}}; /* create new cluster */
else assign di to cluster cj
fi

fi
od

jc
�

jc
�
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K-Means Method for Flat Clustering (1)

randomly choose k prototype vectors
while not yet sufficiently stable do

for i:=1 to n do
assign di to cluster cj for which is minimal

od;
for j:=1 to k do                              od;

od;

kcc
��

...,,1

),( ji cdsim
�

�

∑
∈

=
jcdj

j d
c

c � �

� 1
:

Idea:
• determinek prototype vectors, one for each cluster
• assign each data record to the most similar prototype vector

and compute new prototype vector
(e.g. by averaging over the vectors assigned to a prototype)

• iterate until clusters are sufficiently stable
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Example for K-Means Clustering

K=2

1 2 3 4 5 6 7 8

1

2

3

4

5 a b
c

d
e f

after 1st iteration

1 2 3 4 5 6 7 8

1

2

3

4

5 a b
c

d
e f

after 2nd iteration

prototype vectorsdata records
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K-Means Method for Flat Clustering (2)

• run-time is O(n) (assuming constant number of iterations)
• a suitable number of clusters, K,  can be determined experimentally

or based on the MDL principle
• the initial prototype vectors could be chosen by using another

– very efficient – clustering method
(e.g. bottom-up clustering on random sample of the data records).

• for sim any arbitrary metric can be used
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Choice of K (Model Selection)

• application-dependent (e.g. for visualization)
• driven by empirical evaluation of cluster quality
(e.g. cross-validation with held-out labeled data)

• driven by quality measure without ground truth
• driven by MDL principle



IRDM  WS 2005 7-26

LSI and pLSI Reconsidered

LSI and pLSI can also be seen as
unsupervised clustering methods (spectral clustering):

simple variant for k clusters
• map each data point into k-dimensional space
• assign each point to its highest-value dimension
(strongest spectral component)

Conversely, we could compute k clusters
for the data points (using any clustering algorithm)
and project data points onto k centroid vectors („axes“ of k-dim. space)
to represent data in LSI-style manner
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EM Method for Model-based Soft Clustering
(Expectation Maximization)

Approach:
• generalize K-Means method such that each data record

belongs to a cluster (actually all k clusters) with a certain probability
based on a parameterized multivariate prob. distribution f
→ random variable Zij = 1 if di belongs to cj, 0 otherwise

• estimate parametersθ of the prob. distribution f(θ,x) such that
the likelihood that the observed data is indeed a sample from
this distribution is maximized
→ Maximum-Likelihood Estimation (MLE):

maximize L(d1,...,dn, θ) = P[d1, ..., dn is a sample from f(θ,x)]
or maximize log L;
if analytically intractable→ useEM iteration procedure

Postulate probability distribution e.g.
mixture of k multivariate Normal distributions
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EM Clustering Method with Mixture of k
Multivariate Normal Distributions

Assumption:data records are a sample from a mixture of k
multivariate Normal distributions with the density:
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EM Iteration Procedure (1)

iterate until parameter estimations barely change anymore:
1) Expectation step (E step):

compute E[Zij] based on the previous round‘s estimation
for θ, i.e. π1, ..., πk,                   and Σ1, ..., Σk

2) Minimization step (M step):
improve parameter estimation forθ based on
the previous round‘s values for E[Zij] 

initialization of EM method, for example, by:
settingπ1=...= πk=1/k, using K-Means cluster centroids for
and unity matrices (1s on diagonal) forΣ1, ..., Σk

kµµ ��

,...,1

kµµ ��

,...,1

convergence is guaranteed, but may result in 
local maximum of log-likelihood function

introduce latent variables Zij : point x i generated by cluster j
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EM Iteration Procedure (2)
Expectation step (E step):
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Example for EM Clustering Method
given: 
n=20 terms from articles of the New York Times:

ballot, polls, Gov, seats, profit, finance, payments, NFL, Reds, 
Sox, inning, quarterback, score, scored, researchers, science, 
Scott, Mary, Barbara, Edward

with m=20-dimensional feature vectors
with dij = # articles that contain both term i and term j

id
�

Resultof EM clustering for the estimation of hij for k=5:
1       2       3       4       5

ballot 0.63  0.12  0.04  0.09  0.11
polls 0.58  0.11  0.06  0.10  0.14
Gov 0.58  0.12  0.03  0.10  0.17
seats 0.55  0.14  0.08  0.08  0.15
profit 0.11  0.59  0.02  0.14  0.15
finance 0.15  0.55  0.01  0.13  0.16
payments 0.12  0.66  0.01  0.09  0.11
NFL 0.13  0.05  0.58  0.09  0.16
Reds 0.05  0.01  0.86  0.02  0.06
Sox 0.05  0.01  0.86  0.02  0.06

1       2       3       4       5
inning 0.03  0.01  0.93  0.01  0.02
quarterback 0.06  0.02  0.82  0.03  0.07
score 0.12  0.04  0.65  0.06  0.13
scored 0.08  0.03  0.79  0.03  0.07
researchers 0.08  0.12  0.02  0.68  0.10
science 0.12  0.12  0.03  0.54  0.19
Scott 0.12  0.12  0.11  0.11  0.54
Mary 0.10  0.10  0.05  0.15  0.59
Barbara 0.15  0.11  0.04  0.12  0.57
Edward 0.16  0.18  0.02  0.12  0.51
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Clustering with Density Estimator

Influence function
influence of data record y
on a point x in its local environment
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Density function
density at point x: sum of all influences y on x
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clusters correspond to local maxima of the density function
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Example for Clustering with Density Estimator

Source: D. Keim and A. Hinneburg, Clustering Techniques for Large Data Sets, Tutorial, KDD Conf. 1999
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Incremental DBSCAN Method
for Density-based Clustering  [Ester et al.: KDD 1996]

simplified version of the algorithm:
for each data point d do {

insert d into spatial index (e.g., R-tree);
locate all points with distance to d  < max_dist;
if these points form a single cluster then add d to this cluster
else {

if there are at least min_points data points
that do not yet belong to a cluster
such that for all point pairs the distance < max_dist

then construct a new cluster with these points };
};
average run-time is O(n * log n);
data points that are added later can be easily assigned to a cluster;
points that do not belong to any cluster are considered „noise“

DBSCAN = Density-Based Clustering for Applications with Noise
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7.3 Self-Organizing Maps (SOMs, Kohonen Maps)
similar to K-Means
butembeds data and clusters in a low-dimensional space(e.g. 2D) and
aims to preserve cluster-cluster neighborhood – for visualization
(recall: clustering does not assume a vector space, only a metric space)

clusters c1, c2, ... and data x1, x2, ... are points with distance function
sim (xi, xj), sim (ci, xj), sim (ci, cj)

initialize map with k cluster nodes arbitrarily placed
(often on a triangular or rectangular grid)
for each x determine node C(x) closest to x and small node set N(x) close to x
repeat

for randomly chosen x 
update all nodes c‘∈N(x):
under influence of data point x (with learning rate λ(t))
(„data activates neuron C(x) and other neurons c‘ in itsneighborhood“)

until sufficient convergence (with gradually reducedλ(t))
assign data point x to the closest cluster („winner neuron“)

)'())(,'()(':' cxxCcsimtcc
���� −⋅⋅+= λ
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SOM Example (1)

see also http://maps.map.net/ for another - interactive - example

from http://www.cis.hut.fi/
research/som-research/worldmap.html
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SOM Example (2): WWW Map (2001)

Source: www.antarcti.ca, 2001 
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SOM Example (3): Hyperbolic Visualization

Source: J. Ontrup, H. Ritter: Hyperbolic Self-Organizing Maps for Semantic Navigation, NIPS 2001 
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SOM Example (4): „Islands of Music“

Source: E. Pampalk: Islands of Music: Analysis, Organization, and Visualization of Music Archives,
Master Thesis, Vienna University of Technology

http://www.ofai.at/~elias.pampalk/music/
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Multi-dimensional Scaling (MDS)

Goal:
map data (from metric space) into low-dimensional vector space
such that the distances of data xi are approximately preserved
by the Euclidean distances of the images =  f(xi) in the vector spaceix̂

∑
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j,i
ji

)x,x(dist

))x,x(distx̂x̂(

→ minimize stress = 

→ solve iteratively with hill climbing:
start with random (or heuristic) placement of data in vector space
find point pair with highest tension
move points locally so as to reduce the stress
(on a fictitious spring that connects the points)

O(n2) run-time in each iteration, impractical for very large data sets
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FastMap
Idea:
pretend that the data are points in an unknown n-dim. vector space
and project them into a k-dimensional space by
determining their coordinates in k rounds, one dimension at a time

Algorithm:
determine twopivot objects a and b(e.g. objects far apart)
conceptuallyproject all data points x onto the line between a and b
→ solve for x1:

(cosine law)
consider(n-1)-dim. hyperplane perpendicular to the projection line
with new distances:

(Pythagoras)
recursively call FastMap for (n-1)-dimensional data

)b,a(distx2)b,a(dist)x,a(dist)x,b(dist 1
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7.4 Applications:
Cluster-based Information Retrieval

for user query q:

• compute ranking of cluster centroids with regard to q

• evaluate query q on the cluster or clusters

with the most similar centroid(s)

(possibly in conjunction with relevance feedback by user)

cluster browsing:

user can navigate through cluster hierarchy

each cluster ck is represented by itsmedoid: 

the document d‘ ∈ck for which the sum

is maximal (or has highest similarity to cluster centroid)

∑
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Automatic Labeling of Clusters
• Variant 1:

classification of cluster centroid
with a separate, supervised, classifier

• Variant 2:
using term or terms with the highest
(tf*idf-) weight in the cluster centroid

• Variant 2‘:
computing an approximate centroid based
on m‘ (m‘ << m) terms with the highest weights in the cluster‘s docs
and using the highest-weight term or terms of 

• Variant 3:
identifying most characteristic terms or phrases for each cluster,
using MI or other entropy measures

kc
�

kc
�

'kc
�

'kc
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Clustering Query Logs

Motivation:
• statistically identify FAQs (for intranets and portals),

taking into account variations in query formulation
• capture correlation between queries and subsequent clicks

Model/Notation:
a user session is a pair (q, D+)with a query q and 
D+ denoting the result docs on which the user clicked;
len(q) is the number of keywords in q
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Similarity Measures between User Sessions
• tf*idf based similarity between query keywords only

• edit distance based similarity: sim(p,q) = 1 – ed(p,q) / max(len(p),len(q))
Examples: Where does silk come from? Where does dew come from?

How far away is the moon? How far away is the nearest star?

• similarity based on common clicks:
|)||,max(|
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DD
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qpsim

Example: atomic bomb, Manhattan project, Nagasaki, Hiroshima, nuclear weapon

• similarity based on common clicks and document hierarchy:

• linear combinations of different similarity measures
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with p=law of thermodynamics
D+p = {/Science/Physics/Conservation Laws, ...}
q=Newton law
D+q = {/Science/Physics/Gravitation, ...}
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Query Expansion based on Relevance Feedback 

Classical approach: Rocchio method (for term vectors)

Given: a query q, a result set (or ranked list) D,
a user‘s assessment u: D → {+, −} 
yielding positive docs D+⊆D and negative docs D− ⊆D 

Goal: derive query q‘ that better captures the user‘s intention
or a better suited similarity function, e.g., by
- changing weights in the query vector or
- changing weights for different aspects of similarity

(color vs. shape in multimedia IR, different colors,
relevance vs. authority vs. recency)
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with α, β, γ ∈ [0,1] and typicallyα > β > γ
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Pseudo-Relevance Feedback
based on J. Xu, W.B. Croft: Query expansion using local and 
global document analysis, SIGIR Conference, 1996

Lazy users may perceive feedback as too bothersome

Evaluate query and simply view top n results as positive docs:
Add these results to the query and re-evaluate or
Select „best“ terms from these results and expand the query
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Experimental Evaluation

Considers short queries and long phrase queries, e.g.:
Michael Jordan Michael Jordan in NBA matches
genome project Why is the genome project so crucial for humans?
Manhattan project What is the result of Manhattan project on Word War II?
Windows What are the features of Windows that Microsoft brings us?

(Phrases are decomposed into N-grams that are in dictionary)

on MS Encarta corpus, 
with 4 Mio. query log entries and 40 000 doc. subset

Query expansionwith related terms/phrases:
Avg. precision [%] at different recall values:

Short queries:
Recall q alone PseudoRF Query Log

(n=100,m=30)  (m=40)
10% 40.67 45.00 62.33
20% 27.00 32.67 44.33
30% 20.89 26.44 36.78
100% 8.03 13.13 17.07

Long queries:
Recall q alone PseudoRF Query Log

(n=100,m=30)  (m=40)
10% 46.67 41.67 57.67
20% 31.17 34.00 42.17
30% 25.67 27.11 34.89
100% 11.37 13.53 16.83



IRDM  WS 2005 7-49

Additional Literature for Chapter 7
• S. Chakrabarti, Chapter 4: Similarity and Clustering
• C.D. Manning / H. Schütze, Chapter 14: Clustering
• R.O. Duda / P.E. Hart / D.G. Stork,  Ch. 10: Unsupervised Learning and Clustering
• M.H. Dunham, Data Mining, Prentice Hall, 2003, Chapter 5: Clustering
• D. Hand, H. Mannila, P. Smyth: Principles of Data Mining, MIT Press,

2001, Chapter 9: Descriptive Modeling
• M. Ester, J. Sander: Knowledge Discovery in Databases, 

Springer, 2000, Kapitel 3: Clustering
• C. Faloutsos: Searching Multimedia Databases by Content, 1996, Ch. 11:FastMap
• M. Ester et al.: A density-based algorithm for discovering clusters in

large spatial databases with noise, KDD Conference, 1996
• J. Kleinberg: An impossibility theorem for clustering, NIPS Conference, 2002
• G. Karypis, E.-H. Han: Concept Indexing: A Fast Dimensionality Reduction

Algorithm with Applications to Document Retrieval & Categorization, CIKM 2000
• M. Vazirgiannis, M. Halkidi, D. Gunopulos: Uncertainty Handling and Quality

Assessment in Data Mining, Springer, 2003
• Ji-Rong Wen, Jian-Yun Nie, Hong-Jiang Zhang: Query Clustering Using

User Logs, ACM TOIS Vol.20 No.1, 2002
• Hang Cui, Ji-Rong Wen, Jian-Yun Nie, Wei-Ying Ma: Query Expansion by

Mining User Logs, IEEE-CS TKDE 15(4), 2003


