
69 / 336

Join Ordering

3. Join Ordering

• Basics

• Search Space

• Greedy Heuristics

• IKKBZ

• MVP

• Dynamic Programming

• Generating Permutations

• Transformative Approaches

• Randomized Approaches

• Metaheuristics

• Iterative Dynamic Programming

• Order Preserving Joins

70 / 336

Join Ordering Basics

Queries Considered

Concentrate on join ordering, that is:

• conjunctive queries

• simple predicates

• predicates have the form a1 = a2 where a1 is an attribute and a2 is
either an attribute or a constant

• even ignore constants in some algorithms

We join relations R1, . . . ,Rn, where Ri can be

• a base relation

• a base relation including selections

• a more complex building block or access path

Pretending to have a base relation is ok for now.

71 / 336

Join Ordering Basics

Query Graph

Queries of this type can be characterized by their query graph:

• the query graph is an undirected graph with R1, . . . ,Rn as nodes

• a predicate of the form a1 = a2, where a1 ∈ Ri and a2 ∈ Rj forms an
edge between Ri and Rj labeled with the predicate

• a predicate of the form a1 = a2, where a1 ∈ Ri and a2 is a constant
forms a self-edge on Ri labeled with the predicate

• most algorithms will not handle self-edges, they have to be pushed
down

72 / 336

Join Ordering Basics

Sample Query Graph

student attend

lectureprofessor

sno=asno

lno=alno

pno=lpno

pname="Sokrates"

73 / 336

Join Ordering Basics

Shapes of Query Graphs

chains cycles stars

cliques cyclic tree grid

• real world queries are somewhere in-between

• chain, cycle, star and clique are interesting to study

• they represent certain kind of problems and queries

74 / 336

Join Ordering Basics

Join Trees

A join tree is a binary tree with

• join operators as inner nodes

• relations as leaf nodes

Algorithms will produce different kinds of join trees

• ordered or unordered

• with cross products or without

The most common case is ordered, without cross products

75 / 336

Join Ordering Basics

Shape of Join Trees

Commonly used classes of join trees:

• left-deep tree

• right-deep tree

• zigzag tree

• bushy tree

The first three are summarized as linear trees.

76 / 336

Join Ordering Basics

Join Selectivity

Input:

• cardinalities |Ri |
• selectivities fi ,j : if pi ,j is the join predicate between Ri and Rj , define

fi ,j =
|Ri �pi,j Rj |
|Ri × Rj |

Calculate:

• result cardinality:

|Ri �pi,j Rj | = fi ,j |Ri ||Rj |

Rational: The selectivity can be computed/estimated easily (ideally).

77 / 336

Join Ordering Basics

Cardinality of Join Trees

Given a join tree T , the result cardinality |T | can be computed recursively
as

|T | =
{
|Ri | if T is a leaf Ri

(
∏

Ri∈T1,Rj∈T2
fi ,j)|T1||T2| if T = T1 � T2

• allows for easy calculation of join cardinality

• requires only base cardinalities and selectivities

• assumes independence of the predicates

78 / 336

Join Ordering Basics

Sample Statistics

As running example, we use the following statistics:

|R1| = 10

|R2| = 100

|R3| = 1000

f1,2 = 0.1

f2,3 = 0.2

• implies query graph R1 − R2 − R3

• assume fi ,j = 1 for all other combinations

79 / 336

Join Ordering Basics

A Basic Cost Function

Given a join tree T , the cost function Cout is defined as

Cout(T) =

{
0 if T is a leaf Ri

|T |+ Cout(T1) + Cout(T2) if T = T1 � T2

• sums up the sizes of the (intermediate) results

• rational: larger intermediate results cause more work

• we ignore the costs of single relations as they have to be read anyway

80 / 336

Join Ordering Basics

Basic Join Specific Cost Functions

For single joins:

Cnlj(e1 � e2) = |e1||e2|
Chj(e1 � e2) = 1.2|e1|

Csmj(e1 � e2) = |e1| log(|e1|) + |e2| log(|e2|)

For sequences of join operators s = s1 � . . . � sn:

Cnlj(s) =
n∑

i=2

|s1 � . . . � si−1||si |

Chj(s) =
n∑

i=2

1.2|s1 � . . . � si−1|

Csmj(s) =
n∑

i=2

|s1 � . . . � si−1| log(|s1 � . . . � si−1|) +
n∑

i=2

|si | log(|si |)

81 / 336

Join Ordering Basics

Remarks on the Basic Cost Functions

• cost functions are simplistic

• algorithms are modelled very simplified (e.g. 1.2, no n-way sort etc.)

• designed for left-deep trees

• Chj and Csmj do not work for cross products (fix: take output
cardinality then, which is Cnl)

• in reality: other parameters than cardinality play a role

• cost functions assume the same join algorithm for the whole join tree

82 / 336

Join Ordering Basics

Sample Cost Calculations

Cout Cnl Chj Csmj

R1 � R2 100 1000 12 697.61
R2 � R3 20000 100000 120 10630.26
R1 × R3 10000 10000 10000 10000.00

(R1 � R2) � R3 20100 101000 132 11327.86
(R2 � R3) � R1 40000 300000 24120 32595.00
(R1 × R3) � R2 30000 1010000 22000 143542.00

• costs differ vastly between join trees

• different cost functions result in different costs

• the cheapest plan is always the same here, but relative order varies

• join trees with cross products are expensive

• join order is essential under all cost functions

83 / 336

Join Ordering Basics

More Examples

For the query |R1| = 1000, |R2| = 2, |R3| = 2, f1,2 = 0.1, f1,3 = 0.1
we have costs:

Cout

R1 � R2 200
R2 × R3 4
R1 � R3 200

(R1 � R2) � R3 240
(R2 × R3) � R1 44
(R1 � R3) � R2 240

• here cross product is best

• but relies on the small sizes of |R2| and |R3|
• attractive if the cardinality of one relation is small

84 / 336

Join Ordering Basics

More Examples (2)

For the query |R1| = 10, |R2| = 20, |R3| = 20, |R4| = 10, f1,2 = 0.01, f2,3 =
0.5, f3,4 = 0.01
we have costs:

Cout

R1 � R2 2
R2 � R3 200
R3 � R4 2

((R1 � R2) � R3) � R4 24
((R2 × R3) � R1) � R4 222
(R1 � R2) � (R3 � R4) 6

• covers all join trees due to the symmetry of the query

• the bushy tree is better than all join trees

85 / 336

Join Ordering Basics

Symmetry and ASI

• cost function Cimpl is called symmetric if
Cimpl(e1 �

impl e2) = Cimpl(e2 �
impl e1)

• for symmetric cost functions commutativity can be ignored

• ASI: adjacent sequence interchange (see IKKBZ algorithm for a
definition)

Our basic cost functions can be classified as:
ASI ¬ASI

symmetric Cout Csmj

¬symmetric Chj -

• more complex cost functions are usually ¬ASI, often also ¬symmetric

• symmetry and especially ASI can be exploited during optimization

86 / 336

Join Ordering Search Space

Classification of Join Ordering Problems

We distinguish four different dimensions:

1. query graph class: chain, cycle, star, and clique

2. join tree structure: left-deep, zig-zag, or bushy trees

3. join construction: with or without cross products

4. cost function: with or without ASI property

In total, 48 different join ordering problems.

87 / 336

Join Ordering Search Space

Reminder: Catalan Numbers

The number of binary trees with n leave nodes is given by C(n − 1), where
C(n) is defined as

C(n) =

{
1 if n = 0∑n−1

k=0 C(k)C(n − k − 1) if n > 0

It can be written in a closed form as

C(n) =
1

n + 1

(
2n

n

)

The Catalan Numbers grown in the order of Θ(4n/n
3
2)

88 / 336

Join Ordering Search Space

Number Of Join Trees with Cross Products

left deep n!
right deep n!
zig-zag n!2n−2

bushy n!C(n − 1)

= (2n−2)!
(n−1)!

• rational: number of leaf combinations (n!) × number of unlabeled
trees (varies)

• grows exponentially

• increases even more with a flexible tree structure

89 / 336

Join Ordering Search Space

Chain Queries, no Cross Products

Let us denote the number of left-deep join trees for a chain query
R1 − . . .− Rn as f (n)

• obviously f (0) = 1, f (1) = 1

• for n > 1, consider adding Rn to all join trees for R1 − . . .− Rn−1

• Rn can be added at any position following Rn−1

• lets denote the position of Rn−1 from the bottom with k ([1, n − 1])

• there are n − k join trees for adding Rn after Rn−1

• one additional tree if k = 1, Rn can also be added before Rn−1

• for Rn−1 to be at k, Rn−k − . . .Rn−2 must be below it. f (k − 1) trees

for n > 1 :

f (n) = 1 +
n−1∑
k=1

f (k − 1) ∗ (n − k)

90 / 336

Join Ordering Search Space

Chain Queries, no Cross Products (2)

The number of left-deep join trees for chain queries of size n is

f (n) =

{
1 if n < 2

1 +
∑n−1

k=1 f (k − 1) ∗ (n − k) if n ≥ 2

solving the recurrence gives the closed form

f (n) = 2n−1

• generalization to zig-zag as before

91 / 336

Join Ordering Search Space

Chain Queries, no Cross Products (3)

The generalization to bushy trees is not as obvious

• each subtree must contain a subchain to avoid cross products

• thus do not add single relations but subchains

• whole chain must be R1 − . . .− Rn, cut anywhere

• consider commutativity (two possibilities)

This leads to the formula

f (n) =

{
1 if n < 2∑n−1

k=1 2f (k)f (n − k) if n ≥ 2

solving the recurrence gives the closed form

f (n) = 2n−1C(n − 1)

92 / 336

Join Ordering Search Space

Star Queries, no Cross Products

Consider a star query with R1 at the center and R2, . . . ,Rn as satellites.

• the first join must involve R1

• afterwards all other relations can be added arbitrarily

This leads to the following formulas:

• left-deep: 2 ∗ (n − 1)!

• zig-zag: 2 ∗ (n − 1)! ∗ 2n−2 = (n − 1)! ∗ 2n−1

• bushy: no bushy trees possible (R1 required), same as zig-zag

93 / 336

Join Ordering Search Space

Clique Queries, no Cross Products

• in a clique query, every relation is connected to each other

• thus no join tree contains cross products

• all join trees are valid join trees, the number is the same as with cross
products

94 / 336

Join Ordering Search Space

Sample Numbers, without Cross Products

Chain Queries Star Queries
Left-Deep Zig-Zag Bushy Left-Deep Zig-Zag/Bushy

n 2n−1 22n−3 2n−1C(n − 1) 2(n − 1)! 2n−1(n − 1)!

1 1 1 1 1 1
2 2 2 2 2 2
3 4 8 8 4 8
4 8 32 40 12 48
5 16 128 224 48 384
6 32 512 1344 240 3840
7 64 2048 8448 1440 46080
8 128 8192 54912 10080 645120
9 256 32768 366080 80640 10321920

10 512 131072 2489344 725760 18579450

95 / 336

Join Ordering Search Space

Sample Numbers, with Cross Products

Left-Deep Zig-Zag Bushy
n n! n!2n−2 n!C(n − 1)

1 1 1 1
2 2 2 2
3 6 12 12
4 24 96 120
5 120 960 1680
6 720 11520 30240
7 5040 161280 665280
8 40320 2580480 17297280
9 362880 46448640 518918400

10 3628800 968972800 17643225600

96 / 336

Join Ordering Search Space

Problem Complexity

query graph join tree cross products cost function complexity

general left-deep no ASI NP-hard
tree/star/chain left-deep no ASI, 1 joint. P
star left-deep no NLJ+SMJ NP-hard

general/tree/star left-deep yes ASI NP-hard
chain left-deep yes - open

general bushy no ASI NP-hard
tree bushy no - open
star bushy no ASI P

chain bushy no any P

general bushy yes ASI NP-hard
tree/star/chain bushy yes ASI NP-hard

97 / 336

Join Ordering Greedy Heuristics

Greedy Heuristics - First Algorithm

• search space of joins trees is very large

• greedy heuristics produce suitable join trees very fast

• suitable for large queries

For the first algorithm we consider:

• left-deep trees

• no cross products

• relations ordered to some weight function (e.g. cardinality)

Note: the algorithms produces a sequence of relations; it uniquely
identifies the left-deep join tree.

98 / 336

Join Ordering Greedy Heuristics

Greedy Heuristics - First Algorithm (2)

GreedyJoinOrdering-1(R = {R1, . . . ,Rn},w : R → R)
Input: a set of relations to be joined and weight function
Output:a join order
S = ε
while (|R| > 0) {

m = arg minRi∈R w(Ri)
R = R \ {m}
S = S◦ < m >
}
return S

• disadvantage: fixed weight functions

• already chosen relations do not affect the weight

• e.g. does not support minimizing the intermediate result

99 / 336

Join Ordering Greedy Heuristics

Greedy Heuristics - Second Algorithm

GreedyJoinOrdering-2(R = {R1, . . . ,Rn},w : R,R∗ → R)
Input: a set of relations to be joined and weight function
Output:a join order
S = ε
while (|R| > 0) {

m = arg minRi∈R w(Ri ,S)
R = R \ {m}
S = S◦ < m >
}
return S

• can compute relative weights

• but first relation has a huge effect

• and the fewest information available

100 / 336

Join Ordering Greedy Heuristics

Greedy Heuristics - Third Algorithm

GreedyJoinOrdering-3(R = {R1, . . . ,Rn},w : R,R∗ → R)
Input: a set of relations to be joined and weight function
Output:a join order
S = ∅
for ∀Ri ∈ R {

R ′ = R \ {Ri}
S ′ =< Ri >
while (|R ′| > 0) {

m = arg minRj∈R′ w(Rj ,S
′)

R ′ = R ′ \ {m}
S ′ = S ′◦ < m >
}
S = S ∪ {S ′}
}
return arg minS ′∈S w(S ′[n],S ′[1 : n − 1])

• commonly used: minimize selectivities (MinSel)

101 / 336

Join Ordering Greedy Heuristics

Greedy Operator Ordering

• the previous greedy algorithms only construct left-deep trees

• Greedy Operator Ordering (GOO) [1] constructs bushy trees

Idea:

• all relations have to be joined somewhere

• but joins can also happen between whole join trees

• we therefore greedily combine join trees (which can be relations)

• combine join trees such that the intermediate result is minimal

102 / 336

Join Ordering Greedy Heuristics

Greedy Operator Ordering (2)

GOO(R = {R1, . . . ,Rn})
Input: a set of relations to be joined
Output:a join tree
T = R
while |T | > 1 {

(Ti ,Tj) = arg min(Ti∈T ,Tj∈T),Ti 6=Tj
|Ti � Tj |

T = (T \ {Ti}) \ {Tj}
T = T ∪ {Ti � Tj}
}
return T0 ∈ T

• constructs the result bottom up

• join trees are combined into larger join trees

• chooses the pair with the minimal intermediate result in each pass

103 / 336

Join Ordering IKKBZ

IKKBZ

Polynomial algorithm for join ordering (original [2], improved [3])

• produces optimal left-deep trees without cross products

• requires acyclic join graphs

• cost function must have ASI property

• join method must be fixed

Can be used as heuristic if the requirements are violated

104 / 336

Join Ordering IKKBZ

Overview

• the algorithms considers each relation as first relation to be joined

• it tries to order the other relations by ”benefit” (rank)

• if the ordering violates the query constraints, it constructs compounds

• the compounds guarantee the constraints (locally) and are again
ordered by benefit

• related to a known job-ordering algorithm

105 / 336

Join Ordering IKKBZ

Cost Function

The IKKBZ algorithm considers only cost functions of the form

C (Ti � Rj) = |Ti | ∗ hj(|Rj |)

• each relation Rj can have its own hj

• we denote the set of hj by H, writing CH for the parametrized cost
function

• examples: hj ≡ 1.2 for Chj , hj ≡ id for Cnl

We will often use cardinalities, thus we define ni :

• ni is the cardinality of Ri (n = Ri)

• hi (ni) is are the costs per input tuple of a join with Ri

106 / 336

Join Ordering IKKBZ

Precedence Graph

Given a query graph G = (V ,E) and a starting relation Rk , we construct
the directed precedence graph GP

k = (V P
k ,EP

k) rooted in Rk as follows:

1. choose Rk as the root node of GP
k , V P

k = {Rk}
2. while |V P

k | < |V |, choose a Ri ∈ V \ V P
k such that

∃Rj ∈ V P
k : (Rj ,Ri) ∈ E . Add Ri to V P

k and Rj → Ri to EP
k .

The precedence graph describes the (partial) ordering of joins implied by
the query graph.

107 / 336

Join Ordering IKKBZ

Sample Precedence Graph

R6

R5

R4R3

R2

R1

R2

R6R5

R4

R3

R1

query graph precedence graph rooted in R1

108 / 336

Join Ordering IKKBZ

Conformance to a Precedence Graph

A sequence S = v1, . . . , vk of nodes conforms to a precedence graph
G = (V ,E) if the following conditions are satisfied:

1. ∀i ∈ [2, k]∃j ∈ [1, i [: (vj , vi) ∈ E

2. 6 ∃i ∈ [1, k], j ∈]i , k] : (vj , vi) ∈ E

Note: IKKBZ constructs left-deep trees, therefore it is sufficient to
consider sequences.

109 / 336

Join Ordering IKKBZ

Notations

For non-empty sequences S1 and S2 and a precedence graph G = (V ,E),
we write S1 → S2 if S1 must occur before S2. More precisely S1 → S2 iff:

1. S1 and S2 conform to G

2. S1 ∩ S2 = ∅
3. ∃vi , vj ∈ V : vi ∈ S1 ∧ vj ∈ S2 ∧ (vi , vj) ∈ E

4. 6 ∃vi , vj ∈ V : vi ∈ S1 ∧ vj ∈ V \ S1 \ S2 ∧ (vi , vj) ∈ E

Further, we write

R1,2,...,k = R1 � R2 � . . . � Rk

n1,2,...,k = |R1,2,...,k |

110 / 336

Join Ordering IKKBZ

Selectivities

For a given precedence graph, let Ri be a relation and Ri be the set of a
relations from which there exists a path to Ri

• in any conforming join tree which includes Ri , all relations from Ri

must be joined first

• all other relations Rj that might be joined before Ri will have no
connection to Ri , thus fi ,j = 1

Hence, we can define the selectivity of the join with Ri as

si =

{
1 if |Ri | = 0∏

Rj∈Ri
fi ,j if |Ri | > 0

Note: we call the si a selectivities, although they depend on the
precedence graph

111 / 336

Join Ordering IKKBZ

Cardinalities

If the query graph is a chain (totally ordered), the following conditions
holds:

n1,2,...,k = sk ∗ |Rk | ∗ |R1,2,...,k−1|
= |sk | ∗ nk ∗ n1,2,...,k−1

As a closed form, we can write

n1,2,...,k =
k∏

i=1

sini

as s1 = 1

112 / 336

Join Ordering IKKBZ

Costs

The costs for a totally ordered precedence graph G can be computed as
follows:

CH(G) =
n∑

i=2

[n1,2,...,i−1hi (ni)]

=
n∑

i=2

[(
i∏

j=1

sjnj)hi (ni)]

• if we choose hi (ni) = sini then CH ≡ Cout

• the factor sini determines how much the input relation to be joined
with Ri changes its cardinality after the join has been performed

• if sini is less than one, we call the join decreasing, if it is larger than
one, we call the join increasing

113 / 336

Join Ordering IKKBZ

Costs (2)

For the algorithm, we prefer a (equivalent) recursive definition of the cost
function:

CH(ε) = 0

CH(Ri) = 0 if Ri is the root

CH(Ri) = hi (ni) else

CH(S1S2) = CH(S1) + T (S1) ∗ CH(S2)

where

T (ε) = 1

T (S) =
∏
Ri∈S

sini

114 / 336

Join Ordering IKKBZ

ASI Property

Let A and B be two sequences and V and U two non-empty sequences.
We say a cost function C has the adjacent sequence interchange property
(ASI property), if and only if there exists a function T and a rank function
defined as

rank(S) =
T (S)− 1

C (S)

such that the following holds

C (AUVB) ≤ C (AVUB)⇔ rank(U) ≤ rank(V)

if AUVB and AVUB satisfy the precedence constraints imposed by a given
precedence graph.

