Chapter 8: Information Extraction (IE)

8.1 Motivation and Overview

8.2 Rule-based IE

8.3 Hidden Markov Models (HMMs) for IE

8.4 Linguistic IE

8.5 Entity Reconciliation

8.6 IE for Knowledge Acquisition

8.6 Knowledge Acquistion

Goal:

find **all instances** of a given (unary, binary, or N-ary) relation (or a given set of such relations) in a **large corpus** (Web, Wikipedia, newspaper archive, etc.)

Example targets:

Cities(.), Rivers(.), Countries(.), Movies(.), Actors(.), Singers(.), Headquarters(Company,City), Musicians(Person, Instrument), Synonyms(.,.), ProteinSynonyms(.,.), ISA(.,.), IsInstanceOf(.,.), SportsEvents(Name,City,Date), etc.

Assumption:

There is an NER tagger for each individual entity class

(e.g. based on:

PoS tagging + dictionary-based filtering + window-based classifier or rule-based pattern matcher)

Online demos: <u>http://dewild.cs.ualberta.ca/</u>

http://www.cs.washington.edu/research/knowitall/

Simple Pattern-based Extraction (Staab et al.)

0) define phrase patterns for relation of interest (e.g. IsInstanceOf)

- 1) extract proper nouns (e.g. the Blue Nile)
- 2) for each document

use proper nouns in doc and phrase patterns

to generate candidate phrases

(e.g. rivers like the Blue Nile, the Blue Nile is a river, life is a river)

- 3) query large corpus (e.g. via Google) to estimate frequency of (confidence in) candidate phrases
- 4) for each candidate instance of relation

combine frequencies (confidences) from different phrases

e.g. by summation or weighted summation with weights learned from training corpus

5) define threshold for selecting instances

Phrase Patterns for IsInstanceOf

Hearst patterns (M. Hearst 1992): H1: CONCEPTs such as INSTANCE H2: such CONCEPT as INSTANCE H3: CONCEPTs, (especially | including) INSTANCE H4: INSTANCE (and | or) other CONCEPTs Definites patterns: D1: the INSTANCE CONCEPT D2: the CONCEPT INSTANCE Apposition and copula patterns: A: INSTANCE, a CONCEPT **C: INSTANCE is a CONCEPT**

Unfortunately, this approach does not seem to be robust

Example Results for Extraction based on Simple Phrase Patterns

INSTANCE	CONCEPT	<u>frequency</u>			
Atlantic	city	1520837	St. John	church	34021
Bahamas	island	649166	EU	country	28035
USA	country	582775	UNESCO	organizati	ion 27739
Connecticut	state	302814	Austria	group	24266
Caribbean	sea	227279	Greece	island	23021
Mediterranean	sea	212284			
South Africa	town	178146			
Canada	country	176783			
Guatemala	city	174439			
Africa	region	131063			
Australia	country	128067			
France	country	125863			
Germany	country	124421		a	
Easter	island	96585		Source: Cimiano/Handschuh/Staab: WWW 2004	
St. Lawrence	river	65095			
Commonwealth	state	49692			
New Zealand	island	40711			

SNOWBALL: Bootstrapped Pattern-based Extraction (Agichtein et al.)

Key idea (see also S. Brin: WebDB 1998):

start with small set of seed tuples for relation of interest

find **patterns** for these tuples, assess confidence, select best patterns repeat

find new tuples by matching patterns in docs

find new patterns for tuples, assess confidence, select best patterns

Example:

seed tuples for Headquarters (Company, Location): {(Microsoft, Redmond), (Boeing, Seattle), (Intel, Santa Clara)} patterns: LOCATION-based COMPANY, COMPANY based in LOCATION new tuples:

{(IBM Germany, Sindelfingen), (IBM, Böblingen), ...}

new patterns:

LOCATION is the home of COMPANY, COMPANY has a lab in LOCATION, ...

SNOWBALL Methods in More Detail (1)

<u>Vector-space representation of patterns (SNOWBALL-VSM):</u> pattern is **5-tuple (left, X, middle, Y, right)** where left, middle, right are term vectors with term weights

Algorithm for adding patterns:

find **new tuple** (**x**,**y**) in corpus & construct **5-tuple around** (**x**,**y**); if **cosine sim** against 5-tuples of known pattern > sim-threshold then

add 5-tuple around (x,y) to set of **candidate patterns**;

cluster candidate patterns;

use cluster centroids as new patterns;

<u>Algorithm for adding tuples:</u>

if **new tuple** t found by pattern P **agrees with known tuple** then P.pos++ else P.neg++; **confidence(P)** := P.pos / (P.pos + P.neg); **confidence(tuple t)** := $1 - \prod_{P \in patterns} (1 - confidence(P) \cdot sim(t, P))$ if confidence(t) > conf-threshold then add t to relation

SNOWBALL Methods in More Detail (2)

VSM representation fails in situations such as: ... where Microsoft is located whereas the Silicon Valley startup ...

Sequence representation of patterns (SNOWBALL-MST): pattern is term sequence with don't-care terms Example: ... near Boeing's renovated Seattle headquarters ... → near X 's * Y headquarters

Algorithm:

use Sparse Markov Transducer (related to HMMs) to estimate confidence(t) := P[t | pattern sequence]

SNOWBALL Combination Methods

combine SNOWBALL-VSM and SNOWBALL-MST (and other methods ...) by

- intersections/unions of patterns and/or new tuples
- weighted mixtures of patterns and/or tuples
- voting-based ensemble learning
- co-training

etc.

Evaluation

Ground truth:

either

• hand-extract all instances from small test corpus

or

• retrieve all instances from larger corpus that occur in an ideal result derived from a collection of explicit facts (e.g. CIA factbook and other almanachs)

then use IR measures:

- precision
- recall
- F1

Evaluation of SNOWBALL Methods

finding Headquarters instances in 142000 newspaper articles with ground truth = newspaper corpus \cap Hoover's online

Figure 4: Recall (a) and precision (b) of DIPRE, Snowball-VS, and Snowball-SMT (test collection).

with parameter settings fit based on training collection (36000 docs)

QXtract: Quickly Finding Useful Documents

In very large corpus, scanning all docs by SNOWBALL

may be too expensive

 \rightarrow find and process only potentially useful docs

Method:

sample := randomly selected docs \cup query-result (seed-tuples terms); run SNOWBALL on sample;

UsefulDocs := docs in sample that contain relation instance

UselessDocs := sample – UsefulDocs;

run feature-selection techniques or classifier

to identify most **discriminative terms**

between UsefuDocs and UselessDocs (e.g. MI, BM25 weights, etc.); generate queries with small number of best terms from UsefulDocs;

KnowItAll: Large-scale, Robust Knowledge Acquisition from the Web

<u>Goal:</u> find all instances of relations such as cities(.), capitalOf(city, country), starsIn(actor, film), etc.

- Almost-Unsupervised Extractor with Bootstrapping:
 - Start with general patterns (e.g.: X such as Y)
 - Learn domain-specific patterns
 - (e.g.: towns such as Y, cities such as Y)
 - Extended pattern learning
- Assessor evaluates quality of extracted instances and learned patterns
- Alternate between Extractor and Assessor

Collections and demos: <u>http://www.cs.washington.edu/research/knowitall/</u> (emphasis on unary relations: instances of object classes)

KnowItAll Architecture

Bootstrap:

create rules R, queries Q, discriminators D

repeat

Extractor (R, Q) finds facts E Assessor (E, D) adds facts to KB until Q is exhausted or #facts > n

Extractor:

Select queries from Q and send to SE for each returned web page w do Extract fact e from w using rule for query q

Assessor:

for each fact e in E do assign prob. p to e using NB class. based on D add e, p to KB

KnowItAll Extraction Rules

Generic pattern (rule template)

Predicate: Class1 Pattern: NP1 ,,such as" NPList2 Contraints: head(NP1) = plural(label(Class1)) & properNoun(head(each(NPList2))) Bindings: Class1(head(each(NPList2)))

Domain-specific pattern

Predicate: City Label: City Keywords: ,,cities such as", ,,urban centers" Pattern: NP1 ,,such as" NPList2 Contraints: head(NP1) = ,,cities" & properNoun(head(each(NPList2))) Bindings: City(head(each(NPList2)))

Domain-specific pattern for binary relation

Predicate:	CEOofCompany (Person, Company)
•••	
Pattern:	NP1 ,,, "P2 NP3
Contraints:	properNoun(NP1) & P2 = ,,CEO of"
	& properNoun(NP3)
Bindings:	CEOofCompany (NP1, NP3)

8 generic patterns for unary,2 example patterns for binary

NP "and other" <class1> NP "or other" <class1> <class1> "especially" NPList <class1> "including" NPList <class1> "such as" NPList "such" <class1> "as" NPList NP "is a" <class1> NP "is the" <class1>

<class1> "is the" <relation> <class2> <class1> "," <relation> <class2>

NP analysis crucial, e.g. head(NP) is last noun: China is a country in Asia vs. Garth Brooks is a country singer

KnowItAll Bootstrapping

Automatically creating domain-specific extraction rules, queries, and discriminator phrases

- 1) Start with class/relation name and keywords e.g. for unary MovieActor: movie actor, actor, movie star e.g. for binary capitalOf: capital of, city, town, country, nation
- 2) Substitute names/keywords and characteristic phrases for variables in generic rules (*e.g. X such as Y*) to generate
 - **new extraction rules** (e.g. cities such as Y, towns such as Y),
 - queries for retrieval (e.g. cities, towns, capital), and
 - **discriminators for assessment** (e.g. cities such as)
- 3) Repeat with extracted facts/sentences

Extraction rules aim to increase coverage, Discriminators aim to increase accuracy

KnowItAll Assessor

Input:

• Extracted fact e (relation instance) e.g.: City(Paris)

Discriminator phrases D (automatically generated from class name, ≥ 2 keywords of rules, learned extended patterns)
e.g.: "X is a city", "X and other towns", "X is the capital of", etc. [X→Paris]
Output:

• Confidence in (probability of) validity of e

Compute by queries to SE: pointwise mutual information $PMI(e,d) = \frac{|Hits(e \cup d)|}{|Hits(e)|}$

PMI scores for e form feature vector for e fed into Naive Bayes classifier for validity of e

NBC for relation E trained by for estimpositive discriminators for E with highest PMI scores and pos. discr. for other relations as negative discr. for E

Queries are scalability bottleneck → probabilistic model for estimation

KnowItAll Example

interested in Cities (.), States (.), Countries (.), ...

Bootstrapping finds facts E:

Cities(London), Cities(Rome), Cities(Dagupan), Cities(Shakhrisabz), ... States(Oregon), States(Arizona), States(Georgia), ...

and discriminators D (with PMI scores):

"X is a city", "X and other towns", "cities X", "cities such as X", "cities including X"

Generate query ,,*and other cities*" from rule: *NP* ,,*and other cities*", and retrieve:

"Short flights connect Casablance with Fes and other cities." "The ensemble has performed concerts throughout the East Coast and other cities."

Extractor extracts candidates e: Cities(Fes), Cities(East Coast)

Assessor submits 6 queries for each e: "Fes", "Fes is a city", "Fes and other towns", etc. "East Coast", "East Coast is a city", "East Coast and other towns", etc. It computes PMI scores and uses NBC to test validity of each e →accept Cities(Fes), reject Cities(East Coast)

KnowItAll Experiments

KnowItAll Extensions

Learning additional extraction patterns:

- Consider LR-rule-style extractors around extracted fact (e.g. headquartered in X, mayor of X is <person>)
- Assess their precision/recall by statistics from previous extractions (new rules can serve as extractors and/or discriminators)

Subclass handling:

• Identify candidates for ISA (hypernymy) relation, get statistics on instances, check WordNet, etc.

(e.g. capital \subseteq city, stem cell researcher \subseteq microbiologist \subseteq biologist \subseteq scientist)

• Improve recall by having the Extractor consider all subclasses together

List extraction:

• Improve recall by retrieving HTML lists () and assessing their entries () based on previous extractions (cf. Google sets: <u>http://labs.google.com/sets</u>)

Additional Literature for Chapter 8

IE Overview Material:

- S. Chakrabarti, Section 9.1: Information Extraction
- N. Kushmerick, B. Thomas: Adaptive Information Extraction: Core Technologies for Information Agents, AgentLink 2003
- H. Cunningham: Information Extraction, Automatic, to appear in: Encyclopedia of Language and Linguistics, 2005, http://www.gate.ac.uk/ie/
- W.W. Cohen: Information Extraction and Integration: an Overview, Tutorial Slides, http://www.cs.cmu.edu/~wcohen/ie-survey.ppt
- S. Sarawagi: Automation in Information Extraction and Data Integration, Tutorial Slides, VLDB 2002, http://www.it.iitb.ac.in/~sunita/

Additional Literature for Chapter 8

Rule- and Pattern-based IE:

- M.E. Califf, R.J. Mooney: Relational Learning of Pattern-Match Rules for Information Extraction, AAAI Conf. 1999
- S. Soderland: Learning Information Extraction Rules fro Semi-Structured and Free Text, Machine Learning 34, 1999
- Arnaud Sahuguet, Fabien Azavant: Looking at the Web through XML Glasses, CoopIS Conf. 1999
- V. Crescenzi, G. Mecca: Automatic Information Extraction from
- Large Websites, JACM 51(5), 2004
- G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, S. Flesca: The Lixto Data Extraction Project, PODS 2004
- A. Arasu, H. Garcia-Molina: Extracting Structured Data from Web Pages, SIGMOD 2003
- A. Finn, N. Kushmerick: Multi-level Boundary Classification for Information Extraction, ECML 2004

Additional Literature for Chapter 8

HMMs and HMM-based IE:

- Manning / Schütze, Chapter 9: Markov Models
- Duda/Hart/Stork, Section 3.10: Hidden Markov Models
- W.W. Cohen, S. Sarawagi: Exploiting dictionaries in named entity extraction: combining semi-Markov extraction processes and data integration methods, KDD 2004

Entity Rconciliation:

- W.W. Cohen: An Overview of Information Integration, Keynote Slides, WebDB 2005, http://www.cs.cmu.edu/~wcohen/webdb-talk.ppt
- S. Chaudhuri, R. Motwani, V. Ganti: Robust Identification of Fuzzy Duplicates, ICDE 2005

Knowledge Acquisition:

- O. Etzioni: Unsupervised Named-Entity Extraction from the Web: An Experimental Study, Artificial Intelligence 165(1), 2005
- E. Agichtein, L. Gravano: Snowball: extracting relations from large plain-text collections, ICDL Conf., 2000
- E. Agichtein, V. Ganti: Mining reference tables for automatic text segmentation, KDD 2004
- IEEE CS Data Engineering Bulletin 28(4), Dec. 2005, Special Issue on Searching and Mining Literature Digital Libraries