Query Optimization

Thomas Neumann

November 21, 2006

◆□ ▶ < 酉 ▶ < 重 ▶ < 重 ▶ 三国 の Q ○ 1 / 336</p>

Overview

1. Introduction

2. Textbook Query Optimization

- 3. Join Ordering
- 4. Accessing the Data
- 5. Physical Properties
- 6. Query Rewriting
- 7. Self Tuning

1. Introduction

- Overview Query Processing
- Overview Query Optimization
- Overview Query Execution

Reason for Query Optimization

- query languages like SQL are declarative
- query specifies the result, not the exact computation
- multiple alternatives are common
- often vastly different runtime characteristics
- alternatives are the basis of query optimization

Note: Deciding which alternative to choose is not trivial

Overview Query Processing

- input: query as text
- compile time system compiles and optimizes the query
- intermediate: query as exact execution plan
- runtime system executes the query
- output: query result

separation can be very strong (embedded SQL/prepared queries etc.)

Overview Compile Time System

- $1. \ \text{parsing, AST production}$
- 2. schema lookup, variable binding, type inference
- 3. normalization, factorization, constant folding etc.
- 4. view resolution, unnesting, deriving predicates etc.
- 5. constructing the execution plan
- 6. refining the plan, pushing group by etc.
- 7. producing the imperative plan

 $_{\rm execution\ plan}^{\rm execution\ plan}$ rewrite I, plan generation, and rewrite II form the query optimizer

Processing Example - Input

```
select name, salary
from employee, department
where dep=did
and location="Saarbrücken"
and area="Research"
```

Note: example is so simple that it can be presented completely, but does not allow for many optimizations. More interesting (but more abstract) examples later on.

Processing Example - Parsing

Constructs an AST from the input

Processing Example - Semantic Analysis

Resolves all variable binding, infers the types and checks semantics

Types omitted here, result is bag < string, number > is abc > 2/336

Processing Example - Normalization

Normalizes the representation, factorizes common expressions, folds constant expressions

Processing Example - Rewrite I

resolves views, unnests nested expressions, expensive optimizations

Processing Example - Plan Generation

Finds the best execution strategy, constructs a physical plan

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > □ 2 / 336

Processing Example - Rewrite II

Polishes the plan

<ロト < 回 ト < 三 ト < 三 ト 三 三 の Q 〇 13 / 336

Processing Example - Code Generation

>

Produces the executable plan

< @c1 string 0 @c2 string 0 @c3 string 0 @kind string 0 Qname string 0 @salarv float64 @dep int32 Qarea string 0 @did int32 @location string 0 @t1 uint32 local @t2 string 0 local @t3 bool local > ſmain load_string "emp" @c1 load_string "Saarbr\u00fccken" @c2 load string "Research" @c3 first notnull bool <#1 BlockwiseNestedLoopJoin memSize 1048576 [combiner unpack_int32 @dep eq_int32 @dep @did @t3 return if ne bool @t3 unpack_string @name unpack_float64 @salary

[storer check_pack 4 pack_int32 @dep pack_string @name check_pack 8 pack float64 @salarv load uint32 0 @t1 hash_int32 @dep @t1 @t1 return uint32 @t1 [hasher load_uint32 0 @t1 hash int32 @did @t1 @t1 return_uint32 @t1 1 <#2 Tablescan segment 1 0 4 [loader unpack string @kind unpack_string @name unpack_float64 @salary unpack_int32 @dep unpack_string @area eq_string @kind @c1 @t3 return_if_ne_bool @t3 eg string @area @c3 @t3 return if ne bool @t3 1

<#3 Tablescan segment 1 0 5 「loader unpack_int32 @did unpack_string @location eq string @location @c2 @t3 return_if_ne_bool @t3] > > @t3 jf_bool 6 @t3 print_string 0 @name cast float64 string @name @t2 print_string 10 @t2 println next notnull bool #1 @t3 it bool -6 @t3

<ロト < 回 ト < 巨 ト < 巨 ト 三 三 < つ へ () 14 / 33

٦

What to Optimize?

Different optimization goals reasonable:

- minimize response time
- minimize resource consumption
- minimize time to first tuple
- maximize throughput

Expressed during optimization as cost function. Common choice: Minimize response time within given resource limitations.

Basic Goal of Algebraic Optimization

When given an algebraic expression:

• find a cheaper/the cheapest expression that is equivalent to the first one

Problems:

- the set of possible expressions is huge
- testing for equivalence is difficult/impossible in general
- the query is given in a calculus and not an algebra (this is also an advantage, though)
- even "simpler" optimization problems (e.g. join ordering) are typically NP hard in general

Search Space

Query optimizers only search the "optimal" solution within the limited space created by known optimization rules

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

transformative is simpler, but finding the optimal solution is hard $\sim 18 / 336$

Query Execution

Query Execution

Understanding query execution is important to understand query optimization

- queries executed using a physical algebra
- operators perform certain specialized operations
- generic, flexible components
- simple base: relational algebra (set oriented)
- in reality: bags, or rather data streams
- each operator produces a tuple stream, consumes streams
- tuple stream model works well, also for OODBMS, XML etc.

Relational Algebra

Notation:

- $\mathcal{A}(e)$ attributes of the tuples produces by e
- $\mathcal{F}(e)$ free variables of the expression e
- binary operators $e_1 heta e_2$ usually require $\mathcal{A}(e_1)=\mathcal{A}(e_2)$

$$\begin{array}{lll} e_1 \cup e_2 & \text{union, } \{x | x \in e_1 \lor x \in e_2\} \\ e_1 \cap e_2 & \text{intersection, } \{x | x \in e_1 \land x \in e_2\} \\ e_1 \setminus e_2 & \text{difference, } \{x | x \in e_1 \land x \notin e_2\} \\ \rho_{a \rightarrow b}(e) & \text{rename, } \{x \circ (b : x.a) \setminus (a : x.a) | x \in e\} \\ \eta_A(e) & \text{projection, } \{\circ_{a \in A}(a : x.a) | x \in e\} \\ e_1 \times e_2 & \text{product, } \{x \circ y | x \in e_1 \land y \in e_2\} \\ \sigma_p(e) & \text{selection, } \{x | x \in e \land p(x)\} \\ e_1 \Join_p e_2 & \text{join, } \{x \circ y | x \in e_1 \land y \in e_2 \land p(x \circ y)\} \end{array}$$

per definition set oriented. Similar operators also used bag oriented (no implicit duplicate removal).

Relational Algebra - Derived Operators

Additional (derived) operators are often useful:

 $\begin{array}{ll} e_{1} \bowtie e_{2} & \text{natural join, } \{x \circ y_{|\mathcal{A}(e_{2}) \setminus \mathcal{A}(e_{1})} | x \in e_{1} \land y \in e_{2} \land x =_{|\mathcal{A}(e_{1}) \cap \mathcal{A}(e_{2})} y \\ e_{1} \div e_{2} & \text{division, } \{x_{|\mathcal{A}(e_{1}) \setminus \mathcal{A}(e_{2})} | x \in e_{1} \land \forall y \in e_{2} : x =_{|\mathcal{A}(e_{1}) \cap \mathcal{A}(e_{2})} y \} \\ e_{1} \bowtie_{p} e_{2} & \text{semi-join, } \{x | x \in e_{1} \land \exists y \in e_{2} : p(x \circ y)\} \\ e_{1} \bowtie_{p} e_{2} & \text{anti-join, } \{x | x \in e_{1} \land \exists y \in e_{2} : p(x \circ y)\} \\ e_{1} \bowtie_{p} e_{2} & \text{outer-join, } (e_{1} \bowtie_{p} e_{2}) \cup \{x \circ \circ_{a \in \mathcal{A}(e_{2})}(a : null) | x \in (e_{1} \bowtie_{p} e_{2})\} \\ e_{1} \bowtie_{p} e_{2} & \text{full outer-join, } (e_{1} \bowtie_{p} e_{2}) \cup (e_{2} \bowtie_{p} e_{1}) \end{array}$

<ロト < 部 ト < 注 ト < 注 ト 三 注 の Q (> 21 / 336

Relational Algebra - Extensions

The algebra needs some extensions for real queries:

- map/function evaluation $\chi_{a:f}(e) = \{x \circ (a : f(x)) | x \in e\}$
- group by/aggregation $\Gamma_{A;a:f}(e) = \{ x \circ (a : f(y)) | x \in \Pi_A(e) \land y = \{ z | z \in e \land \forall a \in A : x.a = z.a \} \}$
- dependent join (djoin). Requires $\mathcal{F}(e_2) \subseteq \mathcal{A}(e_1)$ $e_1 \overrightarrow{\bowtie}_p e_2 = \{x \circ y | x \in e_1 \land y \in e_2(x) \land p(x \circ y)\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Physical Algebra

- relational algebra does not imply an implementation
- the implementation can have a great impact
- therefore more detailed operators (next slides)
- additional operators needed due to stream nature

Physical Algebra - Enforcer

Some operators do not effect the (logical) result but guarantee desired properties:

sort

Sorts the input stream according to a sort criteria

• temp

Materializes the input stream, makes further reads cheap

• ship

Sends the input stream to a different host (distributed databases)

Physical Algebra - Joins

Different join implementations have different characteristics:

- $e_1 \bowtie^{NL} e_2$ Nested Loop Join Reads all of e_2 for every tuple of e_1 . Very slow, but supports all kinds of predicates
- e₁ ⋈^{BNL} e₂ Blockwise Nested Loop Join Reads chunks of e₁ into memory and reads e₂ once for each chunk. Much faster, but requires memory. Further improvement: Use hashing for equi-joins.
- e₁ ⋈SM e₂ Sort Merge Join
 Scans e₁ and e₂ only once, but requires suitable sorted input.
 Equi-joins only.
- $e_1 \bowtie^{HH} e_2$ Hybrid-Hash Join Partitions e_1 and e_2 into partitions that can be joined in memory. Equi-joins only.

Physical Algebra - Aggregation

Other operators also have different implementations:

- Γ^{SI} Aggregation Sorted Input Aggregates the input directly. Trivial and fast, but requires sorted input
- Γ^{QS} Aggregation Quick Sort
 Sorts chunks of input with quick sort, merges sorts
- Γ^{HS} Aggregation Heap Sort Like Γ^{QS} . Slower sort, but longer runs
- Γ^{HH} Aggregation Hybrid Hash
 Partitions like a hybrid hash join.

Even more variants with early aggregation etc. Similar for other operators.

Physical Algebra - Summary

- logical algebras describe only the general approach
- physical algebra fixes the exact execution including runtime characteristics
- multiple physical operators possible for a single logical operator
- query optimizer must produce physical algebra
- operator selection is a crucial step during optimization

2. Textbook Query Optimization

- Algebra Revisited
- Canonical Query Translation
- Logical Query Optimization
- Physical Query Optimization

Algebra Revisited

The algebra needs some more thought:

- correctness is critical for query optimization
- can only be guaranteed by a formal model
- the algebra description in the introduction was too cursory

What we ultimately want to do with an algebraic model:

• decide if two algebraic expressions are equivalent (produce the same result)

This is too difficult in practice (not computable in general), so we at least want to:

• guarantee that two algebraic expressions are equivalent (for some classes of expressions)

This still requires a strong formal model. We accept false negatives, but not false positives.

Tuples

Tuple:

- a (unordered) mapping from attribute names to values of a domain
- sample: [name: "Sokrates", age: 69]

Schema:

- a set of attributes with domain, written $\mathcal{A}(t)$
- sample: {(name,string),(age, number)}

Note:

- simplified notation on the slides, but has to be kept in mind
- domain usually omitted when not relevant
- attribute names omitted when schema known

Tuple Concatenation

- notation: $t_1 \circ t_2$
- sample: [name: "Sokrates", age: 69] [country: "Greece"]
 = [name: "Sokrates", age: 69, country: "Greece"]

• note: $t_1 \circ t_2 = t_2 \circ t_1$, tuples are unordered

- $\mathcal{A}(t_1) \cap \mathcal{A}(t_2) = \emptyset$
- $\mathcal{A}(t_1 \circ t_2) = \mathcal{A}(t_1) \cup \mathcal{A}(t_2)$

Tuple Projection

Consider t = [name: "Sokrates", age: 69, country: "Greece"]

Single Attribute:

- notation t.a
- sample: *t.name* = "Sokrates"

Multiple Attributes:

- notation $t_{|A|}$
- sample: $t_{|\{name, age\}} =$ [name: "Sokrates", age: 69]

- $a \in \mathcal{A}(t), A \subseteq \mathcal{A}(t)$
- $\mathcal{A}(t_{|A}) = A$
- notice: t.a produces a value, $t_{|A}$ produces a tuple

Relations

Relation:

- a set of tuples with the same schema
- sample: { [name: "Sokrates", age: 69], [name: "Platon", age: 45] }
 Schema:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

- schema of the contained tuples, written $\mathcal{A}(R)$
- sample: {(name,string),(age, number)}

. . .

Sets vs. Bags

- relations are sets of tuples
- real data is usually a multi set (bag)

Example: select age age from student 23 24 24

- we concentrate on sets first for simplicity
- many (but not all) set equivalences valid for bags

The optimizer must consider three different semantics:

- logical algebra operates on bags
- physical algebra operates on streams (order matters)
- explicit duplicate elimination \Rightarrow sets

Set Operations

Set operations are part of the algebra:

- union $(L \cup R)$, intersection $(L \cap R)$, difference $(L \setminus R)$
- normal set semantic
- but: schema constraints
- for bags defined via frequencies (union \rightarrow +, intersection \rightarrow min, difference \rightarrow -)

Requirements/Effects:

•
$$\mathcal{A}(L) = \mathcal{A}(R)$$

•
$$\mathcal{A}(L \cup R) = \mathcal{A}(L) = \mathcal{A}(R), \ \mathcal{A}(L \cap R) = \mathcal{A}(L) = \mathcal{A}(R), \ \mathcal{A}(L \setminus R) = \mathcal{A}(L) = \mathcal{A}(R)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Free Variables

Consider the predicate age = 62

- can only be evaluated when age has a meaning
- age behaves a free variable
- must be bound before the predicate can be evaluated
- notation: $\mathcal{F}(e)$ are the free variables of e

Note:

- free variables are essential for predicates
- free variables are also important for algebra expressions
- dependent join etc.

Selection

Selection:

- notation: $\sigma_p(R)$
- sample: $\sigma_{a \ge 2}(\{[a:1], [a:2], [a:3]\}) = \{[a:2], [a:3]\}$
- predicates can be arbitrarily complex
- optimizer especially interested in predicates of the form *attrib* = *attrib* or *attrib* = *const*

(日) (日) (日) (日) (日) (日) (日)

- $\mathcal{F}(p) \subseteq \mathcal{A}(R)$
- $\mathcal{A}(\sigma_p(R)) = \mathcal{A}(R)$

Projection

Projection:

- notation: $\Pi_A(R)$
- sample: $\Pi_{\{a\}}(\{[a:1,b:1],[a:2,b:1]\}) = \{[a:1],[a:2]\}$
- eliminates duplicates for set semantic, keeps them for bag semantic

• note: usually written as $\Pi_{a,b}$ instead of the correct $\Pi_{\{a,b\}}$

- $A \subseteq \mathcal{A}(R)$
- $\mathcal{A}(\Pi_A(R)) = A$

Rename

Rename:

- notation: $\rho_{a \rightarrow b}(R)$
- sample:

 $\rho_{a \to c}(\{[a:1,b:1],[a:2,b:1]\}) = \{[c:1,b:1],[c:2,b:2]\}?$

- often a pure logical operator, no code generation
- important for the data flow

- $a \in \mathcal{A}(R), b \notin \mathcal{A}(R)$
- $\mathcal{A}(\rho_{a \to b}(R)) = \mathcal{A}(R) \setminus \{a\} \cup \{b\}$

Join

Consider
$$L = \{[a:1], [a:2]\}, R = \{[b:1], [b:3]\}$$

Cross Product:

• notation: $L \times R$

• sample: $L \times R = \{[a:1, b:1], [a:1, b:3], [a:2, b:1], [a:2, b:3]\}$ Join:

- notation: $L \bowtie_p R$
- sample: $L \bowtie_{a=b} R = \{[a:1, b:1]\}$
- defined as $\sigma_p(L \times R)$

Requirements/Effects:

•
$$\mathcal{A}(L) \cap \mathcal{A}(R) = \emptyset, \mathcal{F}(p) \in (\mathcal{A}(L) \cup \mathcal{A}(R))$$

•
$$\mathcal{A}(L \times R) = \mathcal{A}(L) \cup \mathcal{R}$$

<ロト < 団ト < 臣ト < 臣ト < 臣ト 三国 のへの 40 / 336

Equivalences

Equivalences for selection and projection:

$$\begin{array}{rcl}
\sigma_{p_{1} \wedge p_{2}}(e) &\equiv & \sigma_{p_{1}}(\sigma_{p_{2}}(e)) & (1) \\
\sigma_{p_{1}}(\sigma_{p_{2}}(e)) &\equiv & \sigma_{p_{2}}(\sigma_{p_{1}}(e)) & (2) \\
\Pi_{A_{1}}(\Pi_{A_{2}}(e)) &\equiv & \Pi_{A_{1}}(e) & (3) \\
& & \text{if } A_{1} \subseteq A_{2} \\
\sigma_{p}(\Pi_{A}(e)) &\equiv & \Pi_{A}(\sigma_{p}(e)) & (4) \\
& & \text{if } \mathcal{F}(p) \subseteq A \\
\sigma_{p}(e_{1} \cup e_{2}) &\equiv & \sigma_{p}(e_{1}) \cup \sigma_{p}(e_{2}) & (5) \\
\sigma_{p}(e_{1} \wedge e_{2}) &\equiv & \sigma_{p}(e_{1}) \wedge \sigma_{p}(e_{2}) & (6) \\
\sigma_{p}(e_{1} \setminus e_{2}) &\equiv & \sigma_{p}(e_{1}) \cup \Pi_{A}(e_{2}) & (8)
\end{array}$$

Equivalences

Equivalences for joins:

$$e_{1} \times e_{2} \equiv e_{2} \times e_{1}$$

$$e_{1} \bowtie_{p} e_{2} \equiv e_{2} \bowtie_{p} e_{1}$$

$$(10)$$

$$(e_{1} \times e_{2}) \times e_{3} \equiv e_{1} \times (e_{2} \times e_{3})$$

$$(11)$$

$$(e_{1} \bowtie_{p_{1}} e_{2}) \bowtie_{p_{2}} e_{3} \equiv e_{1} \bowtie_{p_{1}} (e_{2} \bowtie_{p_{2}} e_{3})$$

$$(12)$$

$$\sigma_{p}(e_{1} \times e_{2}) \equiv e_{1} \bowtie_{p} e_{2}$$

$$(13)$$

$$\sigma_{p}(e_{1} \times e_{2}) \equiv \sigma_{p}(e_{1}) \times e_{2}$$

$$(14)$$

$$\text{if } \mathcal{F}(p) \subseteq \mathcal{A}(e_{1})$$

$$\sigma_{p_{1}}(e_{1} \bowtie_{p_{2}} e_{2}) \equiv \sigma_{p_{1}}(e_{1}) \bowtie_{p_{2}} e_{2}$$

$$(15)$$

$$\text{if } \mathcal{F}(p_{1}) \subseteq \mathcal{A}(e_{1})$$

$$\Pi_{A}(e_{1} \times e_{2}) \equiv \Pi_{A_{1}}(e_{1}) \times \Pi_{A_{2}}(e_{2})$$

$$(16)$$

$$\text{if } \mathcal{A} = A_{1} \cup A_{2}, A_{1} \subseteq \mathcal{A}(e_{1}), A_{2} \subseteq \mathcal{A}(e_{2})$$

Canonical Query Translation

Canonical translation of SQL queries into algebra expressions. Structure:

select distinct a_1, \ldots, a_n from R_1, \ldots, R_k wherep

Restrictions:

- only select distinct (sets instead of bags)
- no group by, order by, union, intersect, except
- only attributes in select clause (no computed values)
- no nested queries, no views
- not discussed here: NULL values

From Clause

1. Step: Translating the from clause

Let R_1, \ldots, R_k be the relations in the **from** clause of the query. Construct the expression:

$$F = \begin{cases} R_1 & \text{if } k = 1\\ ((\dots (R_1 \times R_2) \times \dots) \times R_k) & \text{else} \end{cases}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Where Clause

2. Step: Translating the where clause

Let p be the predicate in the **where** clause of the query (if a **where** clause exists).

Construct the expression:

$$W = \begin{cases} F & \text{if there is no where clause} \\ \sigma_p(F) & \text{otherwise} \end{cases}$$

<ロ▶ < □▶ < 三▶ < 三▶ < 三▶ 三□ の Q (> 45 / 336

Select Clause

3. Step: Translating the select clause

Let a_1, \ldots, a_n (or "*") be the projection in the **select** clause of the query. Construct the expression:

$$S = \begin{cases} W & \text{if the projection is "*"} \\ \Pi_{a_1,...,a_n}(W) & \text{otherwise} \end{cases}$$

46 / 336

4. Step: S is the canonical translation of the query.

Sample Query

Extension - Group By Clause

2.5. Step: Translating the **group by** clause. Not part of the "canonical" query translation!

Let g_1, \ldots, g_m be the attributes in the **group by** clause and *agg* the aggregations in the **select** clause of the query (if a **group by** clause exists). Construct the expression:

$$G = \begin{cases} W & \text{if there is no group by clause} \\ \Gamma_{g_1,\dots,g_m; \text{agg}}(W) & \text{otherwise} \end{cases}$$

(日) (日) (日) (日) (日) (日) (日)

48 / 336

use G instead of W in step 3.

Optimization Phases

Textbook query optimization steps:

- 1. translate the query into its canonical algebraic expression
- 2. perform logical query optimization
- 3. perform physical query optimization

we have already seen the translation, from now one assume that the algebraic expression is given.

Concept of Logical Query Optimization

- foundation: algebraic equivalences
- algebraic equivalences span the potential search space
- given an initial algebraic expression: apply algebraic equivalences to derive new (equivalent) algebraic expressions
- note: algebraic equivalences do not indicate a direction, they can be applied in both ways
- the conditions attached to the equivalences have to be checked

Algebraic equivalences are essential:

- new equivalences increase the potential search space
- better plans
- but search more expensive

Performing Logical Query Optimization

Which plans are better?

- plans can only be compared if there is a *cost function*
- cost functions need details that are not available when only considering logical algebra
- consequence: logical query optimization remains a heuristic

Performing Logical Query Optimization

Most algorithms for logical query optimization use the following strategies:

- organization of equivalences into groups
- directing equivalences

Directing means specifying a preferred side.

A *directed equivalences* is called a *rewrite rule*. The groups of rewrite rules are applied sequentially to the initial algebraic expression. Rough goal:

reduce the size of intermediate results

▲ロト ▲周ト ▲ヨト ▲ヨト 三回日 のの()

Phases of Logical Query Optimization

- 1. break up conjunctive selection predicates (equivalence $(1) \rightarrow$)
- 2. push selections down (equivalence (2) \rightarrow , (14) \rightarrow)
- 3. introduce joins (equivalence $(13) \rightarrow$)
- 4. determine join order (equivalence (9), (10), (11), (12))
- 5. introduce and push down projections (equivalence (3) \leftarrow , (4) \leftarrow , (16) \rightarrow)

Step 1: Break up conjunctive selection predicates

• selection with simple predicates can be moved around easier

Step 2: Push Selections Down

• reduce the number of tuples early, reduces the work for later operators

Step 3: Introduce Joins

• joins are cheaper than cross products

<ロト < 回 ト < 巨 ト < 巨 ト 三 国 の Q () 56 / 336

Step 4: Determine Join Order

- costs differ vastly
- difficult problem, NP hard (next chapter discusses only join ordering)

Observations in the sample plan:

- bottom most expression is student ⋈_{sno=asno} attend
- the result is huge, all students, all their lectures
- in the result only one professor relevant $\sigma_{name="Sokrates"}(professor)$
- join this with lecture first, only lectures by him, much smaller

Step 4: Determine Join Order

• intermediate results much smaller

Step 5: Introduce and Push Down Projections

- eliminate redundant attributes
- only before pipeline breakers

Limitations

Consider the following SQL query

select distinct s.sname

fromstudent s, lecture l, attend awheres.sno = a.asno and a.alno = l.lno and l.ltitle =" Logic"

Steps 1-2 could result in plan below. No further selection push down.

Limitations

However a different join order would allow further push down: Π_{sname} Π_{sname} $\sigma_{sno=asno}$ $\sigma_{alno=lno}$ $\sigma_{alno=lno}$ Х Х $\sigma_{sno=asno}$ Х × $\sigma_{ltitle="Logic"}$ $\sigma_{ltitle="Logic"}$ student attend student lecture attend lecture \Rightarrow

- the phases are interdependent
- the separation can loose the optimal solution

Physical Query Optimization

- add more execution information to the plan
- allow for cost calculations
- select index structures/access paths
- choose operator implementations
- add property enforcer
- choose when to materialize (temp/DAGs)

Access Paths Selection

- scan+selection could be done by an index lookup
- multiple indices to choose from
- table scan might be the best, even if an index is available
- depends on selectivity, rule of thumb: 10%
- detailed statistics and costs required
- related problem: materialized views
- even more complex, as more than one operator could be substitued

<ロト < 部 ト < 注 ト < 注 ト 三 二 の Q (* 63 / 336

Operator Selection

- replace a logical operator (e.g. \bowtie) with a physical one (e.g. \bowtie^{HH})
- semantic restrictions: e.g. most join operators require equi-conditions
- \bowtie^{BNL} is better than \bowtie^{NL}
- \bowtie^{SM} and \bowtie^{HH} are usually better than both
- \bowtie^{HH} is often the best if not reusing sorts
- decission must be cost based
- even \bowtie^{NL} can be optimal!
- not only joins, has to be done for all operators

Property Enforcer

- · certain physical operators need certain properties
- typical example: sort for ⋈SM
- other example: in a distributed database operators need the data locally to operate
- many operator requirements can be modeled as properties (hashing etc.)

(ロ) (同) (三) (三) (三) (三) (336)

• have to be guaranteed as needed

Materializing

- sometimes materializing is a good idea
- temp operator stores input on disk
- essential for multiple consumers (factorization, DAGs)
- also relevant for \bowtie^{NL}
- first pass expensive, further passes cheap

Physical Plan for Sample Query

Outlook

- separation in two phases looses optimality
- many decissions (e.g. view resolution) important for logical optimization

68 / 336

- textbook physical optimization is incomplete
- did not discuss cost calculations
- will look at this again in later chapters