Dynamic Programming - Connected Subgraphs
Dynamic Programming - Connected Subgraphs

DP a very versatile strategy

e common usage scenario: bushy, no cross produts

DPsize and DPsub support it, of course, but not optimal
e enumeration order does not consider the query graph

e many pairs have to be pruned due to conectedness

especially bad for DPsub

Solution: consider the query graph structure during DP enumeration [5]

Dynamic Programming - Connected Subgraphs
Asymptotic Search Space

DPsize:
e organize DP by the size of the join tree

e problem: only few DP slots, many pairs considered

good algorithm for chains, very bad for cliques:
‘ chains cycles stars cliques

pairs | O(n*) O(n*) O(4") O(4")

DPsub:
e organize DP by the set of relations involved
e problem: always 2" DP slots, fixed enumeration

good algorithm for cliques, but adapts badly:
‘ chains cycles stars cliques

pairs | O(2") O(m2") 0(3") 0(3")

Join Ordering Dynamic Programming - Connected Subgraphs

Observation

DPsize and DPsub generate many pairs that are pruned anyway
(connectedness, overlap).

Typical pruned pairs (chain with 4 relations):

o—eo-. o—eo—o o—eo
......... Y . —0 . []
not connected not disjoint invalid subproblems

last example = every join partner must be a connected subgraph:
*o—0—0—0

Dynamic Programming - Connected Subgraphs
Graph Theoretic Approach

e reformulation as graph theoretic problem:
e enumerate all connected subgraphs of the query graph
e for each subgraph enumerate all other connected subgraphs that are
disjoint but connected to it
e each connected subgraph - complement pair (ccp) can be joined
e enumerate them suitable for DP = DP algorithm
algorithm adapts naturally to the graph structure:
‘ chains cycles stars cliques
pairs ‘ o(n®) 0O(n®) 0O(n2") 0(3")
Lohman et al: #ccp is a lower bound for all DP enumeration algorithms

Dynamic Programming - Connected Subgraphs
DP Algorithm using Connected Subgraphs

If we can efficiently enumerate all connected subgraphs/connected
complement pairs, the resulting DP algorithm is:

DPccp(R)
Input: a connected query graph with relations R = {Rp, ..., Rp—1}
Output:an optimal bushy join tree
B = an empty DP table 2F — join tree
for VR, € R
BI{R] = R,
for V csg-cmp-pairs (51,52), S=S51U S {
p1 = B[S1], p2 = B[S)]
P = CreateJoinTree(p1, p2);
if B[S] =€eV C(B[S]) > C(P)
B[S]=P
¥

return B[{Ro, ..., Rn_1}]

The main problem is enumerating the pairs.

Dynamic Programming - Connected Subgraphs
Effect on Search Space

Absolute number of generated pairs

Chain Star
n|DPccp DPsub DPsize DPccp DPsub DPsize
2 1 2 1 1 2 1
5 20 84 73 32 130 110
10 165 3,962 1,135 2,304 38,342 57,888
15| 560 130,798 5,628 114,688 9,633,170 57,305,929
20| 1,330 4,193,840 17,545 4,980,736 2,323,474,358 59,892,991,338

Cycle Clique
n|DPccp DPsub DPsize DPccp DPsub DPsize
2 1 2 1 1 2 1
5 40 140 120 90 180 280
10| 405 11,062 2,225 28,501 57,002 306,991
15| 1,470 523,836 11,760 7,141,686 14,283,372 307,173,877
20| 3,610 22,019,294 37,900|1,742,343,625 3,484,687,250 309,338,182,241

Join Ordering Dynamic Programming - Connected Subgraphs

Enumerating Connected Subgraphs

two steps: enumerate all connected subgraphs, enumerate disjoint but
connected subgraphs for a given one = pairs

enumerate all pairs, enumerate no duplicates, enumerate for DP
if (a, b) is enumerated, do not enumerate (b, a)
requires total ordering of connected subgraphs

preparation: label nodes breadth-first from 0 to n — 1

Preliminaries, given query graph G = (V, E):

V. = {w,...,Va-1}
N (V") {Vlve VI A(v,V) e E}
B {vili <i}

Join Ordering Dynamic Programming - Connected Subgraphs

Enumerating Connected Subgraphs (2)

EnumerateCsg(G)

for all i € [n—1,...,0] descending {
emit {v;};
EnumerateCsgRec(G, {vi}, B;);

}

EnumerateCsgRec(G, S, X)

N=N(S)\X;

for all S C N, S’ # (), enumerate subsets first {
emit (SUS');

}

for all S C N, S’ # (), enumerate subsets first {
EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

EnumerateCsg(G) :
) . Choose all nodes as enumeration
for all i € [n—1,...,0] descending {
.] start node once
emit {v;};

EnumerateCsgRec(G, {v;}, B));
}

EnumerateCsgRec(G, S, X) Ro
for all S C N, S’ # (), enumerate subsets first {
emit (5 U 5/); RI_R2_R3
) N1/
for all S C N, S’ # (), enumerate subsets first { I{4
EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

EnumerateCsg(G) . . .

forall i € [n—1....,0] descending { First emit only the node itself as
emit {v;}; subgraph
EnumerateCsgRec(G, {vi}, B;);

}

EnumerateCsgRec(G, S, X) Ro

N =N(S)\X;

for all S C N, S’ # (), enumerate subsets first { / | \
emit (5 U 5/); RI_RZ_R_O,

} | N\ |/

for all S C N, S’ # (), enumerate subsets first { l{4

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

EnumerateCsg(G)
forall i € [n—1....,0] descending { Then enlarge the subgraph recur-
.) sively
emit {v;};

EnumerateCsgRec(G, {v;}, B));
}

EnumerateCsgRec(G, S, X) Ro
for all S C N, S’ # (), enumerate subsets first {
emit (5 U 5/); RI_R2_R3
) N1/
for all S C N, S’ # (), enumerate subsets first { l{4
EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

EnumerateCsg(G
) g(6) . Prohibit nodes with smaller labels.
for all i € [n—1,...,0] descending { , ,
. Thus the set of valid nodes in-
emit {v;};

EnumerateCsgRec(G, {vi}, B;); creases over time

}

EnumerateCsgRec(G, S, X)

N =N(S)\X;

for all S C N, S’ # (), enumerate subsets first { / | \
emit (SUS'); \C

} | N\ |/

for all S C N, S’ # (), enumerate subsets first { l{4

EnumerateCsgRec(G, (SUS’), (X U N));
}

Join Ordering Dynamic Programming - Connected Subgraphs

Enumerating Connected Subgraphs (2)

EnumerateCsg(G)

for all i € [n—1,...,0] descending {
emit {v;};
EnumerateCsgRec(G, {vi}, B;);

}

EnumerateCsgRec(G, S, X)

N=N(S)\X;

for all S C N, S’ # (), enumerate subsets first {
emit (SUS');

}

for all S C N, S’ # (), enumerate subsets first {
EnumerateCsgRec(G, (SUS’), (X U N));
}

/ I\
AN

U,JU/

Join Ordering Dynamic Programming - Connected Subgraphs

Enumerating Connected Subgraphs (2)

EnumerateCsg(G)

for all i € [n—1,...,0] descending {
emit {v;};
EnumerateCsgRec(G, {vi}, B;);

}

EnumerateCsgRec(G, S, X)

N=N(S)\X;

for all S C N, S’ # (), enumerate subsets first {
emit (SUS');

}

for all S C N, S’ # (), enumerate subsets first {
EnumerateCsgRec(G, (SUS’), (X U N));
}

/ I\
AN

U,JU/

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

EnumerateCsg(G)
for all i € [n—1,...,0] descending {
emit {v;};
EnumerateCsgRec(G, {vi}, B;);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X;
for all S C N, S’ # (), enumerate subsets first { / |
emit (SUS'); _RZ
} | N\
for all S C N, S’ # (), enumerate subsets first { I{4

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

EnumerateCsg(G) : . .
. . In each recursion, find all neigh-
for all i € [n—1,...,0] descending { _ i
emit {v;): .bormg nodes that are not prohib-
EnumerateCsgRec(G, {vi}, B;); ted
}
EnumerateCsgRec(G, S, X)
N =N(S)\ X;
for all S C N, S’ # (), enumerate subsets first { / | \
emit (5 U 5/); _RZ_R3
} \ /

for all S C N, S’ # (), enumerate subsets first {
EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

E

numer.ateng(G) . Add all combinations to the sub-

for all i € [n—1,...,0] descending { h and emit th beranh
emit {Vi}; graph ana emit the new subgrap
EnumerateCsgRec(G, {vi}, B;);

}

EnumerateCsgRec(G, S, X)

N =N(S)\X;

for all S C N, S’ # (), enumerate subsets first { / | \
emit (5 U 5’); _RZ_R:J,

} \ /

for all S C N, S’ # (), enumerate subsets first {
EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

E

numer.ateng(G) . Add all combinations to the sub-

for all i € [n—1,...,0] descending { h and emit th beranh
emit {Vi}; graph ana emit the new subgrap
EnumerateCsgRec(G, {vi}, B;);

}

EnumerateCsgRec(G, S, X)

N =N(S)\X;

for all S C N, S’ # (), enumerate subsets first { / | \
emit (5 U 5’); _RZ_R3

} \ /

for all S C N, S’ # (), enumerate subsets first {
EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

E

numer.ateng(G) . Add all combinations to the sub-

for all i € [n—1,...,0] descending { h and emit th beranh
emit {Vi}; graph ana emit the new subgrap
EnumerateCsgRec(G, {vi}, B;);

}

EnumerateCsgRec(G, S, X)

N =N(S)\X;

for all S C N, S’ # (), enumerate subsets first { / | \
emit (5 U 5’); _RZ_R:J,

} \ /

for all S C N, S’ # (), enumerate subsets first {
EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

E
numer.ateng(G) . Then, add all combinations to the
for all i € [n—1,...,0] descending { b hand i el
emit {v;}: subgraph and increase recursively

EnumerateCsgRec(G, {v;}, B));
}

EnumerateCsgRec(G, S, X)

N =N(S)\X;

for all S C N, S’ # (), enumerate subsets first { / | \
emit (5 U 5/); _RZ_R:J,

) \ /

for all S C N, S’ # (), enumerate subsets first {
EnumerateCsgRec(G, (SUS'), (XU N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

E teCsg(G
numerate s8(C) . The neighborhood is prohibited
for all i € [n—1,...,0] descending {
.) during recursion, preventing dupli-
emit {v;};
EnumerateCsgRec(G, {vi}, B;); cates
}
EnumerateCsgRec(G, S, X)
N =N(S)\X;
for all S C N, S’ # (), enumerate subsets first { / | \
emit (5 U 5/); _RZ_R:J,
) N\ |/

for all S C N, S’ # (), enumerate subsets first {
EnumerateCsgRec(G, (SUS’), (X U N));
}

Join Ordering Dynamic Programming - Connected Subgraphs

Enumerating Complementary Subgraphs
EnumerateCmp(G,51)

X = Bmin(Sl) U St
N = N(Sl) \X;
for all (v; € N by descending i) {
emit {v;};
EnumerateCsgRec(G, {v;}, X U (B; N N));
}

AN

I \
2_R3

R,
/

Pt A

WLCTNOIE -8 Dynamic Programming - Connected Subgraphs

Enumerating Complementary Subgraphs
EnumerateCmp(G,51)

Prohibit all nodes that will be start
X = . .
Brin(si) U ‘_SL nodes later on and the primary
N'=N(S)\X; subgraph

for all (v; € N by descending i) {
emit {v;};
EnumerateCsgRec(G, {v;}, X U (B; N N));
}

AN

N
2_R3

R,
/

=L

WLCTNOIE -8 Dynamic Programming - Connected Subgraphs

Enumerating Complementary Subgraphs

E
Xnu_mg:?:fs)mj(siﬁl) Find all neighboring nodes that

N = N(51)\ X: are not prohibited
for all (v; € N by descending i) {

emit {v;};

EnumerateCsgRec(G, {v;}, X U (B; N N));
}

AN

N
2_R3

R,
/

=L

WLCTNOIE -8 Dynamic Programming - Connected Subgraphs

Enumerating Complementary Subgraphs
EnumerateCmp(G,51)

X = Binin(s,) U St: Consider each of the nodes
N = N(Sl) \X;
for all (v; € N by descending i) {
emit {v;};
EnumerateCsgRec(G, {v;}, X U (B; N N));
}

AN

N
2_R3

R,
/

=L

WLCTNOIE -8 Dynamic Programming - Connected Subgraphs

Enumerating Complementary Subgraphs

E teCmp(G,S
Xnu—mlg;?n(esl)mj(&; 1) Choose the node as complemen-

N = N(51)\ X; tary subgraph and emit it
for all (v; € N by descending i) {

emit {v;};

EnumerateCsgRec(G, {v;}, X U (B; N N));
}

AN

N
2_R3

R,
/

=L

WLCTNOIE -8 Dynamic Programming - Connected Subgraphs

Enumerating Complementary Subgraphs
EnumerateCmp(G,51)

X = Binin(s,) U St: Recu.rsiveEIy increasectheRsubgraph
N:N(Sl)\X; re-using Enumerate(CsgRec
for all (v; € N by descending i) {

emit {v;};

EnumerateCsgRec(G, {v;}, X U (B; N N));
}

AN

N
2_R3

R,
/

=L

WLCTNOIE -8 Dynamic Programming - Connected Subgraphs

Enumerating Complementary Subgraphs

E teCmp(G,S : i .
Xnu:mg;a:n(eSI;nSgl;) Again prohibit nodes with a

N = N(51)\ X: smaller label to prevent duplicates
for all (v; € N by descending i) {

emit {v;};

EnumerateCsgRec(G, {v;}, X U (B; N N));

}

VA RN
Rl_ _R3
NI/

R,

Join Ordering Dynamic Programming - Connected Subgraphs

Enumerating Complementary Subgraphs
EnumerateCmp(G,51)
X = Bmin(Sl) U St
N = N(Sl) \X;
for all (v; € N by descending i) {
emit {v;};
EnumerateCsgRec(G, {v;}, X U (B; N N));

}

e EnumerateCsg+EnumerateCmp produce all ccp
e resulting algorithm DPccp considers exactly #ccp pairs

e which is the lower bound for all DP enumeration algorithms

Join Ordering Dynamic Programming - Connected Subgraphs

Remarks

e DPsize is good for chains, DPsub for cliques
e implementation of DPccp is more involved

e each enumeration step must be fast (ideally O(1), at most O(n),
where n is the number of relations)

e but benefits are huge
e DPccg adopts to query graph structure
e considers minimal number of pairs

e especially for "in-between queries” (e.g. stars) much faster

Generating Permutations

The algorithms so far have some drawbacks:

greedy heuristics only heuristics
will probably not find the optimal solution

DP algorithms optimal, but very heavy weight

especially memory consumption is high

find a solution only after the complete search

Sometimes we want a more light-weight algorithm:

e low memory consumption
e stop if time runs out
o still find the optimal solution if possible

Generating Permutations (2)

We can achieve this when only considering left-deep trees:
o |eft-deep trees are permutations of the relations to be joined
e permutations can be generated directly
e generating all permutations is too expensive

e but some permutations can be ignored:
Consider the join sequence Ry Ry R3Ry. If we know that RiR3Rs is
cheaper than R;R>R3, we do not have to consider RiRyR3Ry.

Idea: successively add a relation. An extended sequence is only explored if
exchanging the last two relations does not result in a cheaper sequence.

WCTNOIE A Generating Permutations

Recursive Search

ConstructPermutations(R)

Input: a set of relations R = {Ry,..., Ry} to be joined
Output:an optimal left-deep join tree

B=¢

P=c¢

for VR, € R {

ConstructPermutationsRec(Po < R; >,R \ {R;},B)
} return B

e algorithm considers a prefix P and the rest R
o keeps track of the best tree found so far B

e increases the prefix recursively

WCTNOIE A Generating Permutations

Recursive Search (2)

ConstructPermutationsRec(P, R, B)
Input: a prefix P, remaining relations R, best plan B
Output:side effects on B
if |[R| =0 {
if B=eVv C(B)> C(P){
B="P
}
} else {
for VR € R {
if C(Po< R >)<C(P[1:|P|—-1]o < R;,P[|P]] >) {
ConstructPermutationsRec(Po < R; >, R\ {Ri}, B)
¥
}
}

WCTNOIE A Generating Permutations

Remarks

Good:
e linear memory
e immediately produces plan alternatives

e anytime algorithm

finds the optimal plan eventually
Bad:
e worst-case runtime of ties occur

e worst-case runtime of no ties occur is an open problem

Often fast, can be stopped anytime, but can perform poor.

NGOG -8 Transformative Approaches

Transformative Approaches

Main idea: [6]
e use equivalences directly (associativity, commutativity)

e would make integrating new equivalences easy

Problems:
e how to navigate the search space
e equivalences have no order
e how to guarantee finding the optimal solution

how to avoid exhaustive search

WETNOIE S8 Transformative Approaches

Rule Set

Ry X R,

(R1 X Rz) X R3
Ry X (R2 X R3)
(Rl X Rg) X R3
Ry X (R2 X R3)

R> X Ry

Ry X (Rz X R3)
(R]_ X R2) X R3
(Rl X R3) X Ry
Ry, X (R]_ X R3)

§ 888 d

Commutativity
Right Associativity
Left Associativity
Left Join Exchange
Right Join Exchange

Two more rules are often used to transform left-deep trees:

e swap exchanges two arbitrary relations in a left-deep tree

e 3Cycle performs a cyclic rotation of three arbitrary relations in a

left-deep tree.

To try another join method, another rule called join method exchange is

introduced.

LELE UL A
Rule Set RS-0

e commutativity
o |eft-associativity

e right-associativity

TERSTRGE e AppEeaics
Basic Algorithm

ExhaustiveTransformation({R, ..., Rn})
Input: a set of relations
Output: an optimal join tree
Let T be an arbitrary join tree for all relations
Done = () // contains all trees processed
ToDo = {T} // contains all trees to be processed
while |ToDo| > 0 {
T = an arbitrary tree in ToDo
ToDo = ToDo \ T;
Done = Done U {T};
Trees = ApplyTransformations(T);
for V. T € Trees {
if T ¢ ToDo U Done
ToDo = ToDo U {T}

}
}

return arg min7cpone C(T)

TERSTRGE e AppEeaics
Basic Algorithm (2)

ApplyTransformations(T)
Input: join tree
Output: all trees derivable by associativity and commutativity
Trees = ()
Subtrees = all subtrees of T rooted at inner nodes
for V' S € Subtrees {
if S is of the form S1 X S,
Trees = Trees U{Sy X 51}
if S is of the form (51 X Sp) X S3
Trees = Trees U{S; X (52 X S3)}
if S is of the form S; X (52 X S3)
Trees = Trees U{(S51 X Sp) X S3}

}

return Trees;

NGOG -8 Transformative Approaches

Remarks

if no cross products are to be considered, extend if conditions for
associativity rules.

problem 1: explores the whole search space

problem 2: generates join trees more than once

problem 3: sharing of subtrees is non-trivial

o X X, X X X X X
o N gl N gl N/ o el e
N S W e
. K. S K. K. X X
g . g . = = 1 . M - M
/ / / / / / /
N L L N
MAp/l} MAp/l MA /ikmAs/pAymA, a MAp/g NA,/aAvaAg/a
= F

=1 1 1 1 1

N A Y ey A A A A A R A A
B T T W W N N N W W W
N N S - - . . \
A N N A Al Il (el
Ay TRy TRy TR Ry TRy L Ryt Ry
N Ny N Ny N Ny % g
. S Y N

Search Space

NGOG -8 Transformative Approaches

Introducing the Memo Structure

A memoization strategy is used to keep the runtime reasonable:

for any subset of relations, dynamic programming remembers the best
join tree.

this does not quite suffice for the transformation-based approach.

instead, we have to keep all join trees generated so far including those
differing in the order of the arguments of a join operator.

however, subtrees can be shared.

this is done by keeping pointers into the data structure (see next
slide).

WETNOIE S8 Transformative Approaches

Memo Structure Example

{Rl,RQ,R3} {Rl,RQ}NRg,R3N{R1,R2},
{Rl, R3} X Ry, Ry X {Rl, R3},
{Rz, R3} X Ry, Ry X {Rg, R3}
{R2, Rs} {Ro} M {Rs}, {Rs} X {Ro}
{R1, Rs} {Ri} X {Rs}, {Rs} X {R1}
{R1, R} {Ri} X {Ro}, {Ro} X {Ru}

{Rs} Rs
{Ra} R
{R1} Ry

e in Memo Structure: arguments are pointers to classes
e Algorithm: ExploreClass expands a class

e Algorithm: ApplyTransformation2 expands a member of a class

TERSTRGE e AppEeaics
Memoizing Algorithm

Exhaustive Transformation2(Query Graph G)

Input: a query specification for relations {Ry, ..., Rn}.
Output: an optimal join tree

initialize MEMO structure

ExploreClass({R1, ..., Rn})

return arg min ¢ jass {Ri,...,Rn} C(T)

e stored an arbitrary join tree in the memo structure

e explores alternatives recursively

TERSTRGE e AppEeaics
Memoizing Algorithm (2)

ExploreClass(C)

Input: aclassC C {Ry,..., Ry}

Output: none, but has side-effect on MEMO-structure

while not all join trees in C have been explored {
choose an unexplored join tree T in C
ApplyTransformation2(T)
mark T as explored

e considers all alternatives within one class

e transformations themselves are done in ApplyTransformation2

TERSTRGE e AppEeaics
Memoizing Algorithm (3)

ApplyTransformations2(T)
Input: a join tree of a class C
Output: none, but has side-effect on MEMO-structure
ExploreClass(left-child(T))
ExploreClass(right-child(T));
for V transformation 7 and class member of child classes {
for VT’ resulting from applying 7 to T {
if 7’ not in MEMO structure {
add T’ to class C of MEMO structure
}

o first explores subtrees
e then applies all known transformations to the tree
e stores new trees in the memo structure

NGOG -8 Transformative Approaches

Remarks

e Applying ExhaustiveTransformation2 with a rule set consisting of
Commutativity and Left and Right Associativity generates
4n —3n+1 4 2m+2 _ 2 duplicates

e Contrast this with the number of join trees contained in a completely
filled MEMO structure: 3" — 2™1 4 n 41

e Solve the problem of duplicate generation by disabling applied rules.

TERSTRGE e AppEeaics
Rule Set RS-1

T1: Commutativity G Mg G ~~ G My (G
Disable all transformations Ty, T, and T3 for Xj.

T>: Right Associativity (Cl Mo C2) X1 C3 ~ C1 My (C2 N3 C3)
Disable transformations T, and T3 for X5 and enable all
rules for Xs.

T3: Left associativity Ci Mo (G Xy G3) ~ (G X G) M3 G5
Disable transformations T, and T3 for X3 and enable all
rules for Xo.

NGOG -8 Transformative Approaches

Example for chain Ry — R, — Rs — Ry

[Class I Initialization [Transformation [Step |

{R1, R2, R3, Ry} || {R1, Ra} M111 {R3, Ra} | {R3, Ra} Moo {R1, Ra} 3

R1 X100 {R2, R3, Ra} 4

{R1, R2, R3} M100 Ry 5

{R2, R3, R4} Mooo R1 8

R4 Mooo {R1, R2, R3} 10

{R2, R3, Ry} Ry X111 {R3, R4} 4

{R3, Ra} Mooo R2 6

{R2, R3} M100 R4 6

R4 Mooo {R2, Rs} 7

{R1, R3, R4}
{R1, R2, R4}

{R1, R2, R3} {R1, Rz} M111 R3 5

Rz Mggo {R1, R2} 9

Ry X100 {R2, R3} 9

{R2, R3} Moo0 R1 9

{Rs, R4} R3 Mi11 Ry R4 Moo R3 2
{R2, R4}
{R2, R3}
{R1, Ra}
{R1, R3}

{R1, R2} R M111 R2 R> Moo Ri 1

TERSTRGE e AppEeaics
Rule Set RS-2

Bushy Trees: Rule set for clique queries and if cross products are allowed:
T1: Commutativity C3 Mg G ~» G Xy Gy
Disable all transformations T7, T», T3, and T4 for Xj.
T>: Right Associativity (Cl Mo C2) M1 C3 ~ (1 My (C2 M3 C3)
Disable transformations T», T3, and T4 for X,.
T3: Left Associativity Ci Mg (G X1 G3) ~ (G Xy G) M3 G5
Disable transformations T, T3 and T4 for Xs.
T4Z Exchange (Cl MO C2) X4 (C3 X C4) ~ (Cl N3 C3) Xy (C2 N5 C4)
Disable all transformations T7, T», T3, and T, for X4.
If we initialize the MEMO structure with left-deep trees, we can strip down
the above rule set to Commutativity and Left Associativity. Reason: from
a left-deep join tree we can generate all bushy trees with only these two
rules

NGOG -8 Transformative Approaches

Rule Set RS-3

Left-deep trees:
T; Commutativity Ry Mg R ~~» Ry X1 Ry

Here, the R; are restricted to classes with exactly one
relation. T7 is disabled for X;.

T> Right Join Exchange (G Mo G) X1 G~ (G My G3) M3 Gy
Disable T, for X3.

