Dynamic Programming - Connected Subgraphs

- DP a very versatile strategy
- common usage scenario: bushy, no cross produts
- DPsize and DPsub support it, of course, but not optimal
- enumeration order does not consider the query graph
- many pairs have to be pruned due to conectedness
- especially bad for DPsub

Solution: consider the query graph structure during DP enumeration [5]

Asymptotic Search Space

DPsize:

- organize DP by the size of the join tree
- problem: only few DP slots, many pairs considered

good algorithm for chains, very bad for cliques:

pairs
$$O(n^4)$$
 $O(n^4)$ $O(4^n)$ $O(4^n)$

DPsub:

- organize DP by the set of relations involved
- problem: always 2ⁿ DP slots, fixed enumeration

good algorithm for cliques, but adapts badly:

J	chains	cycles	stars	cliques
pairs	$O(2^n)$	$O(n2^n)$	$O(3^n)$	$O(3^n)$

Observation

DPsize and DPsub generate many pairs that are pruned anyway (connectedness, overlap).

last example ⇒ every join partner must be a connected subgraph:

Graph Theoretic Approach

- reformulation as graph theoretic problem:
- enumerate all connected subgraphs of the query graph
- for each subgraph enumerate all other connected subgraphs that are disjoint but connected to it
- each connected subgraph complement pair (ccp) can be joined
- enumerate them suitable for DP ⇒ DP algorithm

algorithm adapts naturally to the graph structure:

pairs
$$O(n^3)$$
 $O(n^3)$ $O(n2^n)$ $O(3^n)$

Lohman et al: #ccp is a lower bound for all DP enumeration algorithms

DP Algorithm using Connected Subgraphs

If we can efficiently enumerate all connected subgraphs/connected complement pairs, the resulting DP algorithm is:

```
DPccp(R)
Input: a connected query graph with relations R = \{R_0, \dots, R_{n-1}\}
Output: an optimal bushy join tree
B = \text{an empty DP table } 2^R \rightarrow \text{join tree}
for \forall R_i \in R
  B[\{R_i\}] = R_i
for \forall csg-cmp-pairs (S_1, S_2), S = S_1 \cup S_2 {
  p_1 = B[S_1], p_2 = B[S_2]
  P = \text{CreateJoinTree}(p_1, p_2);
  if B[S] = \epsilon \vee C(B[S]) > C(P)
     B[S] = P
return B[\{R_0, ..., R_{n-1}\}]
```

The main problem is enumerating the pairs,

Effect on Search Space

Absolute number of generated pairs

	Chain			Star			
n	DPccp	DPsub	DPsize	DPccp	DPsub	DPsize	
2	1	2	1	1	2	1	
5	20	84	73	32	130	110	
10	165	3,962	1,135	2,304	38,342	57,888	
15	560	130,798	5,628	114,688	9,533,170	57,305,929	
20	1,330	4,193,840	17,545	4,980,736	2,323,474,358	59,892,991,338	
	Cycle			Clique			
n	DPccp	DPsub	DPsize	DPccp	DPsub	DPsize	
2	1	2	1	1	2	1	
5	40	140	120	90	180	280	
10	405	11,062	2,225	28,501	57,002	306,991	
15	1,470	523,836	11,760	7,141,686	14,283,372	307,173,877	
20	3,610	22,019,294	37,900	1,742,343,625	3,484,687,250	309,338,182,241	

- two steps: enumerate all connected subgraphs, enumerate disjoint but connected subgraphs for a given one ⇒ pairs
- enumerate all pairs, enumerate no duplicates, enumerate for DP
- if (a, b) is enumerated, do not enumerate (b, a)
- requires total ordering of connected subgraphs
- preparation: label nodes breadth-first from 0 to n-1

Preliminaries, given query graph G = (V, E):

$$V = \{v_0, \dots, v_{n-1}\}$$

$$\mathcal{N}(V') = \{v' | v \in V' \land (v, v') \in E\}$$

$$\mathcal{B}_i = \{v_j | j \le i\}$$

```
EnumerateCsg(G)
for all i \in [n-1, ..., 0] descending {
    emit \{v_i\};
    EnumerateCsgRec(G, {v_i}, \mathcal{B}_i);
EnumerateCsgRec(G, S, X)
N = \mathcal{N}(S) \setminus X:
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    emit (S \cup S'):
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    EnumerateCsgRec(G, (S \cup S'), (X \cup N));
```



```
EnumerateCsg(G)
                                                  Choose all nodes as enumeration
for all i \in [n-1, ..., 0] descending {
                                                  start node once
    emit \{v_i\};
    EnumerateCsgRec(G, {v_i}, \mathcal{B}_i);
EnumerateCsgRec(G, S, X)
N = \mathcal{N}(S) \setminus X:
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    emit (S \cup S'):
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    EnumerateCsgRec(G, (S \cup S'), (X \cup N));
```

```
EnumerateCsg(G)
                                                  First emit only the node itself as
for all i \in [n-1, ..., 0] descending {
                                                  subgraph
    emit \{v_i\};
    EnumerateCsgRec(G, {v_i}, \mathcal{B}_i);
EnumerateCsgRec(G, S, X)
N = \mathcal{N}(S) \setminus X:
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    emit (S \cup S'):
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    EnumerateCsgRec(G, (S \cup S'), (X \cup N));
```

```
EnumerateCsg(G)
                                                  Then enlarge the subgraph recur-
for all i \in [n-1, ..., 0] descending {
                                                  sively
    emit \{v_i\};
    EnumerateCsgRec(G, {v_i}, \mathcal{B}_i);
EnumerateCsgRec(G, S, X)
N = \mathcal{N}(S) \setminus X:
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    emit (S \cup S'):
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    EnumerateCsgRec(G, (S \cup S'), (X \cup N));
```

```
EnumerateCsg(G)

for all i \in [n-1, ..., 0] descending {
   emit \{v_i\};
   EnumerateCsgRec(G, \{v_i\}, \mathcal{B}_i);
}
```

Prohibit nodes with smaller labels. Thus the set of valid nodes increases over time

```
EnumerateCsgRec(G, S, X)

N = \mathcal{N}(S) \setminus X;

for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {

 emit (S \cup S');

}

for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {

 EnumerateCsgRec(G, (S \cup S'), (X \cup N));

}
```



```
EnumerateCsg(G)
for all i \in [n-1, ..., 0] descending {
    emit \{v_i\};
    EnumerateCsgRec(G, {v_i}, \mathcal{B}_i);
EnumerateCsgRec(G, S, X)
N = \mathcal{N}(S) \setminus X:
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    emit (S \cup S');
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    EnumerateCsgRec(G, (S \cup S'), (X \cup N));
```



```
EnumerateCsg(G)
for all i \in [n-1, ..., 0] descending {
    emit \{v_i\};
    EnumerateCsgRec(G, {v_i}, \mathcal{B}_i);
EnumerateCsgRec(G, S, X)
N = \mathcal{N}(S) \setminus X:
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    emit (S \cup S');
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    EnumerateCsgRec(G, (S \cup S'), (X \cup N));
```



```
EnumerateCsg(G)
for all i \in [n-1, ..., 0] descending {
    emit \{v_i\};
    EnumerateCsgRec(G, {v_i}, \mathcal{B}_i);
EnumerateCsgRec(G, S, X)
N = \mathcal{N}(S) \setminus X:
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    emit (S \cup S');
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    EnumerateCsgRec(G, (S \cup S'), (X \cup N));
```



```
EnumerateCsg(G)

for all i \in [n-1,\ldots,0] descending {
    emit \{v_i\};
    EnumerateCsgRec(G, \{v_i\}, \mathcal{B}_i);
}
```

```
EnumerateCsgRec(G, S, X)

N = \mathcal{N}(S) \setminus X;

for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    emit (S \cup S');
}

for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    EnumerateCsgRec(G, (S \cup S'), (X \cup N));
}
```



```
EnumerateCsg(G)
                                                 Add all combinations to the sub-
for all i \in [n-1, ..., 0] descending {
                                                 graph and emit the new subgraph
    emit \{v_i\};
    EnumerateCsgRec(G, {v_i}, \mathcal{B}_i);
EnumerateCsgRec(G, S, X)
N = \mathcal{N}(S) \setminus X:
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    emit (S \cup S');
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    EnumerateCsgRec(G, (S \cup S'), (X \cup N));
```

```
EnumerateCsg(G)
                                                 Add all combinations to the sub-
for all i \in [n-1, ..., 0] descending {
                                                 graph and emit the new subgraph
    emit \{v_i\};
    EnumerateCsgRec(G, {v_i}, \mathcal{B}_i);
EnumerateCsgRec(G, S, X)
N = \mathcal{N}(S) \setminus X:
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    emit (S \cup S');
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    EnumerateCsgRec(G, (S \cup S'), (X \cup N));
```

```
EnumerateCsg(G)
                                                 Add all combinations to the sub-
for all i \in [n-1, ..., 0] descending {
                                                 graph and emit the new subgraph
    emit \{v_i\};
    EnumerateCsgRec(G, {v_i}, \mathcal{B}_i);
EnumerateCsgRec(G, S, X)
N = \mathcal{N}(S) \setminus X:
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    emit (S \cup S');
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    EnumerateCsgRec(G, (S \cup S'), (X \cup N));
```

```
EnumerateCsg(G)
                                                  Then, add all combinations to the
for all i \in [n-1, ..., 0] descending {
                                                  subgraph and increase recursively
    emit \{v_i\};
    EnumerateCsgRec(G, {v_i}, \mathcal{B}_i);
EnumerateCsgRec(G, S, X)
N = \mathcal{N}(S) \setminus X:
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    emit (S \cup S');
for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first {
    EnumerateCsgRec(G, (S \cup S'), (X \cup N));
```

```
EnumerateCsg(G)

for all i \in [n-1,\ldots,0] descending {
    emit \{v_i\};
    EnumerateCsgRec(G, \{v_i\}, \mathcal{B}_i);
}
```

The neighborhood is prohibited during recursion, preventing duplicates

```
EnumerateCsgRec(G, S, X)

N = \mathcal{N}(S) \setminus X;

for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first \{ emit (S \cup S');

\}

for all S' \subseteq N, S' \neq \emptyset, enumerate subsets first \{ EnumerateCsgRec(G, (S \cup S'), (X \cup N));

\}
```



```
EnumerateCmp(G,S_1)

X = \mathcal{B}_{\min(S_1)} \cup S_1;

N = \mathcal{N}(S_1) \setminus X;

for all (v_i \in N \text{ by descending } i) {

emit \{v_i\};

EnumerateCsgRec(G, \{v_i\}, X \cup (\mathcal{B}_i \cap N));

}
```



```
EnumerateCmp(G,S_1)

X = \mathcal{B}_{\min(S_1)} \cup S_1;

N = \mathcal{N}(S_1) \setminus X;

for all (v_i \in N \text{ by descending } i) {

emit \{v_i\};

EnumerateCsgRec(G, \{v_i\}, X \cup (\mathcal{B}_i \cap N));
}
```


Prohibit all nodes that will be start nodes later on and the primary subgraph

```
EnumerateCmp(G,S_1)
X = \mathcal{B}_{\min(S_1)} \cup S_1;
N = \mathcal{N}(S_1) \setminus X;
for all (v_i \in N \text{ by descending } i) {
emit \{v_i\};
EnumerateCsgRec(<math>G, \{v_i\}, X \cup (\mathcal{B}_i \cap N));
}
```



```
EnumerateCmp(G,S_1)

X = \mathcal{B}_{\min(S_1)} \cup S_1;

N = \mathcal{N}(S_1) \setminus X;

for all (v_i \in N \text{ by descending } i) {

emit \{v_i\};

EnumerateCsgRec(G, \{v_i\}, X \cup (\mathcal{B}_i \cap N));
}
```



```
EnumerateCmp(G,S_1)
X = \mathcal{B}_{\min(S_1)} \cup S_1;
N = \mathcal{N}(S_1) \setminus X;
for all (v_i \in N \text{ by descending } i) {
emit \{v_i\};
EnumerateCsgRec(<math>G, \{v_i\}, X \cup (\mathcal{B}_i \cap N));
}
```



```
EnumerateCmp(G,S_1)
X = \mathcal{B}_{\min(S_1)} \cup S_1;
N = \mathcal{N}(S_1) \setminus X;
for all (v_i \in N \text{ by descending } i) {
emit \{v_i\};
EnumerateCsgRec(<math>G, \{v_i\}, X \cup (\mathcal{B}_i \cap N));
}
```



```
EnumerateCmp(G,S_1)
X = \mathcal{B}_{\min(S_1)} \cup S_1;
N = \mathcal{N}(S_1) \setminus X;
for all (v_i \in N \text{ by descending } i) {
emit \{v_i\};
EnumerateCsgRec(<math>G, \{v_i\}, X \cup (\mathcal{B}_i \cap N));
}
```



```
EnumerateCmp(G,S_1)
X = \mathcal{B}_{\min(S_1)} \cup S_1;
N = \mathcal{N}(S_1) \setminus X;
for all (v_i \in N \text{ by descending } i) {
   emit \{v_i\};
   EnumerateCsgRec(G, \{v_i\}, X \cup (\mathcal{B}_i \cap N));
}
```

- EnumerateCsg+EnumerateCmp produce all ccp
- resulting algorithm DPccp considers exactly #ccp pairs
- which is the lower bound for all DP enumeration algorithms

Remarks

- DPsize is good for chains, DPsub for cliques
- implementation of DPccp is more involved
- each enumeration step must be fast (ideally O(1), at most O(n), where n is the number of relations)
- but benefits are huge
- DPccg adopts to query graph structure
- considers minimal number of pairs
- especially for "in-between queries" (e.g. stars) much faster

Generating Permutations

The algorithms so far have some drawbacks:

- greedy heuristics only heuristics
- will probably not find the optimal solution
- DP algorithms optimal, but very heavy weight
- especially memory consumption is high
- find a solution only after the complete search

Sometimes we want a more light-weight algorithm:

- low memory consumption
- stop if time runs out
- still find the optimal solution if possible

Generating Permutations (2)

We can achieve this when only considering left-deep trees:

- left-deep trees are permutations of the relations to be joined
- permutations can be generated directly
- generating all permutations is too expensive
- but some permutations can be ignored: Consider the join sequence $R_1R_2R_3R_4$. If we know that $R_1R_3R_2$ is cheaper than $R_1R_2R_3$, we do not have to consider $R_1R_2R_3R_4$.

Idea: successively add a relation. An extended sequence is only explored if exchanging the last two relations does not result in a cheaper sequence.

Recursive Search

```
ConstructPermutations(R)

Input: a set of relations R = \{R_1, \dots, R_n\} to be joined Output: an optimal left-deep join tree B = \epsilon
P = \epsilon
for \forall R_i \in R {
    ConstructPermutationsRec(P \circ < R_i > R \setminus \{R_i\}, B)}
} return B
```

- algorithm considers a prefix P and the rest R
- keeps track of the best tree found so far B
- increases the prefix recursively

Recursive Search (2)

```
ConstructPermutationsRec(P, R, B)
Input: a prefix P, remaining relations R, best plan B
Output: side effects on B
if |R| = 0 {
  if B = \epsilon \lor C(B) > C(P) {
     B = P
} else {
  for \forall R_i \in R  {
     if C(P \circ \langle R_i \rangle) \leq C(P[1:|P|-1] \circ \langle R_i, P[|P|] \rangle) {
        ConstructPermutationsRec(P \circ \langle R_i \rangle, R \setminus \{R_i\}, B)
```

Remarks

Good:

- linear memory
- immediately produces plan alternatives
- anytime algorithm
- finds the optimal plan eventually

Bad:

- worst-case runtime of ties occur
- worst-case runtime of no ties occur is an open problem

Often fast, can be stopped anytime, but can perform poor.

Transformative Approaches

Main idea: [6]

- use equivalences directly (associativity, commutativity)
- would make integrating new equivalences easy

Problems:

- how to navigate the search space
- · equivalences have no order
- how to guarantee finding the optimal solution
- how to avoid exhaustive search

Rule Set

```
R_1 \bowtie R_2 \qquad \rightsquigarrow \qquad R_2 \bowtie R_1 \qquad \text{Commutativity}

(R_1 \bowtie R_2) \bowtie R_3 \qquad \rightsquigarrow \qquad R_1 \bowtie (R_2 \bowtie R_3) \qquad \text{Right Associativity}

R_1 \bowtie (R_2 \bowtie R_3) \qquad \rightsquigarrow \qquad (R_1 \bowtie R_2) \bowtie R_3 \qquad \text{Left Associativity}

(R_1 \bowtie R_2) \bowtie R_3 \qquad \rightsquigarrow \qquad (R_1 \bowtie R_3) \bowtie R_2 \qquad \text{Left Join Exchange}

R_1 \bowtie (R_2 \bowtie R_3) \qquad \rightsquigarrow \qquad R_2 \bowtie (R_1 \bowtie R_3) \qquad \text{Right Join Exchange}
```

Two more rules are often used to transform left-deep trees:

- swap exchanges two arbitrary relations in a left-deep tree
- *3Cycle* performs a cyclic rotation of three arbitrary relations in a left-deep tree.

To try another join method, another rule called *join method exchange* is introduced.

- commutativity
- left-associativity
- right-associativity

Basic Algorithm

```
ExhaustiveTransformation(\{R_1, \ldots, R_n\})
Input: a set of relations
Output: an optimal join tree
Let T be an arbitrary join tree for all relations
Done = \emptyset // contains all trees processed
ToDo = \{T\} // contains all trees to be processed
while |ToDo| > 0 {
    T = an arbitrary tree in ToDo
    ToDo = ToDo \ T:
    Done = Done \cup \{T\};
    Trees = ApplyTransformations(T);
    for \forall T \in \text{Trees } \{
        if T \notin \mathsf{ToDo} \cup \mathsf{Done}
             \mathsf{ToDo} = \mathsf{ToDo} \cup \{T\}
```

Basic Algorithm (2)

```
ApplyTransformations(T)
Input: join tree
Output: all trees derivable by associativity and commutativity
Trees = \emptyset
Subtrees = all subtrees of T rooted at inner nodes
for \forall S \in Subtrees {
    if S is of the form S_1 \bowtie S_2
         Trees = Trees \cup \{S_2 \bowtie S_1\}
    if S is of the form (S_1 \bowtie S_2) \bowtie S_3
         Trees = Trees \cup \{S_1 \bowtie (S_2 \bowtie S_3)\}\
    if S is of the form S_1 \bowtie (S_2 \bowtie S_3)
         Trees = Trees \cup \{(S_1 \bowtie S_2) \bowtie S_3\}
return Trees:
```

Remarks

- if no cross products are to be considered, extend **if** conditions for associativity rules.
- problem 1: explores the whole search space
- problem 2: generates join trees more than once
- problem 3: sharing of subtrees is non-trivial

Search Space

Introducing the Memo Structure

A memoization strategy is used to keep the runtime reasonable:

- for any subset of relations, dynamic programming remembers the best join tree.
- this does not guite suffice for the transformation-based approach.
- instead, we have to keep all join trees generated so far including those differing in the order of the arguments of a join operator.
- however, subtrees can be shared.
- this is done by keeping pointers into the data structure (see next slide).

Memo Structure Example

$\boxed{\{R_1,R_2,R_3\}}$	$\{R_1, R_2\} \bowtie R_3, R_3 \bowtie \{R_1, R_2\},\$ $\{R_1, R_3\} \bowtie R_2, R_2 \bowtie \{R_1, R_3\},\$
	$ \{R_1, R_3\} \bowtie R_2, R_2 \bowtie \{R_1, R_3\}, $
	$ \{R_2,R_3\}\bowtie R_1,R_1\bowtie \{R_2,R_3\} $
$\{R_2, R_3\}$	$\{R_2\} \bowtie \{R_3\}, \{R_3\} \bowtie \{R_2\}$
$\{R_1,R_3\}$	$\{R_1\} \bowtie \{R_3\}, \{R_3\} \bowtie \{R_1\}$
$\{R_1,R_2\}$	$\{R_1\} \bowtie \{R_2\}, \{R_2\} \bowtie \{R_1\}$
$\{R_3\}$	R ₃
$\{R_2\}$	R ₂
$\{R_1\}$	R_1

- in Memo Structure: arguments are pointers to classes
- Algorithm: ExploreClass expands a class
- Algorithm: ApplyTransformation2 expands a member of a class

Memoizing Algorithm

```
ExhaustiveTransformation2(Query Graph G)

Input: a query specification for relations \{R_1, \ldots, R_n\}.

Output: an optimal join tree initialize MEMO structure

ExploreClass(\{R_1, \ldots, R_n\})

return arg min_{T \in \text{class } \{R_1, \ldots, R_n\}} C(T)
```

- stored an arbitrary join tree in the memo structure
- explores alternatives recursively

Memoizing Algorithm (2)

```
ExploreClass(C)
Input: a class C \subseteq \{R_1, \dots, R_n\}
Output: none, but has side-effect on MEMO-structure while not all join trees in C have been explored \{ choose an unexplored join tree T in C ApplyTransformation2(T) mark T as explored \{
```

- considers all alternatives within one class
- transformations themselves are done in ApplyTransformation2

Memoizing Algorithm (3)

```
ApplyTransformations2(T)
Input: a join tree of a class C
Output: none, but has side-effect on MEMO-structure
ExploreClass(left-child(T))
ExploreClass(right-child(T));
\textbf{for} \ \forall \ transformation \ \mathcal{T} \ \text{and class member of child classes} \ \{
    for \forall T' resulting from applying T to T {
        if T' not in MEMO structure {
            add T' to class C of MEMO structure
```

- first explores subtrees
- then applies all known transformations to the tree
- stores new trees in the memo structure

Remarks

- Applying ExhaustiveTransformation2 with a rule set consisting of Commutativity and Left and Right Associativity generates $4^n 3^{n+1} + 2^{n+2} n 2$ duplicates
- Contrast this with the number of join trees contained in a completely filled MEMO structure: $3^n 2^{n+1} + n + 1$
- Solve the problem of duplicate generation by disabling applied rules.

- T_1 : Commutativity $C_1 \bowtie_0 C_2 \leadsto C_2 \bowtie_1 C_1$ Disable all transformations T_1 , T_2 , and T_3 for \bowtie_1 .
- T_2 : Right Associativity $(C_1 \bowtie_0 C_2) \bowtie_1 C_3 \rightsquigarrow C_1 \bowtie_2 (C_2 \bowtie_3 C_3)$ Disable transformations T_2 and T_3 for \bowtie_2 and enable all rules for \bowtie_3 .
- T_3 : Left associativity $C_1 \bowtie_0 (C_2 \bowtie_1 C_3) \rightsquigarrow (C_1 \bowtie_2 C_2) \bowtie_3 C_3$ Disable transformations T_2 and T_3 for \bowtie_3 and enable all rules for \bowtie_2 .

Example for chain $R_1 - R_2 - R_3 - R_4$

	- 1 <u>- 2</u>	J +	
Class	Initialization	Transformation	Step
$\{R_1, R_2, R_3, R_4\}$	$\{R_1, R_2\} \bowtie_{111} \{R_3, R_4\}$	$\{R_3, R_4\} \bowtie_{000} \{R_1, R_2\}$	3
		$R_1 \bowtie_{100} \{R_2, R_3, R_4\}$	4
		$\{R_1, R_2, R_3\} \bowtie_{100} R_4$	5
		$\{R_2, R_3, R_4\} \bowtie_{000} R_1$	8
		$R_4 \bowtie_{000} \{R_1, R_2, R_3\}$	10
$\{R_2, R_3, R_4\}$		$R_2 \bowtie_{111} \{R_3, R_4\}$	4
[1,2,1,3,1,4]		$\{R_3, R_4\} \bowtie_{000} R_2$	6
		$\{R_2, R_3\} \bowtie_{100} R_4$	6
		$R_4 \bowtie_{000} \{R_2, R_3\}$	7
$\{R_1, R_3, R_4\}$		74 7 1000 [72,73]	•
$\{R_1, R_2, R_4\}$			
$\{R_1, R_2, R_3\}$		$\{R_1, R_2\} \bowtie_{111} R_3$	5
(1/2/3)		$R_3 \bowtie_{000} \{R_1, R_2\}$	9
		$R_1 \bowtie_{100} \{R_2, R_3\}$	9
		$\{R_2, R_3\} \bowtie_{000} R_1$	9
$\{R_3, R_4\}$	$R_3 \bowtie_{111} R_4$	$R_4 \bowtie_{000} R_3$	2
$\{R_2, R_4\}$			
$\{R_2, R_3\}$			
$\{R_1, R_4\}$			
$\{R_1, R_3\}$			
$\{R_1, R_2\}$	$R_1 \bowtie_{111} R_2$	$R_2 \bowtie_{000} R_1$	_ 1_

Bushy Trees: Rule set for clique queries and if cross products are allowed:

- T_1 : Commutativity $C_1 \bowtie_0 C_2 \leadsto C_2 \bowtie_1 C_1$ Disable all transformations T_1 , T_2 , T_3 , and T_4 for \bowtie_1 .
- T_2 : Right Associativity $(C_1 \bowtie_0 C_2) \bowtie_1 C_3 \rightsquigarrow C_1 \bowtie_2 (C_2 \bowtie_3 C_3)$ Disable transformations T_2 , T_3 , and T_4 for \bowtie_2 .
- T_3 : Left Associativity $C_1 \bowtie_0 (C_2 \bowtie_1 C_3) \rightsquigarrow (C_1 \bowtie_2 C_2) \bowtie_3 C_3$ Disable transformations T_2 , T_3 and T_4 for \bowtie_3 .
- T_4 : Exchange $(C_1 \bowtie_0 C_2) \bowtie_1 (C_3 \bowtie_2 C_4) \rightsquigarrow (C_1 \bowtie_3 C_3) \bowtie_4 (C_2 \bowtie_5 C_4)$ Disable all transformations T_1 , T_2 , T_3 , and T_4 for \bowtie_4 .

If we initialize the MEMO structure with left-deep trees, we can strip down the above rule set to Commutativity and Left Associativity. Reason: from a left-deep join tree we can generate all bushy trees with only these two rules

Left-deep trees:

 T_1 Commutativity $R_1 \bowtie_0 R_2 \leadsto R_2 \bowtie_1 R_1$ Here, the R_i are restricted to classes with exactly one relation. T_1 is disabled for \bowtie_1 .

 T_2 Right Join Exchange $(C_1 \bowtie_0 C_2) \bowtie_1 C_3 \rightsquigarrow (C_1 \bowtie_2 C_3) \bowtie_3 C_2$ Disable T_2 for \bowtie_3 .