
289 / 379

Accessing the Data

4. Accessing the Data

In this chapter we go into some details:

• deep into the (runtime) system

• close to the hardware

Goal:

• estimation and optimization of disk access costs

290 / 379

Accessing the Data

4. Accessing the Data (2)

• disk drives

• database buffer

• physical database organization

• physical algebra

• temporal relations and table functions

• indices

• counting the number of accesses

• disk drive costs for n uniform accesses

291 / 379

Accessing the Data Disk Drive

Assembly

arm
pivot

arm

assembly

top viewb.

platter

arm head spindle

cylinder

sector track

head

arm

side viewa.

292 / 379

Accessing the Data Disk Drive

Zones

• outer tracks/sectors longer than inner ones

• highest density is fixed

• results in waste in outer sectors

• thus: cylinders organized into zones

293 / 379

Accessing the Data Disk Drive

Zones (2)

• every zone contains a fixed number of consecutive cylinders

• every cylinder in a zone has the same number of sectors per track

• outer zones have more sectors per track than inner zones

• since rotation speed is fixed: higher throughput on outer cylinders

294 / 379

Accessing the Data Disk Drive

Track Skew

Read all sectors of all tracks of some consecutive cylinders:

• read all sectors of one track

• switch to next track: small adjustment of head necessary
called: head switch

• this causes tiny delay

• thus, if all tracks start at the same angular position then we miss the
start of the first sector of the next track

• remedy: track skew

295 / 379

Accessing the Data Disk Drive

Cylinder Skew

Read all sectors of all tracks of some consecutive cylinders:

• read all sectors of all tracks of some cylinder

• switching to the next cylinder causes some delay

• again, we miss the start of the first sector, if the tracks start all start
at the same angular position

• remedy: cylinder skew

296 / 379

Accessing the Data Disk Drive

Addressing Sectors

• physical Address: cylinder number, head (surface) number, sector
number

• logical Address: LBN (logical block number)

297 / 379

Accessing the Data Disk Drive

LBN to Physical Address

Mapping:

Cylinder Track LBN number of sectors per track

0 0 0 573
1 573 573

.
5 2865 573

1 0 3438 573
.

15041 0 35841845 253
.

298 / 379

Accessing the Data Disk Drive

LBN to Physical Address (2)

This ideal view of the mapping is disturbed by bad blocks

• due to the high density, no perfect manufacturing is possible

• as a consequence bad blocks occur (sectors that cannot be used)

• reserve some blocks, tracks, cylinders for remapping bad blocks

Bad blocks may cause hickups during sequential reads

299 / 379

Accessing the Data Disk Drive

Reading/Writing a Block

Host sends
command

Controller
decodes it

Rotational
latency

Data transfer off mechanism

Status message to host

Read service time for disk 1

Read service time for disk 2

Disk 3

Disk 2

Disk 1

SCSI bus

Seek

Data transfer to host

Time

300 / 379

Accessing the Data Disk Drive

Reading/Writing a Block (2)

1. the host sends the SCSI command.

2. the disk controller decodes the command and calculates the physical
address.

3. during the seek the disk drive’s arm is positioned such that the
according head is correctly placed over the cylinder where the
requested block resides. This step consists of several phases.
3.1 the disk controler accelerates the arm.
3.2 for long seeks, the arm moves with maximum velocity (coast).
3.3 the disk controler slows down the arm.
3.4 the disk arm settles for the desired location. The settle times differ for

read and write requests. For reads, an aggressive strategy is used. If,
after all, it turns out that the block could not be read correctly, we can
just discard it. For writing, a more conservative strategy is in order.

4. the disk has to wait until the sector where the requested block resides
comes under the head (rotation latency).

5. the disk reads the sector and transfers data to the host.

6. finally, it sends a status message.

301 / 379

Accessing the Data Disk Drive

Optimizing Round Trip Time

• caching

• read-ahead

• command queuing

302 / 379

Accessing the Data Disk Drive

Seek Time

A good approximation of the seek time where d cylinders have to be
travelled is given by

seektime(d) =

{

c1 + c2

√
d d ≤ c0

c3 + c4d d > c0

where the constants ci are disk specific. The constant c0 indicates the
maximum number cylinders where no coast takes place: seeking over a
distance of more than c0 cylinders results in a phase where the disk arm
moves with maximum velocity.

303 / 379

Accessing the Data Disk Drive

Cost model: initial thoughts

Disk access costs depend on

• the current position of the disk arm and

• the angular position of the platters

Both are not known at query compilation time
Consequence:

• estimating the costs of a single disk access at query compilation time
may result in large estimation error

Better: costs of many accesses
Nonetheless: First Simplistic Cost Model to give a feeling for disk drive
access costs

304 / 379

Accessing the Data Disk Drive

Simplistic Cost Model

We introduce some disk drive parameters for out simplistic cost model:

• average latency time: average time for positioning (seek+rotational
delay)

◮ use average access time for a single request
◮ Estimation error can (on the average) be as “low” as 35%

• sustained read/write rate:
◮ after positioning, rate at which data can be delivered using sequential

read

305 / 379

Accessing the Data Disk Drive

Model 2004

A hypothetical disk (inspired by disks available in 2004) then has the
following parameters:

Model 2004

Parameter Value Abbreviated Name

capacity 180 GB Dcap

average latency time 5 ms Dlat

sustained read rate 100 MB/s Dsrr

sustained write rate 100 MB/s Dswr

The time a disk needs to read and transfer n bytes is then approximated
by Dlat + n/Dsrr.

306 / 379

Accessing the Data Disk Drive

Sequential vs. Random I/O

Database management system developers distinguish between

• sequential I/O and

• random I/O.

In our simplistic cost model:

• for sequential I/O, there is only one positioning at the beginning and
then, we can assume that data is read with the sustained read rate.

• for random I/O, one positioning for every unit of transfer—typically a
page of say 8 KB—is assumed.

307 / 379

Accessing the Data Disk Drive

Simplistic Cost Model

Read 100 MB

• Sequential read: 5 ms + 1 s

• Random read (8K pages): 65 s

308 / 379

Accessing the Data Disk Drive

Simplistic Cost Model (2)

Problems:

• other applications

• other transactions

• other read operations in the same QEP

may request blocks from the same disk and move away the head(s) from
the current position
Further: 100 MB sequential search poses problem to buffer manager

309 / 379

Accessing the Data Disk Drive

Time to Read 100 MB (x: number of 8 KB chunks)

 1

 2

 4

 8

 16

 32

 64

 1 4 16 64 256 1024

310 / 379

Accessing the Data Disk Drive

Time to Read n Random Pages

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

311 / 379

Accessing the Data Disk Drive

Simplistic Cost Model (3)

100 MB can be stored on 12800 8 KB pages.
In our simplistic cost model, reading 200 pages randomly costs about the
same as reading 100 MB sequentially.
That is, reading 1/64th of 100 MB randomly takes as long as reading the
100 MB sequentially.

312 / 379

Accessing the Data Disk Drive

Simplistic Cost Model (4)

Let us denote by a the positioning time, s the sustained read rate, p the
page size, and d some amount of consecutively stored bytes. Let us
calculate the break even point

n ∗ (a + p/s) = a + d/s

n = (a + d/s)/(a + p/s)

= (as + d)/(as + p)

a and s are disk parameters and, hence, fixed. For a fixed d , the break
even point depends on the page size.
Next Figure: x-axis: is the page size p in multiples of 1 K; y-axis: (d/p)/n

for d = 100 MB.

313 / 379

Accessing the Data Disk Drive

Break Even Point (depending on page size)

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64

314 / 379

Accessing the Data Disk Drive

Two Lessons Learned

• sequential read is much faster than random read

• the runtime system should secure sequential read

The latter point can be generalized:

• the runtime system of a database management system has, as far as
query execution is concerned, two equally important tasks:

◮ allow for efficient query evaluation plans and
◮ allow for smooth, simple, and robust cost functions.

315 / 379

Accessing the Data Disk Drive

Measures to Achieve the Above

Typical measures on the database side are

• carefully chosen physical layout on disk
(e.g. cylinder or track-aligned extents, clustering)

• disk scheduling, multi-page requests

• (asynchronous) prefetching,

• piggy-back scans,

• buffering (e.g. multiple buffers, replacement strategy) and last but
not least

• efficient and robust algorithms for algebraic operators

316 / 379

Accessing the Data Disk Drive

Disk Drive: Parameters

Dcyl total number of cylinders
Dtrack total number of tracks
Dsec total number of sectors
Dtpc number of tracks per cylinder (= number of surfaces)

Dcmd command interpretation time
Drot time for a full rotation
Drdsettle time for settle for read
Dwrsettle time for settle for write
Dhdswitch time for head switch

317 / 379

Accessing the Data Disk Drive

Disk Drive: Parameters (2)

Dzone total number of zones
Dzcyl(i) number of cylinders in zone i

Dzspt(i) number of sectors per track in zone i

Dzspc(i) number of sectors per cylinder in zone i (= DtpcDzspt(i))
Dzscan(i) time to scan a sector in zone i (= Drot/Dzspti)

318 / 379

Accessing the Data Disk Drive

Disk Drive: Parameters (3)

Dseekavg average seek costs
Dclim parameter for seek cost function
Dca parameter for seek cost function
Dcb parameter for seek cost function
Dcc parameter for seek cost function
Dcd parameter for seek cost function

Dfseek(d) cost of a seek of d cylinders

Dfseek(d) =

{

Dca + Dcb

√
d if d ≤ Dclim

Dcc + Dcdd if d > Dclim

Dfrot(s, i) rotation cost for s sectors of zone i (= sDzscan(i))

319 / 379

Accessing the Data Disk Drive

Extraction of Disk Drive Parameters

• documentation: often not sufficient

• mapping: interrogation via SCSI-Mapping command (disk drives lie)

• use benchmarking tools, e.g.:
◮ Diskbench
◮ Skippy (Microbenchmark)
◮ Zoned

320 / 379

Accessing the Data Disk Drive

Seek Curve Measured with Diskbench

 0

 2000

 4000

 6000

 8000

 10000

 12000

-15000 -10000 -5000 0 5000 10000 15000

321 / 379

Accessing the Data Disk Drive

Skippy Benchmark Example

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800 1000

322 / 379

Accessing the Data Disk Drive

Interpretation of Skippy Results

• x-axis: distance (sectors)

• y-axis: time

• difference topmost/bottommost line: rotational latency

• difference two lowest ‘lines’: head switch time

• difference lowest ‘line’ topmost spots: cylinder switch time

• start lowest ‘line’: minimal time to media

• plus other parameters

323 / 379

Accessing the Data Disk Drive

Upper bound on Seek Time

Theorem (Qyang)

If the disk arm has to travel over a region of C cylinders, it is positioned

on the first of the C cylinders, and has to stop at s − 1 of them, then

sDfseek(C/s) is an upper bound for the seek time.

324 / 379

Accessing the Data Database Buffer

Database Buffer

The database buffer

1. is a finite piece of memory,

2. typically supports a limited number of different page sizes (mostly one
or two),

3. is often fragmented into several buffer pools,

4. each having a replacement strategy (typically enhanced by hints).

Given the page identifier, the buffer frame is found by a hashtable lookup.
Accesses to the hash table and the buffer frame need to be synchronized.
Before accessing a page in the buffer, it must be fixed.
These points account for the fact that the costs of accessing a page in the
buffer are therefore greater than zero.

325 / 379

Accessing the Data Database Buffer

Buffer Accesses

Consider page acceses in a buffer with 2 pages:
page no action

0 read page 0, place it in buffer
1 read page 1, place it in buffer
0 fix page 0 in buffer
2 swap out a page (e.g. 1), read 2, place it in buffer
0 fix page 0 in buffer
3 swap out a page, read 3, place it in buffer

. . .

• replacement strategy is imporant

• unfixes omitted

326 / 379

Accessing the Data Database Buffer

Replacement Strategies

Some popular replacement strategies:

• random

• fifo

• lru

• Q2

lru is very popular

327 / 379

Accessing the Data Database Buffer

Replacement Strategies - random

• when a new page slot is needed, remove a random other page from
the buffer

• easy to implements, needs no additional memory

• but does not take the access patterns into account

• primarily used as base line

• suitable for analytic results

328 / 379

Accessing the Data Database Buffer

Replacement Strategies - fifo

• first in - first out

• remove the page that was place in the buffer first

• easy to implement, needs no/few additional memory

• but does not adapt very well do access patterns

• increasing buffer size may hurt it

Fifo Anomaly:

• access pattern: 3 2 1 0 3 2 4 3 2 1 0 4

• buffer sizes: 3 vs. 4

329 / 379

Accessing the Data Database Buffer

Replacement Strategies - lru

• least recently used

• remove the page that has not been accessed for longest time

• requires a priority queue/linked list

• adapt to access patterns, popular pages stay in memory

• but slow to remove pages

very popular replacement strategy

330 / 379

Accessing the Data Database Buffer

Replacement Strategies - 2Q

• two queues

• a fifo queue and a lru queue

• place pages first in fifo, if they are accessed again place them in lru

• gets rid of pages that are accessed only once fast

• superior to lru, example of a ”real” replacement strategy

331 / 379

Accessing the Data Database Buffer

Replacement Strategies - Effect on the Cost Model

• replacement affects the costs

• cost model needs predictions, though

• very hard to do in general

Typical approaches:

• ignore buffer effects

• assume random replacement

• make use of known access characteristics

