
316 / 575

Accessing the Data Disk Drive

Disk Drive: Parameters

Dcyl total number of cylinders
Dtrack total number of tracks
Dsec total number of sectors
Dtpc number of tracks per cylinder (= number of surfaces)

Dcmd command interpretation time
Drot time for a full rotation
Drdsettle time for settle for read
Dwrsettle time for settle for write
Dhdswitch time for head switch

317 / 575

Accessing the Data Disk Drive

Disk Drive: Parameters (2)

Dzone total number of zones
Dzcyl(i) number of cylinders in zone i

Dzspt(i) number of sectors per track in zone i

Dzspc(i) number of sectors per cylinder in zone i (= DtpcDzspt(i))
Dzscan(i) time to scan a sector in zone i (= Drot/Dzspti)

318 / 575

Accessing the Data Disk Drive

Disk Drive: Parameters (3)

Dseekavg average seek costs
Dclim parameter for seek cost function
Dca parameter for seek cost function
Dcb parameter for seek cost function
Dcc parameter for seek cost function
Dcd parameter for seek cost function

Dfseek(d) cost of a seek of d cylinders

Dfseek(d) =

{

Dca + Dcb

√
d if d ≤ Dclim

Dcc + Dcdd if d > Dclim

Dfrot(s, i) rotation cost for s sectors of zone i (= sDzscan(i))

319 / 575

Accessing the Data Disk Drive

Extraction of Disk Drive Parameters

• documentation: often not sufficient

• mapping: interrogation via SCSI-Mapping command (disk drives lie)

• use benchmarking tools, e.g.:
◮ Diskbench
◮ Skippy (Microbenchmark)
◮ Zoned

320 / 575

Accessing the Data Disk Drive

Seek Curve Measured with Diskbench

 0

 2000

 4000

 6000

 8000

 10000

 12000

-15000 -10000 -5000 0 5000 10000 15000

321 / 575

Accessing the Data Disk Drive

Skippy Benchmark Example

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800 1000

322 / 575

Accessing the Data Disk Drive

Interpretation of Skippy Results

• x-axis: distance (sectors)

• y-axis: time

• difference topmost/bottommost line: rotational latency

• difference two lowest ‘lines’: head switch time

• difference lowest ‘line’ topmost spots: cylinder switch time

• start lowest ‘line’: minimal time to media

• plus other parameters

323 / 575

Accessing the Data Disk Drive

Upper bound on Seek Time

Theorem (Qyang)

If the disk arm has to travel over a region of C cylinders, it is positioned

on the first of the C cylinders, and has to stop at s − 1 of them, then

sDfseek(C/s) is an upper bound for the seek time.

324 / 575

Accessing the Data Database Buffer

Database Buffer

The database buffer

1. is a finite piece of memory,

2. typically supports a limited number of different page sizes (mostly one
or two),

3. is often fragmented into several buffer pools,

4. each having a replacement strategy (typically enhanced by hints).

Given the page identifier, the buffer frame is found by a hashtable lookup.
Accesses to the hash table and the buffer frame need to be synchronized.
Before accessing a page in the buffer, it must be fixed.
These points account for the fact that the costs of accessing a page in the
buffer are therefore greater than zero.

325 / 575

Accessing the Data Database Buffer

Buffer Accesses

Consider page acceses in a buffer with 2 pages:
page no action

0 read page 0, place it in buffer
1 read page 1, place it in buffer
0 fix page 0 in buffer
2 swap out a page (e.g. 1), read 2, place it in buffer
0 fix page 0 in buffer
3 swap out a page, read 3, place it in buffer

. . .

• replacement strategy is imporant

• unfixes omitted

326 / 575

Accessing the Data Database Buffer

Replacement Strategies

Some popular replacement strategies:

• random

• fifo

• lru

• Q2

lru is very popular

327 / 575

Accessing the Data Database Buffer

Replacement Strategies - random

• when a new page slot is needed, remove a random other page from
the buffer

• easy to implements, needs no additional memory

• but does not take the access patterns into account

• primarily used as base line

• suitable for analytic results

328 / 575

Accessing the Data Database Buffer

Replacement Strategies - fifo

• first in - first out

• remove the page that was place in the buffer first

• easy to implement, needs no/few additional memory

• but does not adapt very well do access patterns

• increasing buffer size may hurt it

Fifo Anomaly:

• access pattern: 3 2 1 0 3 2 4 3 2 1 0 4

• buffer sizes: 3 vs. 4

329 / 575

Accessing the Data Database Buffer

Replacement Strategies - lru

• least recently used

• remove the page that has not been accessed for longest time

• requires a priority queue/linked list

• adapt to access patterns, popular pages stay in memory

• but slow to remove pages

very popular replacement strategy

330 / 575

Accessing the Data Database Buffer

Replacement Strategies - 2Q

• two queues

• a fifo queue and a lru queue

• place pages first in fifo, if they are accessed again place them in lru

• gets rid of pages that are accessed only once fast

• superior to lru, example of a ”real” replacement strategy

331 / 575

Accessing the Data Database Buffer

Replacement Strategies - Effect on the Cost Model

• replacement affects the costs

• cost model needs predictions, though

• very hard to do in general

Typical approaches:

• ignore buffer effects

• assume random replacement

• make use of known access characteristics

332 / 575

Accessing the Data Physical Database Organization

Physical Database Organization

The database organizes the physical storage in multiple layers:

1. partition: sequence of pages (consecutive on disk)

2. extent: subsequence of a partition

3. segment (file): logical sequence of pages (implemented e.g. as set of
extents)

4. record: sequence of bytes stored on a page

Note:

• partition/extent/page/record are physical structures

• a segment is a logical structure

333 / 575

Accessing the Data Physical Database Organization

Physical Storage of Relations

Mapping of a relation’s tuples onto records stored on pages in segments:

Partition

Segment

Page

contains

consists of

Record

stores

Partition

Segment

Page

contains

consists of

Record

stores

Relation

Fragment

fragmented

contains

Tuplerepresented

mapped

1

N

1

1

M

N

1

N

N 1

M

N

N

N

334 / 575

Accessing the Data Physical Database Organization

Access to Database Items

• database item: something stored in DB

• database item can be set (bag, sequence) of items

• access to a database item then produces stream of smaller database
items

• the operation that does so is called scan

335 / 575

Accessing the Data Physical Database Organization

Scan Example

Using a relation scan rscan, the query

select *
from Student

can be answered by rscan(Student)

(segments? extents?): Assumption:

• segment scans and each relation stored in one segment

• segment and relation name identical

Then fscan(Student) and Student denote scans of all tuples in a
relation

336 / 575

Accessing the Data Physical Database Organization

Model of a Segment

• for our cost model, we need a model of segments.

• we assume an extent-based segment implementation.

• every segment then is a sequence of extents.

• every extent can be described by a pair (Fj , Lj) containing its first and
last cylinder.
(For simplicity, we assume that extents span whole cylinders.)

• an extent may cross a zone boundary.

• hence: split extents to align them with zone boundaries.

• segment can be described by a sequence of triples (Fi , Li , zi) ordered
on Fi where zi is the zone number in which the extent lies.

337 / 575

Accessing the Data Physical Database Organization

Model of a Segment

Sext number of extents in the segment
Scfirst(i) first cylinder in extent i (Fi)
Sclast(i) last cylinder in extent i (Li)
Szone(i) zone of extent i (zi)
Scpe(i) number of cylinders in extent i (= Sclast(i) − Scfirst(i) + 1)
Ssec total number of sectors in the segment

(=
∑Sext

i=1 Scpe(i)Dzspc(Szone(i)))

338 / 575

Accessing the Data Physical Database Organization

Slotted Page

827

273 827

1

273 2

• page is organized into areas (slots)

• slots point to data chunks

• slots may point to other pages

339 / 575

Accessing the Data Physical Database Organization

Tuple Identifier (TID)

TID is conjunction of

• page identifier (e.g. partition/segment no, page no)

• slot number

TID sometimes called Row Identifier (RID)

340 / 575

Accessing the Data Physical Database Organization

Record Layout

Different layouts possible:

size size size

offset offsetoffset

fixed-length variable-length variable-length variable-length

fixed-length variable-lengthvariable-length

strings

codes data

fixed-length variable-length

encoding for dictionary-based compression

length and offset encoding

341 / 575

Accessing the Data Physical Database Organization

Record Layout (2)

Record layout is a compromise:

• space consumption vs. CPU

• data model specific properties: e.g. generalization

• versioning / easy schema migration

• record layout typically not trivial

• accessing an attribute value has non-zero cost

342 / 575

Accessing the Data Physical Algebra

Physical Algebra

• building blocks for query execution

• implements the algorithms for query execution

• very generic, reusable components

• describes the general execution approach

• annotated with predicates etc. for query specific parts

343 / 575

Accessing the Data Physical Algebra

Iterator Concept

The general interface of each operator is:

• open

• next

• close

All physical algebraic operators are implemented as iterators.

• produce a stream of data items (tuples)

Implementations vary slightly for performance tuning (concept the same):

• first/next instead of next

• blocks of tuples instead of single tuples

344 / 575

Accessing the Data Physical Algebra

Iterator Example

scanscan

σ�
Γσ

Note: all details (subscripts, implementations etc.) are omitted here

345 / 575

Accessing the Data Physical Algebra

Pipelining

Pipelining is fundamental for the physical algebra:

• physical operators are iterators over the data

• they produce a stream of single tuples

• tuple stream if passed through other operators

• pipelining operators just pass the data through, they only filter or
augment

• data is not copied or materialized

• very efficient processing

pipeline breakers disrupt this pipeline and materialize data:

• very expensive, can cause superfluous work

• sometimes cannot be avoided, though

346 / 575

Accessing the Data Physical Algebra

Simple Scan

• a rscan operation is rarely supported.

• instead: scans on segments (files).

• since a (data) segment is sometimes called file, the correct plan for
the above query is often denoted by fscan(Student).

Several assumptions must hold:

• the Student relation is not fragmented, it is stored in a single
segment,

• the name of this segment is the same as the relation name, and

• no tuples from other relations are stored in this segment.

Until otherwise stated, we assume that these assumptions hold.
Instead of fscan(Student), we could then simply use Student to denote
leaf nodes in a query execution plan.

347 / 575

Accessing the Data Physical Algebra

Attributes/Variables and their Binding

select *
from Student

can be expressed as Student[s] instead of Student.
Result type: set of tuples with a single attribute s.
s is assumed to bind a pointer

• to the physical record in the buffer holding the current tuple or

• a pointer to the slot pointing to the record holding the current tuple

348 / 575

Accessing the Data Physical Algebra

Building Block

• scan

• a leaf of a query execution plan

Leaf can be complex.
But: Plan generator does not try to reorder within building blocks
Nonetheless:

• building block organized around a single database item

If more than a single database item is involved: access path

