
197 / 336

Join Ordering Randomized Approaches

Generating Random Join Trees

Generating a random join tree is quite useful:

• allows for cost sampling

• randomized optimization procedures

• basis for Simulated Annealing, Iterative Improvement etc.

• easy with cross products, difficult without

• we consider with cross products first

Main problems:

• generating all join trees (potentially)

• creating all with the same probability

198 / 336

Join Ordering Randomized Approaches

Ranking/Unranking

Let S be a set with n elements.

• a bijective mapping f : S → [0, n[is called ranking

• a bijective mapping f : [0, n[→ S is called unranking

Given an unranking function, we can generate random elements in S by
generating a random number in [0, n[and unranking this number.
Challenge: making unranking fast.

199 / 336

Join Ordering Randomized Approaches

Random Permutations

Every permutation corresponds to a left-deep join tree possibly with cross
products.
Standard algorithm to generate random permutations is the starting point
for the algorithm:

for ∀k ∈ [0, n[descending
swap(π[k], π[random(k)])

Array π initialized with elements [0, n[.
random(k) generates a random number in [0, k].

200 / 336

Join Ordering Randomized Approaches

Random Permutations

• Assume the random elements produced by the algorithm are
rn−1, . . . , r0 where 0 ≤ ri ≤ i .

• Thus, there are exactly n(n − 1)(n − 2) . . . 1 = n! such sequences and
there is a one to one correspondance between these sequences and
the set of all permutations.

• Unrank r ∈ [0, n![by turning it into a unique sequence of values
rn−1, . . . , r0.
Note that after executing the swap with rn−1 every value in [0, n[is
possible at position π[n − 1].
Further, π[n − 1] is never touched again.

• Hence, we can unrank r as follows. We first set rn−1 = r mod n and
perform the swap. Then, we define r ′ = br/nc and iteratively unrank
r ′ to construct a permutation of n − 1 elements.

201 / 336

Join Ordering Randomized Approaches

Generating Random Permutations

Unrank(n, r)
Input: the number n of elements to be permuted

and the rank r of the permutation to be constructed
Output:a permutation π
for ∀0 ≤ i < n

π[i] = i
for ∀n ≥ i > 0 descending {

swap(π[i − 1], π[r mod i])
r = br/ic
}
return π;

202 / 336

Join Ordering Randomized Approaches

Generating Random Bushy Trees with Cross Products

Steps of the algorithm:

1. Generate a random number b in [0,C (n − 1)[.

2. Unrank b to obtain a bushy tree with n − 1 inner nodes.

3. Generate a random number p in [0, n![.

4. Unrank p to obtain a permutation.

5. Attach the relations in order p from left to right as leaf nodes to the
binary tree obtained in Step 2.

The only step that we have still to discuss is Step 2.

203 / 336

Join Ordering Randomized Approaches

Tree Encoding

• Preordertraversal:
I Inner node: ’(’
I Leaf Node: ’)’

Skip last leaf node.

• Replace ’(’ by 1 and ’)’ by 0

• Just take positions of 1s.

Example: all trees with four inner nodes:

• The ranks are in [0, 14[

204 / 336

Join Ordering Randomized Approaches

Tree Ranking Example

(((())))

11110000

1, 2, 3, 4

0

(() (()))

11011000

1, 2, 4, 5

43

((())) ()

11100010

1, 2, 3, 7

2

((()) ())

11100100

1, 2, 3, 6

(() ()))

11010100

1, 2, 4, 6

5 6

(() ()) ()

11010010

1, 2, 4, 7

7

(()) (())

11001100

1, 2, 5, 6

8

(()) () ()

11001010

1, 2, 5, 7

() ((()))

10111000

1, 3, 4, 5

9

() (() ())

10110100

1, 3, 4, 6

10 11

() (()) ()

10110010

1, 3, 4, 7

() () (())

10101100

1, 3, 5, 6

12

() () () ()

10101010

1, 3, 5, 7

13

1

11101000

1, 2, 3, 5

((()()))

205 / 336

Join Ordering Randomized Approaches

Unranking Binary Trees
We establish a bijection between Dyck words and paths in a grid:

1

2

3

4

87654321

1

14

9

4

1

13

5 2

[0,0]

[1,4[

[9,14[

[4,9[

Every path from (0, 0) to (2n, 0) uniquely corresponds to a Dyck word.

206 / 336

Join Ordering Randomized Approaches

Counting Paths

The number of different paths from (0, 0) to (i , j) can be computed by

p(i , j) =
j + 1

i + 1

(
i + 1

1
2(i + j) + 1

)
These numbers are the Ballot numbers.
The number of paths from (i , j) to (2n, 0) can thus be computed as:

q(i , j) = p(2n − i , j)

Note the special case q(0, 0) = p(2n, 0) = C (n).

207 / 336

Join Ordering Randomized Approaches

Unranking Outline

• We open a parenthesis (go from (i , j) to (i + 1, j + 1)) as long as the
number of paths from that point does no longer exceed our rank r .

• If it does, we close a parenthesis (go from (i , j) to (i + 1, j − 1)).

• Assume, that we went upwards to (i , j) and then had to go down to
(i + 1, j − 1).
We subtract the number of paths from (i + 1, j + 1) from our rank r
and proceed iteratively from (i + 1, j − 1) by going up as long as
possible and going down again.

• Remembering the number of parenthesis opened and closed along our
way results in the required encoding.

208 / 336

Join Ordering Randomized Approaches

Generating Bushy Trees

UnrankTree(n, r)
Input: a number of inner nodes n and a rank r ∈ [0,C (n − 1)[
Output:encoding of the inner leafes of a tree
open = 1, close = 0
pos = 1, encoding = < 1 >
while |encoding| < n {

k = q(open+close,open-close)
if k ≤ r {

r = r − k, close=close+1
} else {

encoding=encoding◦ < pos >, open=open+1
}
pos=pos+1
}
return encoding

209 / 336

Join Ordering Randomized Approaches

Generating Random Trees Without Cross Products

Tree queries only!

• query graph: G = (V ,E), |V | = n, G must be a tree.

• level: root has level 0, children thereof 1, etc.

• TG : join trees for G

[7]

210 / 336

Join Ordering Randomized Approaches

Partitioning TG

T v(k)
G ⊆ TG : subset of join trees where the leaf node (i.e. relation) v

occurs at level k.
Observations:

• n = 1: |TG | = |T
v(0)
G | = 1

• n > 1: |T v(0)
G | = 0 (top is a join and no relation)

• The maximum level that can occur in any join tree is n − 1.

Hence: |T v(k)
G | = 0 if k ≥ n.

• TG = ∪n
k=0T

v(k)
G

• T v(i)
G ∩ T v(j)

G = ∅ for i 6= j

• Thus: |TG | =
∑n

k=0 |T
v(k)
G |

211 / 336

Join Ordering Randomized Approaches

The Specification

• The algorithm will generate an unordered tree with n leaf nodes.

• If we wish to have a random ordered tree, we have to pick one of the
2n−1 possibilities to order the (n − 1) joins within the tree.

212 / 336

Join Ordering Randomized Approaches

The Procedure

1. List merges (notation, specification, counting, unranking)

2. Join tree construction: leaf-insertion and tree-merging

3. Standard Decomposition Graph (SDG): describes all valid join trees

4. Counting

5. Unranking algorithm

213 / 336

Join Ordering Randomized Approaches

List Merge

• Lists: Prolog-Notation: < a|t >

• Property P on elements

• A list l ′ is the projection of a list L on P, if L′ contains all elements of
L satisfying the property P.
Thereby, the order is retained.

• A list L is a merge of two disjoint lists L1 and L2, if L contains all
elements from L1 and L2 and both are projections of L.

214 / 336

Join Ordering Randomized Approaches

Example

(R, S, [1, 1, 0])

R2

R1

v

S1

S2

(R, S, [2, 0, 0])

v

S2

R2

S1

R1

S2

S1

(R, S, [0, 2, 0])

R2

R1

v

R S

v

S1

v

R1

R2 S2

215 / 336

Join Ordering Randomized Approaches

List Merge: Specification

A merge of a list L1 with a list L2 whose respective lengths are l1 and l2
can be described by an array α = [α0, . . . , αl2] of non-negative integers
whose sum is equal to l1, i.e.

∑l2
i=0 αi = |l1|.

• We obtain the merged list L by first taking α0 elements from L1.

• Then, an element from L2 follows. Then follow α1 elements from L1

and the next element of L2 and so on.

• Finally follow the last αl2 elements of L1.

216 / 336

Join Ordering Randomized Approaches

List Merge: Counting

Non-negative integer decomposition:

• What is the number of decompositions of a non-negative integer n
into k non-negative integers αi with

∑k
i=1 αk = n.

Answer:
(n+k−1

k−1

)

217 / 336

Join Ordering Randomized Approaches

List Merge: Counting (2)

Since we have to decompose l1 into l2 + 1 non-negative integers, the
number of possible merges is M(l1, l2) =

(l1+l2
l2

)
.

The observation M(l1, l2) = M(l1 − 1, l2) + M(l1, l2 − 1) allows us to
construct an array of size n ∗ n in O(n2) that materializes the values for M.
This array will allow us to rank list merges in O(l1 + l2).

218 / 336

Join Ordering Randomized Approaches

List Merge: Unranking: General Idea

The idea for establishing a bijection between [1,M(l1, l2)] and the possible
αs is a general one and used for all subsequent algorithms of this section.
Assume we want to rank the elements of some set S and S = ∪n

i=0Si is
partitioned into disjoint Si .

1. If we want to rank x ∈ Sk , we first find the local rank of x ∈ Sk .

2. The rank of x is then
∑k−1

i=0 |Si |+ local-rank(x ,Sk).

3. To unrank some number r ∈ [1,N], we first find k such that
k = minj r ≤

∑j
i=0 |Si |.

4. We proceed by unranking with the new local rank r ′ = r −
∑k−1

i=0 |Si |
within Sk .

219 / 336

Join Ordering Randomized Approaches

List Merge: Unranking

We partition the set of all possible merges into subsets.

• Each subset is determined by α0.
For example, the set of possible merges of two lists L1 and L2 with
length l1 = l2 = 4 is partitioned into subsets with α0 = j for
0 ≤ j ≤ 4.

• In each partition, we have M(j , l2 − 1) elements.

• To unrank a number r ∈ [1,M(l1, l2)] we first determine the partition
by computing k = minj r ≤

∑j
i=0 M(j , l2 − 1).

Then, α0 = l1 − k.

• With the new rank r ′ = r −
∑k

i=0 M(j , l2 − 1), we start iterating all
over.

220 / 336

Join Ordering Randomized Approaches

Example

k α0 (k, l2 − 1) M(k, l2 − 1) rank intervals

0 4 (0, 3) 1 [1, 1]
1 3 (1, 3) 4 [2, 5]
2 2 (2, 3) 10 [6, 15]
3 1 (3, 3) 20 [16, 35]
4 0 (4, 3) 35 [36, 70]

221 / 336

Join Ordering Randomized Approaches

Decomposition

UnrankDecomposition(r , l1, l2)
Input: a rank r , two list sizes l1 and l2
Output:encoding of the inner leafes of a tree
alpha = <>, k = 0
while l1 > 0 ∧ l2 > 0 {

m = M(k, l2 − 1)
if r ≤ m {

alpha=alphae◦ < l1 − k >
l1 = k, k = 0, l2 = l2 − 1
} else {

r = r −m, k = k + 1
}
}
return alpha◦ < l1 > ◦©|alpha|+1≤i<l2 < 0 >

222 / 336

Join Ordering Randomized Approaches

Anchored List Representation of Join Trees

Definition Let T be a join tree and v be a leaf of T . The anchored list
representation L of T is constructed as follows:

• If T consists of the single leaf node v , then L =<>.

• If T = (Tl � T2) and without loss of generality v occurs in T2, then
L =< T1|L2 > where L2 is the anchored list representation of T2.

We then write T = (L, v).

Observation If T = (L, v) ∈ TG then T ∈ T v(k)
G ≺� |L| = k

223 / 336

Join Ordering Randomized Approaches

Leaf-Insertion: Example

w w

(T, 2)

T1

T2

v

T1

T2

v

(T, 1)

T1

T2

w

T

w

v

T1

T2

(T, 3)

224 / 336

Join Ordering Randomized Approaches

Leaf-Insertion

Definition Let G = (V ,E) be a query graph, T a join tree of G . v ∈ V
be such that G ′ = G |V \{v} is connected, (v ,w) ∈ E , 1 ≤ k < n, and

T = (< T1, . . . ,Tk−1, v ,Tk+1, . . . ,Tn >,w)

T ′ = (< T1, . . . ,Tk−1,Tk+1, . . . ,Tn >,w).

Then we call (T ′, k) an insertion pair on v and say that T is decomposed
into (or constructed from) the pair (T ′, k) on v .

Observation: Leaf-insertion defines a bijective mapping between T v(k)
G

and insertion pairs (T ′, k) on v , where T ′ is an element of the disjoint

union ∪n−2
i=k−1T

w(i)
G ′ .

225 / 336

Join Ordering Randomized Approaches

Tree-Merging: Example

(R, S, [1, 1, 0])

R2

R1

v

S1

S2

(R, S, [2, 0, 0])

v

S2

R2

S1

R1

S2

S1

(R, S, [0, 2, 0])

R2

R1

v

R S

v

S1

v

R1

R2 S2

226 / 336

Join Ordering Randomized Approaches

Tree-Merging

Two trees R = (LR ,w) and S = (LS ,w) on a common leaf w are merged
by merging their anchored list representations.
Definition. Let G = (V ,E) be a query graph, w ∈ V , T = (L,w) a join
tree of G , V1,V2 ⊆ V such that G1 = G |V1 and G2 = G |V2 are connected,
V1 ∪ V2 = V , and V1 ∩ V2 = {w}. For i = 1, 2:

• Define the property Pi to be “every leaf of the subtree is in Vi”,

• Let Li be the projection of L on Pi .

• Ti = (Li ,w).

Let α be the integer decomposition such that L is the result of merging L1

and L2 on α. Then, we call (T1,T2, α) a merge triplet. We say that T is
decomposed into (constructed from) (T1,T2, α) on V1 and V2.

227 / 336

Join Ordering Randomized Approaches

Observation

Tree-Merging defines a bijective mapping between T w(k)
G and merge

triplets (T1,T2, α), where T1 ∈ T w(i)
G1

, T2 ∈ T w(k−i)
G2

, and α specifies a
merge of two lists of sizes i and k − i . Further, the number of these
merges (i.e. the number of possibilities for α) is

(i+(k−i)
k−i

)
=

(k
i

)
.

228 / 336

Join Ordering Randomized Approaches

Standard Decomposition Graph (SDG)

A standard decomposition graph of a query graph describes the possible
constructions of join trees.
It is not unique (for n > 1) but anyone can be used to construct all
possible unordered join trees.
For each of our two operations it has one kind of inner nodes:

• A unary node labeled +v stands for leaf-insertion of v .

• A binary node labeled ∗w stands for tree-merging its subtrees whose
only common leaf is w .

229 / 336

Join Ordering Randomized Approaches

Constructing a Standard Decomposition Graph

The standard decomposition graph of a query graph G = (V ,E) is
constructed in three steps:

1. pick an arbitrary node r ∈ V as its root node

2. transform G into a tree G ′ by directing all edges away from r ;

3. call QG2SDG(G ′, r)

230 / 336

Join Ordering Randomized Approaches

Constructing a Standard Decomposition Graph (2)

QG2SDG(G ′, r)
Input: a query tree G ′ = (V ,E) and its root r
Output:a standard query decomposition tree of G ′

Let {w1, . . . ,wn} be the children of v
switch n {

case 0: label v with ”v”
case 1:

label v as ”+v”
QG2SDG(G ′,w1)

otherwise:
label v as ”∗v”
create new nodes l , r with label +v

E = E \ {(v ,wi)|1 ≤ i ≤ n}
E = E ∪ {(v , l), (v , r), (l ,w1)} ∪ {(r ,wi)|2 ≤ i ≤ n}
QG2SDG(G ′, l), QG2SDG(G ′, r)

}
return G ′

231 / 336

Join Ordering Randomized Approaches

Constructing a Standard Decomposition Graph (3)

a b c d

e

e

c

b d

a

a

d

[0, 1]

+b

+c

+e

∗c

+c

[1]

[0, 1, 1]

[0, 1]

[1]

[0, 5, 5, 5, 3]

[0, 0, 2, 3]

232 / 336

Join Ordering Randomized Approaches

Counting

For efficient access to the number of join trees in some partition T v(k)
G in

the unranking algorithm, we materialize these numbers.
This is done in the count array.
The semantics of a count array [c0, c1, . . . , cn] of a node u with label ◦v
(◦ ∈ {+, ∗}) of the SDG is that

• u can construct ci different trees in which leaf v is at level i .

Then, the total number of trees for a query can be computed by summing
up all the ci in the count array of the root node of the decomposition tree.

233 / 336

Join Ordering Randomized Approaches

Counting (2)

To compute the count and an additional summand adornment of a node
labeled +v , we use the following lemma:
Lemma. Let G = (V ,E) be a query graph with n nodes, v ∈ V such that
G ′ = G |V \v is connected, (v ,w) ∈ E , and 1 ≤ k < n. Then

|T v(k)
G | =

∑
i≥k−1

|T w(i)
G ′ |

234 / 336

Join Ordering Randomized Approaches

Counting (3)

The sets T w(i)
G ′ used in the summands of the former Lemma directly

correspond to subsets T v(k),i
G (k − 1 ≤ i ≤ n − 2) defined such that

T ∈ T v(k),i
G if

1. T ∈ T v(k)
G ,

2. the insertion pair on v of T is (T ′, k), and

3. T ′ ∈ T w(i)
G ′ .

Further, |T v(k),i
G | = |T w(i)

G ′ |. For efficiency, we materialize the summands in
an array of arrays summands.

235 / 336

Join Ordering Randomized Approaches

Counting (4)

To compute the count and summand adornment of a node labeled ∗v , we
use the following lemma.
Lemma. Let G = (V ,E) be a query graph, w ∈ V , T = (L,w) a join
tree of G , V1,V2 ⊆ V such that G1 = G |V1 and G2 = G |V2 are connected,
V1 ∪ V2 = V , and V1 ∩ V2 = {v}. Then

|T v(k)
G | =

∑
i

(
k

i

)
|T v(i)

G1
| |T v(k−i)

G2
|

236 / 336

Join Ordering Randomized Approaches

Counting (5)

The sets T w(i)
G ′ used in the summands of the previous Lemma directly

correspond to subsets T v(k),i
G (0 ≤ i ≤ k) defined such that T ∈ T v(k),i

G if

1. T ∈ T v(k)
G ,

2. the merge triplet on V1 and V2 of T is (T1,T2, α), and

3. T1 ∈ T v(i)
G1

.

Further, |T v(k),i
G | =

(k
i

)
|T v(i)

G1
| |T v(k−i)

G2
|.

237 / 336

Join Ordering Randomized Approaches

Counting (6)

Observation: Assume a node v whose count array is [c1, . . . , cm] and
whose summands is s = [s0, . . . , sn] with si = [s i

0, . . . , s
i
m], then

ci =
m∑

j=0

s i
j

holds.
The following algorithm has worst-case complexity O(n3).
Looking at the count array of the root node of the following SDG, we see
that the total number of join trees for our example query graph is 18.

238 / 336

Join Ordering Randomized Approaches

SDG example

a b c d

e

e

c

b d

a

a

d

[0, 1]

+b

+c

+e

∗c

+c

[1]

[0, 1, 1]

[0, 1]

[1]

[0, 5, 5, 5, 3]

[0, 0, 2, 3]

239 / 336

Join Ordering Randomized Approaches

Annotating the SDG

Adorn(v)
Input: a node v of the SDG
Output:v and nodes below are adorned by count and summands
Let {w1, . . . ,wn} be the children of v
switch (n) {

case 0: count(v) = [1] // no summands for v
case 1:

Adorn(w1)
assume count(w1) = [c1

0 , . . . , c1
m1

];
count(v) = [0, c1, . . . , cm1+1] where ck =

∑m1
i=k−1 c1

i

summands(v) = [s0, . . . , sm1+1] where sk = [sk
0 , . . . , sk

m1+1] and

sk
i =

{
c1
i if 0 < k and k − 1 ≤ i

0 else

240 / 336

Join Ordering Randomized Approaches

Annotating the SDG (2)

case 2:
Adorn(w1)
Adorn(w2)
assume count(w1) = [c1

0 , . . . , c1
m1

]
assume count(w2) = [c2

0 , . . . , c2
m2

]
count(v) = [c0, . . . , cm1+m2] where

ck =
∑m1

i=0

(k
i

)
c1
i c2

k−i ; // c2
i = 0 for i 6∈ {0, . . . ,m2}

summands(v) = [s0, . . . , sm1+m2] where sk = [sk
0 , . . . , sk

m1
] and

sk
i =

{ (k
i

)
c1
i c2

k−i if 0 ≤ k − i ≤ m2

0 else
}

241 / 336

Join Ordering Randomized Approaches

Unranking: top-level procedure

The algorithm UnrankLocalTreeNoCross called by UnrankTreeNoCross
adorns the standard decomposition graph with insert-at and
merge-using annotations. These can then be used to extract the join
tree.

UnrankTreeNoCross(r,v)
Input: a rank r and the root v of the SDG
Output:adorned SDG
let count(v) = [x0, . . . , xm]

k = minj r ≤
∑j

i=0 xi

r ′ = r −
∑k−1

i=0 xi

UnrankLocalTreeNoCross(v , r ′, k)

242 / 336

Join Ordering Randomized Approaches

Unranking: Example

The following table shows the intervals associated with the partitions

T e(k)
G for our standard decomposition graph:

Partition Interval

T e(1)
G [1, 5]

T e(2)
G [6, 10]

T e(3)
G [11, 15]

T e(4)
G [16, 18]

243 / 336

Join Ordering Randomized Approaches

Unranking: the last utility function

The unranking procedure makes use of unranking decompositions and
unranking triples. For the latter and a given X ,Y ,Z , we need to assign
each member in

{(x , y , z)|1 ≤ x ≤ X , 1 ≤ y ≤ Y , 1 ≤ z ≤ Z}

a unique number in [1,XYZ] and base an unranking algorithm on this
assignment. We call the function UnrankTriplet(r ,X ,Y ,Z). r is a rank
and X , Y , and Z are the upper bounds for the numbers in the triplets.

244 / 336

Join Ordering Randomized Approaches

Unranking Without Cross Products

UnrankingTreeNoCrossLocal(v , r , k)
Input: an SDG node v , a rank r , a number k identifying a partition
Output:adornments of the SDG as a side-effect
Let {w1, . . . ,wn} be the children of v
switch n {

case 0:
// no additional adornment for v

245 / 336

Join Ordering Randomized Approaches

Unranking Without Cross Products (2)

case 1:
let count(v) = [c0, . . . , cn]
let summands(v) = [s0, . . . , sn]

k1 = minj r ≤
∑j

i=0 sk
i

r1 = r −
∑k1−1

i=0 sk
i

insert-at(v) = k
UnrankingTreeNoCrossLocal(w1, r1, k1)

246 / 336

Join Ordering Randomized Approaches

Unranking Without Cross Products (3)

case 2:
let count(v) = [c0, . . . , cn]
let summands(v) = [s0, . . . , sn]
let count(w1) = [c1

0 , . . . , c1
n1

]
let count(w2) = [c2

0 , . . . , c2
n2

]

k1 = minj r ≤
∑j

i=0 sk
i

q = r −
∑k1−1

i=0 sk
i

k2 = k − k1

(r1, r2, a) = UnrankTriplet(q, c1
k1

, c2
k2

,
(k

i

)
)

α = UnrankDecomposition(a)
merge-using(v) = α
UnrankingTreeNoCrossLocal(w1, r1, k1)
UnrankingTreeNoCrossLocal(w2, r2, k2)

}

247 / 336

Join Ordering Randomized Approaches

Quick Pick

• problem: build (pseudo-)random join trees fast

• unranking without cross products is quite involved

• idea: randomly select an edge in the query graph

• extend join tree by selected edge

No longer uniformly distributed, but very fast

248 / 336

Join Ordering Randomized Approaches

Quick Pick (2)

QuickPick(Query Graph G)
Input: a query graph G = ({R1, . . . ,Rn},E)
Output:a bushy join tree
E ′ = E ;
Trees = {R1, . . . ,Rn};
while |Trees| > 1 {

choose a random e ∈ E ′

E ′ = E ′ \ {e}
if e connects two relations in different subtrees T1,T2 ∈ Trees

Trees = Trees\{T1,T2}∪CreateJoinTree(T1,T2)
}
return T ∈Trees

• repeated multiple times to find a good tree

