3. Join Ordering

- Basics
- Search Space
- Greedy Heuristics
- IKKBZ
- MVP
- Dynamic Programming
- Generating Permutations
- Transformative Approaches
- Randomized Approaches
- Metaheuristics
- Iterative Dynamic Programming
- Order Preserving Joins
Queries Considered

Concentrate on join ordering, that is:

- conjunctive queries
- simple predicates
- predicates have the form $a_1 = a_2$ where a_1 is an attribute and a_2 is either an attribute or a constant
- even ignore constants in some algorithms

We join relations R_1, \ldots, R_n, where R_i can be

- a base relation
- a base relation including selections
- a more complex building block or access path

Pretending to have a base relation is ok for now.
Query Graph

Queries of this type can be characterized by their query graph:

- the query graph is an undirected graph with R_1, \ldots, R_n as nodes
- a predicate of the form $a_1 = a_2$, where $a_1 \in R_i$ and $a_2 \in R_j$ forms an edge between R_i and R_j labeled with the predicate
- a predicate of the form $a_1 = a_2$, where $a_1 \in R_i$ and a_2 is a constant forms a self-edge on R_i labeled with the predicate
- most algorithms will not handle self-edges, they have to be pushed down
Sample Query Graph

student \text{ sno=asno } \quad \text{ attend } \quad \text{ lno=alno }

professor \quad \text{ pno=lpno } \quad \text{ lecture }

\text{ pname="Sokrates"}
Shapes of Query Graphs

- chains
- cycles
- stars
- cliques
- cyclic
- tree
- grid

- real world queries are somewhere in-between
- chain, cycle, star and clique are interesting to study
- they represent certain kind of problems and queries
Join Trees

A join tree is a binary tree with
- join operators as inner nodes
- relations as leaf nodes

Algorithms will produce different kinds of join trees
- ordered or unordered
- with cross products or without

The most common case is ordered, without cross products
Shape of Join Trees

Commonly used classes of join trees:

- left-deep tree
- right-deep tree
- zigzag tree
- bushy tree

The first three are summarized as *linear trees*.
Join Selectivity

Input:
- cardinalities $|R_i|$
- selectivities $f_{i,j}$: if $p_{i,j}$ is the join predicate between R_i and R_j, define
 \[
 f_{i,j} = \frac{|R_i \land_{p_{i,j}} R_j|}{|R_i \times R_j|}
 \]

Calculate:
- result cardinality:
 \[
 |R_i \land_{p_{i,j}} R_j| = f_{i,j} |R_i||R_j|
 \]

Rational: The selectivity can be computed/estimated easily (ideally).
Cardinality of Join Trees

Given a join tree T, the result cardinality $|T|$ can be computed recursively as

$$|T| = \begin{cases} |R_i| & \text{if } T \text{ is a leaf } R_i \\ \prod_{R_i \in T_1, R_j \in T_2} f_i, j |T_1||T_2| & \text{if } T = T_1 \Join T_2 \end{cases}$$

- allows for easy calculation of join cardinality
- requires only base cardinalities and selectivities
- assumes independence of the predicates
Sample Statistics

As running example, we use the following statistics:

\[|R_1| = 10 \]
\[|R_2| = 100 \]
\[|R_3| = 1000 \]
\[f_{1,2} = 0.1 \]
\[f_{2,3} = 0.2 \]

- implies query graph \(R_1 - R_2 - R_3 \)
- assume \(f_{i,j} = 1 \) for all other combinations
A Basic Cost Function

Given a join tree T, the cost function C_{out} is defined as

$$C_{out}(T) = \begin{cases}
0 & \text{if } T \text{ is a leaf } R_i \\
|T| + C_{out}(T_1) + C_{out}(T_2) & \text{if } T = T_1 \Join T_2
\end{cases}$$

- sums up the sizes of the (intermediate) results
- rational: larger intermediate results cause more work
- we ignore the costs of single relations as they have to be read anyway
Basic Join Specific Cost Functions

For single joins:

\[
C_{nlj}(e_1 \Join e_2) = |e_1||e_2|
\]

\[
C_{hj}(e_1 \Join e_2) = 1.2|e_1|
\]

\[
C_{smj}(e_1 \Join e_2) = |e_1| \log(|e_1|) + |e_2| \log(|e_2|)
\]

For sequences of join operators \(s = s_1 \Join \ldots \Join s_n \):

\[
C_{nlj}(s) = \sum_{i=2}^{n} |s_1 \Join \ldots \Join s_{i-1}| |s_i|
\]

\[
C_{hj}(s) = \sum_{i=2}^{n} 1.2|s_1 \Join \ldots \Join s_{i-1}|
\]

\[
C_{smj}(s) = \sum_{i=2}^{n} |s_1 \Join \ldots \Join s_{i-1}| \log(|s_1 \Join \ldots \Join s_{i-1}|) + \sum_{i=2}^{n} |s_i| \log(|s_i|)
\]
Remarks on the Basic Cost Functions

- cost functions are simplistic
- algorithms are modelled very simplified (e.g. 1.2, no n-way sort etc.)
- designed for left-deep trees
- \(C_{hj} \) and \(C_{smj} \) do not work for cross products (fix: take output cardinality then, which is \(C_{nl} \))
- in reality: other parameters than cardinality play a role
- cost functions assume the same join algorithm for the whole join tree
Sample Cost Calculations

<table>
<thead>
<tr>
<th></th>
<th>C_{out}</th>
<th>C_{nl}</th>
<th>C_{hj}</th>
<th>C_{smj}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_1 \Join R_2$</td>
<td>100</td>
<td>1000</td>
<td>12</td>
<td>697.61</td>
</tr>
<tr>
<td>$R_2 \Join R_3$</td>
<td>20000</td>
<td>100000</td>
<td>120</td>
<td>10630.26</td>
</tr>
<tr>
<td>$R_1 \times R_3$</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000.00</td>
</tr>
<tr>
<td>$(R_1 \Join R_2) \Join R_3$</td>
<td>20100</td>
<td>101000</td>
<td>132</td>
<td>11327.86</td>
</tr>
<tr>
<td>$(R_2 \Join R_3) \Join R_1$</td>
<td>40000</td>
<td>300000</td>
<td>24120</td>
<td>32595.00</td>
</tr>
<tr>
<td>$(R_1 \times R_3) \Join R_2$</td>
<td>30000</td>
<td>1010000</td>
<td>22000</td>
<td>143542.00</td>
</tr>
</tbody>
</table>

- costs differ vastly between join trees
- different cost functions result in different costs
- the cheapest plan is always the same here, but relative order varies
- join trees with cross products are expensive
- join order is essential under all cost functions
More Examples

For the query $|R_1| = 1000, |R_2| = 2, |R_3| = 2, f_{1,2} = 0.1, f_{1,3} = 0.1$ we have costs:

<table>
<thead>
<tr>
<th>$R_1 \bowtie R_2$</th>
<th>C_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_2 \times R_3$</td>
<td>4</td>
</tr>
<tr>
<td>$R_1 \bowtie R_3$</td>
<td>200</td>
</tr>
<tr>
<td>$(R_1 \bowtie R_2) \bowtie R_3$</td>
<td>240</td>
</tr>
<tr>
<td>$(R_2 \times R_3) \bowtie R_1$</td>
<td>44</td>
</tr>
<tr>
<td>$(R_1 \bowtie R_3) \bowtie R_2$</td>
<td>240</td>
</tr>
</tbody>
</table>

- here cross product is best
- but relies on the small sizes of $|R_2|$ and $|R_3|$
- attractive if the cardinality of one relation is small
More Examples (2)

For the query $|R_1| = 10, |R_2| = 20, |R_3| = 20, |R_4| = 10, f_{1,2} = 0.01, f_{2,3} = 0.5, f_{3,4} = 0.01$

we have costs:

<table>
<thead>
<tr>
<th>Join Tree</th>
<th>C_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_1 \bowtie R_2$</td>
<td>2</td>
</tr>
<tr>
<td>$R_2 \bowtie R_3$</td>
<td>200</td>
</tr>
<tr>
<td>$R_3 \bowtie R_4$</td>
<td>2</td>
</tr>
<tr>
<td>$((R_1 \bowtie R_2) \bowtie R_3) \bowtie R_4$</td>
<td>24</td>
</tr>
<tr>
<td>$((R_2 \times R_3) \bowtie R_1) \bowtie R_4$</td>
<td>222</td>
</tr>
<tr>
<td>$(R_1 \bowtie R_2) \bowtie (R_3 \bowtie R_4)$</td>
<td>6</td>
</tr>
</tbody>
</table>

- covers all join trees due to the symmetry of the query
- the bushy tree is better than all join trees
Symmetry and ASI

- cost function C_{impl} is called symmetric if $C_{impl}(e_1 \blacktriangledown^{impl} e_2) = C_{impl}(e_2 \blacktriangledown^{impl} e_1)$
- for symmetric cost functions commutativity can be ignored
- ASI: adjacent sequence interchange (see IKKBZ algorithm for a definition)

<table>
<thead>
<tr>
<th></th>
<th>ASI</th>
<th>¬ASI</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmetric</td>
<td>C_{out}</td>
<td>C_{smj}</td>
</tr>
<tr>
<td>¬symmetric</td>
<td>C_{hj}</td>
<td>-</td>
</tr>
</tbody>
</table>

- more complex cost functions are usually ¬ASI, often also ¬symmetric
- symmetry and especially ASI can be exploited during optimization
Classification of Join Ordering Problems

We distinguish four different dimensions:

1. query graph class: chain, cycle, star, and clique
2. join tree structure: left-deep, zig-zag, or bushy trees
3. join construction: with or without cross products
4. cost function: with or without ASI property

In total, 48 different join ordering problems.
Reminder: Catalan Numbers

The number of binary trees with \(n \) leave nodes is given by \(C(n - 1) \), where \(C(n) \) is defined as

\[
C(n) = \begin{cases}
1 & \text{if } n = 0 \\
\sum_{k=0}^{n-1} C(k)C(n - k - 1) & \text{if } n > 0
\end{cases}
\]

It can be written in a closed form as

\[
C(n) = \frac{1}{n + 1} \binom{2n}{n}
\]

The Catalan Numbers grown in the order of \(\Theta(4^n/n^{3/2}) \)
Number Of Join Trees with Cross Products

- left deep: $n!$
- right deep: $n!$
- zig-zag: $n!2^{n-2}$
- bushy: $n!C(n-1) = \frac{(2n-2)!}{(n-1)!}$

- rational: number of leaf combinations ($n!$) × number of unlabeled trees (varies)
- grows exponentially
- increases even more with a flexible tree structure
Chain Queries, no Cross Products

Let us denote the number of left-deep join trees for a chain query $R_1 - \ldots - R_n$ as $f(n)$

- obviously $f(0) = 1$, $f(1) = 1$
- for $n > 1$, consider adding R_n to all join trees for $R_1 - \ldots - R_{n-1}$
- R_n can be added at any position following R_{n-1}
- let's denote the position of R_{n-1} from the bottom with k ($[1, n-1]$)
- there are $n-k$ join trees for adding R_n after R_{n-1}
- one additional tree if $k = 1$, R_n can also be added before R_{n-1}
- for R_{n-1} to be at k, $R_{n-k} - \ldots R_{n-2}$ must be below it. $f(k-1)$ trees

for $n > 1$:

$$f(n) = 1 + \sum_{k=1}^{n-1} f(k-1) \ast (n-k)$$
Chain Queries, no Cross Products (2)

The number of left-deep join trees for chain queries of size n is

$$f(n) = \begin{cases}
1 & \text{if } n < 2 \\
1 + \sum_{k=1}^{n-1} f(k-1) \ast (n-k) & \text{if } n \geq 2
\end{cases}$$

solving the recurrence gives the closed form

$$f(n) = 2^{n-1}$$

• generalization to zig-zag as before
Chain Queries, no Cross Products (3)

The generalization to bushy trees is not as obvious

- each subtree must contain a subchain to avoid cross products
- thus do not add single relations but subchains
- whole chain must be $R_1 - \ldots - R_n$, cut anywhere
- consider commutativity (two possibilities)

This leads to the formula

$$f(n) = \begin{cases}
1 & \text{if } n < 2 \\
\sum_{k=1}^{n-1} 2f(k)f(n-k) & \text{if } n \geq 2
\end{cases}$$

solving the recurrence gives the closed form

$$f(n) = 2^{n-1} C(n - 1)$$
Star Queries, no Cross Products

Consider a star query with R_1 at the center and R_2, \ldots, R_n as satellites.

- the first join must involve R_1
- afterwards all other relations can be added arbitrarily

This leads to the following formulas:

- left-deep: $2 \times (n - 1)!$
- zig-zag: $2 \times (n - 1)! \times 2^{n-2} = (n - 1)! \times 2^{n-1}$
- bushy: no bushy trees possible (R_1 required), same as zig-zag
Clique Queries, no Cross Products

- in a clique query, every relation is connected to each other
- thus no join tree contains cross products
- all join trees are valid join trees, the number is the same as with cross products
Sample Numbers, without Cross Products

<table>
<thead>
<tr>
<th>n</th>
<th>Left-Deep 2^{n-1}</th>
<th>Zig-Zag 2^{2n-3}</th>
<th>Chain Queries</th>
<th>Star Queries</th>
<th>Left-Deep $2(n-1)!$</th>
<th>Zig-Zag/Bushy $2^{n-1}(n-1)!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>32</td>
<td>40</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>128</td>
<td>224</td>
<td>48</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>512</td>
<td>1344</td>
<td>240</td>
<td>3840</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>64</td>
<td>2048</td>
<td>8448</td>
<td>1440</td>
<td>46080</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>128</td>
<td>8192</td>
<td>54912</td>
<td>10080</td>
<td>645120</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>256</td>
<td>32768</td>
<td>366080</td>
<td>80640</td>
<td>10321920</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>512</td>
<td>131072</td>
<td>2489344</td>
<td>725760</td>
<td>18579450</td>
<td></td>
</tr>
</tbody>
</table>
Sample Numbers, with Cross Products

<table>
<thead>
<tr>
<th>n</th>
<th>Left-Deep $n!$</th>
<th>Zig-Zag $n!2^{n-2}$</th>
<th>Bushy $n!C(n-1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>96</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>960</td>
<td>1680</td>
</tr>
<tr>
<td>6</td>
<td>720</td>
<td>11520</td>
<td>30240</td>
</tr>
<tr>
<td>7</td>
<td>5040</td>
<td>161280</td>
<td>665280</td>
</tr>
<tr>
<td>8</td>
<td>40320</td>
<td>2580480</td>
<td>17297280</td>
</tr>
<tr>
<td>9</td>
<td>362880</td>
<td>46448640</td>
<td>518918400</td>
</tr>
<tr>
<td>10</td>
<td>3628800</td>
<td>968972800</td>
<td>17643225600</td>
</tr>
</tbody>
</table>
Problem Complexity

<table>
<thead>
<tr>
<th>query graph</th>
<th>join tree</th>
<th>cross products</th>
<th>cost function</th>
<th>complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>left-deep</td>
<td>no</td>
<td>ASI</td>
<td>NP-hard</td>
</tr>
<tr>
<td>tree/star/chain</td>
<td>left-deep</td>
<td>no</td>
<td>ASI, 1 joint. NLJ+SMJ</td>
<td>P</td>
</tr>
<tr>
<td>star</td>
<td>left-deep</td>
<td>no</td>
<td>NLJ+SMJ</td>
<td>NP-hard</td>
</tr>
<tr>
<td>general/tree/star</td>
<td>left-deep</td>
<td>yes</td>
<td>ASI</td>
<td>NP-hard</td>
</tr>
<tr>
<td>chain</td>
<td>left-deep</td>
<td>yes</td>
<td>-</td>
<td>open</td>
</tr>
<tr>
<td>general</td>
<td>bushy</td>
<td>no</td>
<td>ASI</td>
<td>NP-hard</td>
</tr>
<tr>
<td>tree</td>
<td>bushy</td>
<td>no</td>
<td>-</td>
<td>open</td>
</tr>
<tr>
<td>star</td>
<td>bushy</td>
<td>no</td>
<td>ASI</td>
<td>P</td>
</tr>
<tr>
<td>chain</td>
<td>bushy</td>
<td>no</td>
<td>any</td>
<td>P</td>
</tr>
<tr>
<td>general</td>
<td>bushy</td>
<td>yes</td>
<td>ASI</td>
<td>NP-hard</td>
</tr>
<tr>
<td>tree/star/chain</td>
<td>bushy</td>
<td>yes</td>
<td>ASI, 1 joint. NLJ+SMJ</td>
<td>NP-hard</td>
</tr>
</tbody>
</table>