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Dynamic Programming - Connected Subgraphs

• DP a very versatile strategy

• common usage scenario: bushy, no cross produts

• DPsize and DPsub support it, of course, but not optimal

• enumeration order does not consider the query graph

• many pairs have to be pruned due to conectedness

• especially bad for DPsub

Solution: consider the query graph structure during DP enumeration [5]
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Asymptotic Search Space

DPsize:

• organize DP by the size of the join tree

• problem: only few DP slots, many pairs considered

good algorithm for chains, very bad for cliques:
chains cycles stars cliques

pairs O(n4) O(n4) O(4n) O(4n)

DPsub:

• organize DP by the set of relations involved

• problem: always 2n DP slots, fixed enumeration

good algorithm for cliques, but adapts badly:
chains cycles stars cliques

pairs O(2n) O(n2n) O(3n) O(3n)
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Observation

DPsize and DPsub generate many pairs that are pruned anyway
(connectedness, overlap).

Typical pruned pairs (chain with 4 relations):

not connected not disjoint invalid subproblems

last example ⇒ every join partner must be a connected subgraph:

. . .
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Graph Theoretic Approach

• reformulation as graph theoretic problem:

• enumerate all connected subgraphs of the query graph

• for each subgraph enumerate all other connected subgraphs that are
disjoint but connected to it

• each connected subgraph - complement pair (ccp) can be joined

• enumerate them suitable for DP ⇒ DP algorithm

algorithm adapts naturally to the graph structure:
chains cycles stars cliques

pairs O(n3) O(n3) O(n2n) O(3n)
Lohman et al: #ccp is a lower bound for all DP enumeration algorithms
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DP Algorithm using Connected Subgraphs
If we can efficiently enumerate all connected subgraphs/connected
complement pairs, the resulting DP algorithm is:

DPccp(R)
Input: a connected query graph with relations R = {R0, . . . ,Rn−1}
Output:an optimal bushy join tree
B = an empty DP table 2R → join tree
for ∀Ri ∈ R

B[{Ri}] = Ri

for ∀ csg-cmp-pairs (S1,S2), S = S1 ∪ S2 {
p1 = B[S1], p2 = B[S2]
P = CreateJoinTree(p1, p2);
if B[S ] = ε ∨ C (B[S ]) > C (P)

B[S ] = P
}
return B[{R0, . . . ,Rn−1}]

The main problem is enumerating the pairs.
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Effect on Search Space

Absolute number of generated pairs

Chain Star
n DPccp DPsub DPsize DPccp DPsub DPsize
2 1 2 1 1 2 1
5 20 84 73 32 130 110

10 165 3,962 1,135 2,304 38,342 57,888
15 560 130,798 5,628 114,688 9,533,170 57,305,929
20 1,330 4,193,840 17,545 4,980,736 2,323,474,358 59,892,991,338

Cycle Clique
n DPccp DPsub DPsize DPccp DPsub DPsize
2 1 2 1 1 2 1
5 40 140 120 90 180 280

10 405 11,062 2,225 28,501 57,002 306,991
15 1,470 523,836 11,760 7,141,686 14,283,372 307,173,877
20 3,610 22,019,294 37,900 1,742,343,625 3,484,687,250 309,338,182,241
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Enumerating Connected Subgraphs

• two steps: enumerate all connected subgraphs, enumerate disjoint but
connected subgraphs for a given one ⇒ pairs

• enumerate all pairs, enumerate no duplicates, enumerate for DP

• if (a, b) is enumerated, do not enumerate (b, a)

• requires total ordering of connected subgraphs

• preparation: label nodes breadth-first from 0 to n − 1

Preliminaries, given query graph G = (V ,E ):

V = {v0, . . . , vn−1}
N (V ′) = {v ′|v ∈ V ′ ∧ (v , v ′) ∈ E}
Bi = {vj |j ≤ i}
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Choose all nodes as enumeration
start node once

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

First emit only the node itself as
subgraph

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Then enlarge the subgraph recur-
sively

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Prohibit nodes with smaller labels.
Thus the set of valid nodes in-
creases over time

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

In each recursion, find all neigh-
boring nodes that are not prohib-
ited

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Add all combinations to the sub-
graph and emit the new subgraph

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Add all combinations to the sub-
graph and emit the new subgraph

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Add all combinations to the sub-
graph and emit the new subgraph

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Then, add all combinations to the
subgraph and increase recursively

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

The neighborhood is prohibited
during recursion, preventing dupli-
cates

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

Prohibit all nodes that will be start
nodes later on and the primary
subgraph

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

Find all neighboring nodes that
are not prohibited

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

Consider each of the nodes

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

Choose the node as complemen-
tary subgraph and emit it

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

Recursively increase the subgraph
re-using EnumerateCsgRec

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

Again prohibit nodes with a
smaller label to prevent duplicates

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

• EnumerateCsg+EnumerateCmp produce all ccp

• resulting algorithm DPccp considers exactly #ccp pairs

• which is the lower bound for all DP enumeration algorithms
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Remarks

• DPsize is good for chains, DPsub for cliques

• implementation of DPccp is more involved

• each enumeration step must be fast (ideally O(1), at most O(n),
where n is the number of relations)

• but benefits are huge

• DPccg adopts to query graph structure

• considers minimal number of pairs

• especially for ”in-between queries” (e.g. stars) much faster



175 / 336

Join Ordering Generating Permutations

Generating Permutations

The algorithms so far have some drawbacks:

• greedy heuristics only heuristics

• will probably not find the optimal solution

• DP algorithms optimal, but very heavy weight

• especially memory consumption is high

• find a solution only after the complete search

Sometimes we want a more light-weight algorithm:

• low memory consumption

• stop if time runs out

• still find the optimal solution if possible
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Generating Permutations (2)

We can achieve this when only considering left-deep trees:

• left-deep trees are permutations of the relations to be joined

• permutations can be generated directly

• generating all permutations is too expensive

• but some permutations can be ignored:
Consider the join sequence R1R2R3R4. If we know that R1R3R2 is
cheaper than R1R2R3, we do not have to consider R1R2R3R4.

Idea: successively add a relation. An extended sequence is only explored if
exchanging the last two relations does not result in a cheaper sequence.
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Recursive Search

ConstructPermutations(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal left-deep join tree
B = ε
P = ε
for ∀Ri ∈ R {

ConstructPermutationsRec(P◦ < Ri >,R \ {Ri},B)
} return B

• algorithm considers a prefix P and the rest R

• keeps track of the best tree found so far B

• increases the prefix recursively
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Recursive Search (2)

ConstructPermutationsRec(P,R,B)
Input: a prefix P, remaining relations R, best plan B
Output:side effects on B
if |R| = 0 {

if B = ε ∨ C (B) > C (P) {
B = P
}
} else {

for ∀Ri ∈ R {
if C (P◦ < Ri >) ≤ C (P[1 : |P| − 1]◦ < Ri ,P[|P|] >) {

ConstructPermutationsRec(P◦ < Ri >,R \ {Ri},B)
}
}
}
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Remarks

Good:

• linear memory

• immediately produces plan alternatives

• anytime algorithm

• finds the optimal plan eventually

Bad:

• worst-case runtime of ties occur

• worst-case runtime of no ties occur is an open problem

Often fast, can be stopped anytime, but can perform poor.
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Transformative Approaches

Main idea: [6]

• use equivalences directly (associativity, commutativity)

• would make integrating new equivalences easy

Problems:

• how to navigate the search space

• equivalences have no order

• how to guarantee finding the optimal solution

• how to avoid exhaustive search
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Rule Set

R1 � R2  R2 � R1 Commutativity
(R1 � R2) � R3  R1 � (R2 � R3) Right Associativity
R1 � (R2 � R3)  (R1 � R2) � R3 Left Associativity
(R1 � R2) � R3  (R1 � R3) � R2 Left Join Exchange
R1 � (R2 � R3)  R2 � (R1 � R3) Right Join Exchange

Two more rules are often used to transform left-deep trees:

• swap exchanges two arbitrary relations in a left-deep tree

• 3Cycle performs a cyclic rotation of three arbitrary relations in a
left-deep tree.

To try another join method, another rule called join method exchange is
introduced.
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Rule Set RS-0

• commutativity

• left-associativity

• right-associativity
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Basic Algorithm

ExhaustiveTransformation({R1, . . . ,Rn})
Input: a set of relations
Output: an optimal join tree
Let T be an arbitrary join tree for all relations
Done = ∅ // contains all trees processed
ToDo = {T} // contains all trees to be processed
while |ToDo| > 0 {

T = an arbitrary tree in ToDo
ToDo = ToDo \T ;
Done = Done ∪ {T};
Trees = ApplyTransformations(T );
for ∀ T ∈ Trees {

if T 6∈ ToDo ∪ Done
ToDo = ToDo ∪ {T}

}
}
return arg minT∈Done C (T )
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Basic Algorithm (2)

ApplyTransformations(T )
Input: join tree
Output: all trees derivable by associativity and commutativity
Trees = ∅
Subtrees = all subtrees of T rooted at inner nodes
for ∀ S ∈ Subtrees {

if S is of the form S1 � S2

Trees = Trees ∪{S2 � S1}
if S is of the form (S1 � S2) � S3

Trees = Trees ∪{S1 � (S2 � S3)}
if S is of the form S1 � (S2 � S3)

Trees = Trees ∪{(S1 � S2) � S3}
}
return Trees;
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Remarks

• if no cross products are to be considered, extend if conditions for
associativity rules.

• problem 1: explores the whole search space

• problem 2: generates join trees more than once

• problem 3: sharing of subtrees is non-trivial
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Join Ordering Transformative Approaches

Search Space
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Introducing the Memo Structure

A memoization strategy is used to keep the runtime reasonable:

• for any subset of relations, dynamic programming remembers the best
join tree.

• this does not quite suffice for the transformation-based approach.

• instead, we have to keep all join trees generated so far including those
differing in the order of the arguments of a join operator.

• however, subtrees can be shared.

• this is done by keeping pointers into the data structure (see next
slide).



188 / 336

Join Ordering Transformative Approaches

Memo Structure Example

{R1,R2,R3} {R1,R2} � R3,R3 � {R1,R2},
{R1,R3} � R2,R2 � {R1,R3},
{R2,R3} � R1,R1 � {R2,R3}

{R2,R3} {R2} � {R3}, {R3} � {R2}
{R1,R3} {R1} � {R3}, {R3} � {R1}
{R1,R2} {R1} � {R2}, {R2} � {R1}
{R3} R3

{R2} R2

{R1} R1

• in Memo Structure: arguments are pointers to classes

• Algorithm: ExploreClass expands a class

• Algorithm: ApplyTransformation2 expands a member of a class
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Memoizing Algorithm

ExhaustiveTransformation2(Query Graph G )
Input: a query specification for relations {R1, . . . ,Rn}.
Output: an optimal join tree
initialize MEMO structure
ExploreClass({R1, . . . ,Rn})
return arg minT∈class {R1,...,Rn} C (T )

• stored an arbitrary join tree in the memo structure

• explores alternatives recursively
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Memoizing Algorithm (2)

ExploreClass(C)
Input: a class C ⊆ {R1, . . . ,Rn}
Output: none, but has side-effect on MEMO-structure
while not all join trees in C have been explored {

choose an unexplored join tree T in C
ApplyTransformation2(T )
mark T as explored

}

• considers all alternatives within one class

• transformations themselves are done in ApplyTransformation2
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Memoizing Algorithm (3)

ApplyTransformations2(T )
Input: a join tree of a class C
Output: none, but has side-effect on MEMO-structure
ExploreClass(left-child(T ))
ExploreClass(right-child(T ));
for ∀ transformation T and class member of child classes {

for ∀T ′ resulting from applying T to T {
if T ′ not in MEMO structure {

add T ′ to class C of MEMO structure
}

}
}

• first explores subtrees
• then applies all known transformations to the tree
• stores new trees in the memo structure
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Remarks

• Applying ExhaustiveTransformation2 with a rule set consisting of
Commutativity and Left and Right Associativity generates
4n − 3n+1 + 2n+2 − n − 2 duplicates

• Contrast this with the number of join trees contained in a completely
filled MEMO structure: 3n − 2n+1 + n + 1

• Solve the problem of duplicate generation by disabling applied rules.
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Rule Set RS-1

T1: Commutativity C1 �0 C2  C2 �1 C1

Disable all transformations T1, T2, and T3 for �1.

T2: Right Associativity (C1 �0 C2) �1 C3  C1 �2 (C2 �3 C3)
Disable transformations T2 and T3 for �2 and enable all
rules for �3.

T3: Left associativity C1 �0 (C2 �1 C3)  (C1 �2 C2) �3 C3

Disable transformations T2 and T3 for �3 and enable all
rules for �2.
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Example for chain R1 − R2 − R3 − R4
Class Initialization Transformation Step

{R1, R2, R3, R4} {R1, R2} �111 {R3, R4} {R3, R4} �000 {R1, R2} 3
R1 �100 {R2, R3, R4} 4
{R1, R2, R3} �100 R4 5
{R2, R3, R4} �000 R1 8
R4 �000 {R1, R2, R3} 10

{R2, R3, R4} R2 �111 {R3, R4} 4
{R3, R4} �000 R2 6
{R2, R3} �100 R4 6
R4 �000 {R2, R3} 7

{R1, R3, R4}
{R1, R2, R4}
{R1, R2, R3} {R1, R2} �111 R3 5

R3 �000 {R1, R2} 9
R1 �100 {R2, R3} 9
{R2, R3} �000 R1 9

{R3, R4} R3 �111 R4 R4 �000 R3 2
{R2, R4}
{R2, R3}
{R1, R4}
{R1, R3}
{R1, R2} R1 �111 R2 R2 �000 R1 1
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Rule Set RS-2

Bushy Trees: Rule set for clique queries and if cross products are allowed:

T1: Commutativity C1 �0 C2  C2 �1 C1

Disable all transformations T1, T2, T3, and T4 for �1.

T2: Right Associativity (C1 �0 C2) �1 C3  C1 �2 (C2 �3 C3)
Disable transformations T2, T3, and T4 for �2.

T3: Left Associativity C1 �0 (C2 �1 C3)  (C1 �2 C2) �3 C3

Disable transformations T2, T3 and T4 for �3.

T4: Exchange (C1 �0 C2) �1 (C3 �2 C4)  (C1 �3 C3) �4 (C2 �5 C4)
Disable all transformations T1, T2, T3, and T4 for �4.

If we initialize the MEMO structure with left-deep trees, we can strip down
the above rule set to Commutativity and Left Associativity. Reason: from
a left-deep join tree we can generate all bushy trees with only these two
rules
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Rule Set RS-3

Left-deep trees:

T1 Commutativity R1 �0 R2  R2 �1 R1

Here, the Ri are restricted to classes with exactly one
relation. T1 is disabled for �1.

T2 Right Join Exchange (C1 �0 C2) �1 C3  (C1 �2 C3) �3 C2

Disable T2 for �3.


