3. Join Ordering

e Basics

e Search Space

o Greedy Heuristics

e |IKKBZ

e MVP

e Dynamic Programming

e Generating Permutations

e Transformative Approaches
e Randomized Approaches

e Metaheuristics

e lterative Dynamic Programming

e Order Preserving Joins

Join Ordering Basics

Queries Considered

Concentrate on join ordering, that is:
e conjunctive queries
e simple predicates

e predicates have the form a; = a» where a; is an attribute and a5 is
either an attribute or a constant

e even ignore constants in some algorithms
We join relations Ry, ..., R,, where R; can be

e a base relation

e a base relation including selections

e a more complex building block or access path

Pretending to have a base relation is ok for now.

Join Ordering Basics

Query Graph

Queries of this type can be characterized by their query graph:
e the query graph is an undirected graph with Ry, ..., R, as nodes

e a predicate of the form a; = a, where a; € R; and a € R; forms an
edge between R; and R; labeled with the predicate

e a predicate of the form a; = a,, where a; € R; and a5 is a constant
forms a self-edge on R; labeled with the predicate

e most algorithms will not handle self-edges, they have to be pushed
down

Join Ordering Basics

Sample Query Graph

student 2= _ attend

Ino=alno

professor ———lecture
pno=Ilpno
O

pname="Sokrates"

Join Ordering Basics

Shapes of Query Graphs

o—0—0©0 (] o—o 06—0o (]
pd I N
oO—o0—0—0 06—0 o—o o ([J
chains cycles stars
()
~
[J [J
e eo—o ./l ./l\. eo—eoe—eo
11X NN T/ |
oe—o©o o—o O0-06 06 o o o oe—0—©
cliques cyclic tree grid

e real world queries are somewhere in-between
e chain, cycle, star and clique are interesting to study

o they represent certain kind of problems and queries

Join Ordering Basics

Join Trees

A join tree is a binary tree with
e join operators as inner nodes
e relations as leaf nodes
Algorithms will produce different kinds of join trees
e ordered or unordered
e with cross products or without

The most common case is ordered, without cross products

Join Ordering [EEET

Shape of Join Trees

Commonly used classes of join trees:

left-deep tree

right-deep tree
e zigzag tree
e bushy tree

The first three are summarized as linear trees.

Join Ordering Basics

Join Selectivity

Input:
e cardinalities |R;|
e selectivities f; j: if p;; is the join predicate between R; and R;, define
fi,j _ ‘Ri MPi,j Rj|
|Ri x Rjl
Calculate:

e result cardinality:

|Ri Xp, ; Ril = fi j|RiIR;]

Rational: The selectivity can be computed/estimated easily (ideally).

Join Ordering Basics

Cardinality of Join Trees

Given a join tree T, the result cardinality | T| can be computed recursively

as
|T|:{ |Ri| if T is a leaf R;

(Ilren.ren i) TallTe] if T=TiXT,

e allows for easy calculation of join cardinality
e requires only base cardinalities and selectivities

e assumes independence of the predicates

Join Ordering Basics

Sample Statistics

As running example, we use the following statistics:

IRy| = 10
|Ry| = 100
IR = 1000
fio = 01
s = 02

e implies query graph Ry — Ro — R3

e assume f; ; = 1 for all other combinations

Join Ordering Basics

A Basic Cost Function

Given a join tree T, the cost function C,,; is defined as

Cout(T) = 0 if T isa leaf R;
U T U T] + Coute(T1) + Cour(T2) if T=TyiX T,

e sums up the sizes of the (intermediate) results
e rational: larger intermediate results cause more work

e we ignore the costs of single relations as they have to be read anyway

Join Ordering Basics

Basic Join Specific Cost Functions

For single joins:

Crj(e1 X e) = le]le2]
Chj(el X 62) = 1.2‘61’
Comj(e1 X e2) = er|log(ler]) + eof log(|e2])

For sequences of join operators s = 51 X ... X s

n

Coj(s) =) |si™...Xsiq|si|
i=2
n

Cri(s) = D 12/ X... X5
i=2

n n
Csmj(s) = Z |si M ... X s q|log(|sy M ... X s;_q1]) + Z |si| log(]si|)
=2 i=2

Join Ordering Basics

Remarks on the Basic Cost Functions

e cost functions are simplistic
e algorithms are modelled very simplified (e.g. 1.2, no n-way sort etc.)
o designed for left-deep trees

e Cpj and Csmj do not work for cross products (fix: take output
cardinality then, which is Cy)

e in reality: other parameters than cardinality play a role

e cost functions assume the same join algorithm for the whole join tree

Join Ordering Basics

Sample Cost Calculations

Cout Cnl Chj Csmj
Ri X R, 100 1000 12 697.61
R, X R 20000 100000 120 10630.26
Ri1 X R3 10000 10000 10000 10000.00

(Ri X Ry)X R3 | 20100 101000 132 11327.86
(Ra X R3) X Ry | 40000 300000 24120 32595.00
(R1 x R3) X R, | 30000 1010000 22000 143542.00

costs differ vastly between join trees

different cost functions result in different costs

the cheapest plan is always the same here, but relative order varies

join trees with cross products are expensive

e join order is essential under all cost functions

Join Ordering Basics
More Examples

For the query ’Rl‘ = 1000, ’RZ‘ =2, ’R3‘ =2,f1,=0.1, f173 =0.1
we have costs:

Cout
Ri X Ry 200
R2 X R3 4
R1 X R 200

(RiXR)XR; | 240
(Rox R3)X Ry 44
(RiXR3) X Ry | 240

e here cross product is best
e but relies on the small sizes of |Rz| and | R3]

e attractive if the cardinality of one relation is small

Join Ordering Basics

More Examples (2)

For the query |Ry| = 10, |Ry| = 20, |Rs| = 20, |R4| = 10, 2 = 0.01, fo.3 =

0.5,f34 =0.01
we have costs:

Cout
Ri X R, 2
R X Rs3 200
R3 X Ry 2
((Rl X Rz) X R3) X Ry 24
((Ro x R3)M R) M Ry | 222
(RlNRQ)N(R3NR4) 6

e covers all join trees due to the symmetry of the query

o the bushy tree is better than all join trees

Join Ordering Basics

Symmetry and ASI

e cost function Ciyp is called symmetric if
Cimpi(e1 XMl &3) = Cimpi(€2 XM ¢7)
e for symmetric cost functions commutativity can be ignored

o ASI: adjacent sequence interchange (see IKKBZ algorithm for a
definition)

Our basic cost functions can be classified as:
| ASI —ASI

symmetric Cout Csmj
—symmetric | Cp; -

e more complex cost functions are usually =ASI, often also ~symmetric

e symmetry and especially ASI can be exploited during optimization

Seadh Sz
Classification of Join Ordering Problems

We distinguish four different dimensions:
1. query graph class: chain, cycle, star, and clique
2. join tree structure: left-deep, zig-zag, or bushy trees
3. join construction: with or without cross products

4. cost function: with or without ASI property

In total, 48 different join ordering problems.

RCLNOIC I Ti: 9l Search Space

Reminder: Catalan Numbers

The number of binary trees with n leave nodes is given by C(n — 1), where
C(n) is defined as

1 ifn=20
Cln) = { Srlek)e(n—k—1) ifn>0

It can be written in a closed form as
1 2n
C =
(n) n+1 < n >

The Catalan Numbers grown in the order of @(4”/n%)

Seadh Sz
Number Of Join Trees with Cross Products

left deep n!

right deep n!

zig-zag n2n—2

bushy n!C(n—1)
(2n—2)!
(n—1)!

e rational: number of leaf combinations (n!) x number of unlabeled
trees (varies)

e grows exponentially

e increases even more with a flexible tree structure

RCLNOIC I Ti: 9l Search Space

Chain Queries, no Cross Products

Let us denote the number of left-deep join trees for a chain query
Ri—...—Rpas f(n)

e obviously f(0) =1,f(1) =1

e for n > 1, consider adding R, to all join trees for Ry — ... — R,_1

e R, can be added at any position following R,_1
lets denote the position of R,_1 from the bottom with k ([1, n — 1])

e there are n — k join trees for adding R, after R,_1

one additional tree if k =1, R, can also be added before R,_1
e for R,_1 to be at k, R,_x — ... R,—2 must be below it. f(k— 1) trees

forn>1:
n—1

f(n) =1+ f(k—1)x(n—k)

k=1

Seadh Sz
Chain Queries, no Cross Products (2)

The number of left-deep join trees for chain queries of size n is

1 if n <2
f(”):{ 1+ 30 f(k—1)x(n—k) ifn>2

solving the recurrence gives the closed form

f(n) =271

e generalization to zig-zag as before

Seadh Sz
Chain Queries, no Cross Products (3)

The generalization to bushy trees is not as obvious

each subtree must contain a subchain to avoid cross products

thus do not add single relations but subchains

whole chain must be Ry — ... — Ry, cut anywhere
e consider commutativity (two possibilities)

This leads to the formula

=1 if n <2
VEU S of (K F(n— k) ifn>2

solving the recurrence gives the closed form

f(n) =2""1C(n—1)

RCLNOIC I Ti: 9l Search Space

Star Queries, no Cross Products

Consider a star query with Ry at the center and R», ..., R, as satellites.
e the first join must involve R;

o afterwards all other relations can be added arbitrarily

This leads to the following formulas:
o left-deep: 2% (n—1)!
o zig-zag: 2% (n—1)1%2"2 = (n— 1)1 x 271

e bushy: no bushy trees possible (R; required), same as zig-zag

RCLNOIC I Ti: 9l Search Space

Clique Queries, no Cross Products

e in a clique query, every relation is connected to each other
e thus no join tree contains cross products
e all join trees are valid join trees, the number is the same as with cross

products

RCLNOIC I Ti: 9l Search Space

Sample Numbers, without Cross Products

Chain Queries

Star Queries

Left-Deep Zig-Zag Bushy | Left-Deep Zig-Zag/Bushy

n on=1 22n=3 on=lc(n—1) | 2(n—1)! 2n=1(p —1)!
1 1 1 1 1 1
2 2 2 2 2 2
3 4 8 8 4 8
4 8 32 40 12 48
5 16 128 224 48 384
6 32 512 1344 240 3840
7 64 2048 8448 1440 46080
8 128 8192 54912 10080 645120
9 256 32768 366080 80640 10321920
10 512 131072 2489344 725760 18579450

RCLNOIC I Ti: 9l Search Space

Sample Numbers, with Cross Products

Left-Deep Zig-Zag Bushy

n n! nl2n=2 nlC(n—1)
1 1 1 1
2 2 2 2
3 6 12 12
4 24 96 120
5 120 960 1680
6 720 11520 30240
7 5040 161280 665280
8 40320 2580480 17297280
9 362880 46448640 518918400
10 | 3628800 968972800 17643225600

Problem Complexity

RCLNOIC I Ti: 9l Search Space

query graph join tree | cross products | cost function | complexity
general left-deep | no ASI NP-hard
tree/star/chain left-deep | no ASI, 1 joint. | P

star left-deep | no NLJ+SMJ NP-hard
general /tree/star | left-deep | yes ASI NP-hard
chain left-deep | yes - open
general bushy no ASI NP-hard
tree bushy no - open
star bushy no ASI P

chain bushy no any P
general bushy yes ASI NP-hard
tree/star/chain | bushy yes ASI NP-hard

Gizzdly (Hausis
Greedy Heuristics - First Algorithm

e search space of joins trees is very large
e greedy heuristics produce suitable join trees very fast

e suitable for large queries
For the first algorithm we consider:

o |eft-deep trees
e no cross products
e relations ordered to some weight function (e.g. cardinality)

Note: the algorithms produces a sequence of relations; it uniquely
identifies the left-deep join tree.

NETNOI A Greedy Heuristics

Greedy Heuristics - First Algorithm (2)

GreedyJoinOrdering-1(R = {R1,...,R.},w: R — R)
Input: a set of relations to be joined and weight function
Output:a join order
S=e¢
while (|R| > 0) {

m = arg ming,cg w(R;)

R=R\ {m}
S=So<m>
}
return S

o disadvantage: fixed weight functions
e already chosen relations do not affect the weight

e e.g. does not support minimizing the intermediate result

NETNOI A Greedy Heuristics

Greedy Heuristics - Second Algorithm

GreedyJoinOrdering-2(R = {Ry,...,R,},w: R,R* — R)
Input: a set of relations to be joined and weight function
Output:a join order
S=e¢
while (|R| > 0) {

m = arg ming,cgr W(R;, S)

R =R\ {m}

S=So<m>

}

return S

e can compute relative weights
e but first relation has a huge effect

e and the fewest information available

NETNOI A Greedy Heuristics

Greedy Heuristics - Third Algorithm

GreedyJoinOrdering-3(R = {R1,...,R.},w: R,R* — R)
Input: a set of relations to be joined and weight function
Output:a join order
S=0
for VR € R {

R'= R\ {Ri}

S =< R; >

while (|R'| > 0) {

m = argming.cp w(R;, S')

R' = R'\ {m}
S =So<m>
}
S=Su{s}

}

return arg mingics w(S’[n], S’[1 : n —1])

e commonly used: minimize selectivities (MinSel)

Gizzdly (Hausis
Greedy Operator Ordering

e the previous greedy algorithms only construct left-deep trees
o Greedy Operator Ordering (GOO) [1] constructs bushy trees

Idea:

o all relations have to be joined somewhere
e but joins can also happen between whole join trees
o we therefore greedily combine join trees (which can be relations)

e combine join trees such that the intermediate result is minimal

NETNOI A Greedy Heuristics

Greedy Operator Ordering (2)

GOO(R =A{R1,...,Rn})
Input: a set of relations to be joined
Output:a join tree
T=R
while |T| > 1{
(Ti, Tj) = argmin(r.c1 1e7), 727, | Ti X T
T=(T\{TiH)\{T}}
T=TU{T;XT;}
}

return Top e T

e constructs the result bottom up
e join trees are combined into larger join trees

e chooses the pair with the minimal intermediate result in each pass

Join Ordering IKKBZ

IKKBZ

Polynomial algorithm for join ordering (original [2], improved [3])
e produces optimal left-deep trees without cross products
e requires acyclic join graphs

e cost function must have ASI property

join method must be fixed

Can be used as heuristic if the requirements are violated

Join Ordering IKKBZ

Overview

e the algorithms considers each relation as first relation to be joined
e it tries to order the other relations by "benefit” (rank)
o if the ordering violates the query constraints, it constructs compounds

e the compounds guarantee the constraints (locally) and are again
ordered by benefit

o related to a known job-ordering algorithm

Join Ordering IKKBZ

Cost Function

The IKKBZ algorithm considers only cost functions of the form

C(TiXRy) = |Ti| * hi(IR;|)

e each relation R; can have its own h;

e we denote the set of h; by H, writing Cy for the parametrized cost
function

e examples: h; = 1.2 for Cpj, h; = id for Cp
We will often use cardinalities, thus we define n;:
e n; is the cardinality of R; (n = R;)

e hj(n;) is are the costs per input tuple of a join with R;

Join Ordering IKKBZ

Precedence Graph

Given a query graph G = (V, E) and a starting relation Ry, we construct
the directed precedence graph G,f = (VkP7 EkP) rooted in Ry as follows:

1. choose Ry as the root node of G/, V' = {Rx}

2. while |VF| < |V], choose a R; € V' \ VF such that
IR, € VP : (R, R)) € E. Add R; to Vf and R; — R; to Ef.

The precedence graph describes the (partial) ordering of joins implied by
the query graph.

Join Ordering IKKBZ

Sample Precedence Graph

Ry
'
Ry Rs Ry
v
R Ry R, R,
/ AN b
R2 R6 R5 R6

query graph precedence graph rooted in Ry

Join Ordering IKKBZ

Conformance to a Precedence Graph

A sequence S = vy, ..., vk of nodes conforms to a precedence graph
G = (V, E) if the following conditions are satisfied:

1. Vie[2,k|3j € [1,i]: (vj,vi) e E
2. Aiellk],jeli,k]:(v,vi)€E

Note: IKKBZ constructs left-deep trees, therefore it is sufficient to
consider sequences.

Join Ordering IKKBZ

Notations

For non-empty sequences S; and S, and a precedence graph G = (V, E),
we write S; — S, if S1 must occur before S». More precisely S; — S iff:

1. 51 and S, conform to G

2.5NS =0

3. dv,vyeVivie SiAv eSS A (v,) € E

4. Avi,vieV:ivieSiAve V\SI\ S2A (vi,vj) € E

Further, we write

R1,2,...,k = RiXRNX...XRy

mo..k = |Ria,.. Kl

Join Ordering IKKBZ

Selectivities

For a given precedence graph, let R; be a relation and R; be the set of a
relations from which there exists a path to R;

e in any conforming join tree which includes R;, all relations from R;
must be joined first

e all other relations R; that might be joined before R; will have no
connection to R;, thus f;; =1

Hence, we can define the selectivity of the join with R; as
s-—{l if [IRi|=0
e HRJ'ER,' ﬁ:f if ’R" > 0

Note: we call the s; a selectivities, although they depend on the
precedence graph

Join Ordering IKKBZ

Cardinalities

If the query graph is a chain (totally ordered), the following conditions
holds:

k = Sk*|Ri|*|Ri2,.. k-1

It RaS)

= |sk|* ny x mpo,.. k-1

As a closed form, we can write

k
na..k =] sini
i=1

assp =1

Join Ordering IKKBZ

Costs

The costs for a totally ordered precedence graph G can be computed as
follows:

Cy(G) = Z[n1,2,...,i—1hi(ni)]
i=2

= D I Ism)hi(n)]

i=2 j=1

e if we choose hj(n;) = sinj then Cy = Cout
e the factor s;n; determines how much the input relation to be joined
with R; changes its cardinality after the join has been performed

o if sin; is less than one, we call the join decreasing, if it is larger than
one, we call the join increasing

Join Ordering IKKBZ

Costs (2)

For the algorithm, we prefer a (equivalent) recursive definition of the cost
function:

CH(e) =0
Cu(Ri) = 0if R;is the root
Cu(Ri)) = hi(n;) else
Cu(51S2) = Cu(S1) + T(S1) * CH(S2)

where

T(e) =
T(S) = HS,‘I’I,’

RieS

Join Ordering IKKBZ

ASI Property

Let A and B be two sequences and V and U two non-empty sequences.
We say a cost function C has the adjacent sequence interchange property
(ASI property), if and only if there exists a function T and a rank function
defined as

T(S)-1

rank(S) = NAOR

such that the following holds

C(AUVB) < C(AVUB) < rank(U) < rank(V)

if AUVB and AVUB satisfy the precedence constraints imposed by a given
precedence graph.

