
175 / 575

Join Ordering Generating Permutations

Generating Permutations

The algorithms so far have some drawbacks:

• greedy heuristics only heuristics

• will probably not find the optimal solution

• DP algorithms optimal, but very heavy weight

• especially memory consumption is high

• find a solution only after the complete search

Sometimes we want a more light-weight algorithm:

• low memory consumption

• stop if time runs out

• still find the optimal solution if possible

176 / 575

Join Ordering Generating Permutations

Generating Permutations (2)

We can achieve this when only considering left-deep trees:

• left-deep trees are permutations of the relations to be joined

• permutations can be generated directly

• generating all permutations is too expensive

• but some permutations can be ignored:
Consider the join sequence R1R2R3R4. If we know that R1R3R2 is
cheaper than R1R2R3, we do not have to consider R1R2R3R4.

Idea: successively add a relation. An extended sequence is only explored if
exchanging the last two relations does not result in a cheaper sequence.

177 / 575

Join Ordering Generating Permutations

Recursive Search

ConstructPermutations(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal left-deep join tree
B = ǫ
P = ǫ
for ∀Ri ∈ R {

ConstructPermutationsRec(P◦ < Ri >,R \ {Ri},B)
} return B

• algorithm considers a prefix P and the rest R

• keeps track of the best tree found so far B

• increases the prefix recursively

178 / 575

Join Ordering Generating Permutations

Recursive Search (2)

ConstructPermutationsRec(P, R,B)
Input: a prefix P, remaining relations R, best plan B

Output:side effects on B

if |R| = 0 {
if B = ǫ ∨ C (B) > C (P) {

B = P

}
} else {

for ∀Ri ∈ R {
if C (P◦ < Ri >) ≤ C (P[1 : |P| − 1]◦ < Ri ,P[|P|] >) {

ConstructPermutationsRec(P◦ < Ri >,R \ {Ri},B)
}

}
}

179 / 575

Join Ordering Generating Permutations

Remarks

Good:

• linear memory

• immediately produces plan alternatives

• anytime algorithm

• finds the optimal plan eventually

Bad:

• worst-case runtime of ties occur

• worst-case runtime of no ties occur is an open problem

Often fast, can be stopped anytime, but can perform poor.

180 / 575

Join Ordering Transformative Approaches

Transformative Approaches

Main idea: [6]

• use equivalences directly (associativity, commutativity)

• would make integrating new equivalences easy

Problems:

• how to navigate the search space

• equivalences have no order

• how to guarantee finding the optimal solution

• how to avoid exhaustive search

181 / 575

Join Ordering Transformative Approaches

Rule Set

R1 � R2 R2 � R1 Commutativity
(R1 � R2) � R3 R1 � (R2 � R3) Right Associativity
R1 � (R2 � R3) (R1 � R2) � R3 Left Associativity
(R1 � R2) � R3 (R1 � R3) � R2 Left Join Exchange
R1 � (R2 � R3) R2 � (R1 � R3) Right Join Exchange

Two more rules are often used to transform left-deep trees:

• swap exchanges two arbitrary relations in a left-deep tree

• 3Cycle performs a cyclic rotation of three arbitrary relations in a
left-deep tree.

To try another join method, another rule called join method exchange is
introduced.

182 / 575

Join Ordering Transformative Approaches

Rule Set RS-0

• commutativity

• left-associativity

• right-associativity

183 / 575

Join Ordering Transformative Approaches

Basic Algorithm

ExhaustiveTransformation({R1, . . . ,Rn})
Input: a set of relations
Output: an optimal join tree
Let T be an arbitrary join tree for all relations
Done = ∅ // contains all trees processed
ToDo = {T} // contains all trees to be processed
while |ToDo| > 0 {

T = an arbitrary tree in ToDo
ToDo = ToDo \T ;
Done = Done ∪ {T};
Trees = ApplyTransformations(T);
for ∀ T ∈ Trees {

if T 6∈ ToDo ∪ Done
ToDo = ToDo ∪ {T}

}
}
return arg minT∈Done C (T)

184 / 575

Join Ordering Transformative Approaches

Basic Algorithm (2)

ApplyTransformations(T)
Input: join tree
Output: all trees derivable by associativity and commutativity
Trees = ∅
Subtrees = all subtrees of T rooted at inner nodes
for ∀ S ∈ Subtrees {

if S is of the form S1 � S2

Trees = Trees ∪{S2 � S1}
if S is of the form (S1 � S2) � S3

Trees = Trees ∪{S1 � (S2 � S3)}
if S is of the form S1 � (S2 � S3)

Trees = Trees ∪{(S1 � S2) � S3}
}
return Trees;

185 / 575

Join Ordering Transformative Approaches

Remarks

• if no cross products are to be considered, extend if conditions for
associativity rules.

• problem 1: explores the whole search space

• problem 2: generates join trees more than once

• problem 3: sharing of subtrees is non-trivial

186 / 575

Join Ordering Transformative Approaches

Search Space

as

p

c

a

a

c

a

c

c

c

c

c

c

c

c

c

a

a

a

a

a

c

c

c

c

c

c

sa

a

c

c

c

c

c

c

c

c

sa

s

p

p

s

p

s

s

p

s

a

c

c

c as

p

l

l

p

sa

p

as

p

sa

p

s

s

p

s

p

p

s

s a

sa

sa

s

p

s

p

s

s

p

a

s

a

s

s

a a

s

as

as
a

ss

a

c

c

s

l

a

c

p

a

a

a

a

a

p

a

a

a

a

c

p

p

p

p

p

a

a

a

a

p

p p p

p

p

l
l

l
l

l

l
l l

l

l l
l

l

l l l

l

l l l

l

l l l

l

l

187 / 575

Join Ordering Transformative Approaches

Introducing the Memo Structure

A memoization strategy is used to keep the runtime reasonable:

• for any subset of relations, dynamic programming remembers the best
join tree.

• this does not quite suffice for the transformation-based approach.

• instead, we have to keep all join trees generated so far including those
differing in the order of the arguments of a join operator.

• however, subtrees can be shared.

• this is done by keeping pointers into the data structure (see next
slide).

188 / 575

Join Ordering Transformative Approaches

Memo Structure Example

{R1,R2,R3} {R1,R2} � R3,R3 � {R1,R2},
{R1,R3} � R2,R2 � {R1,R3},
{R2,R3} � R1,R1 � {R2,R3}

{R2,R3} {R2} � {R3}, {R3} � {R2}

{R1,R3} {R1} � {R3}, {R3} � {R1}

{R1,R2} {R1} � {R2}, {R2} � {R1}

{R3} R3

{R2} R2

{R1} R1

• in Memo Structure: arguments are pointers to classes

• Algorithm: ExploreClass expands a class

• Algorithm: ApplyTransformation2 expands a member of a class

189 / 575

Join Ordering Transformative Approaches

Memoizing Algorithm

ExhaustiveTransformation2(Query Graph G)
Input: a query specification for relations {R1, . . . ,Rn}.
Output: an optimal join tree
initialize MEMO structure
ExploreClass({R1, . . . ,Rn})
return arg minT∈class {R1,...,Rn} C (T)

• stored an arbitrary join tree in the memo structure

• explores alternatives recursively

190 / 575

Join Ordering Transformative Approaches

Memoizing Algorithm (2)

ExploreClass(C)
Input: a class C ⊆ {R1, . . . ,Rn}
Output: none, but has side-effect on MEMO-structure
while not all join trees in C have been explored {

choose an unexplored join tree T in C
ApplyTransformation2(T)
mark T as explored

}

• considers all alternatives within one class

• transformations themselves are done in ApplyTransformation2

191 / 575

Join Ordering Transformative Approaches

Memoizing Algorithm (3)

ApplyTransformations2(T)
Input: a join tree of a class C
Output: none, but has side-effect on MEMO-structure
ExploreClass(left-child(T))
ExploreClass(right-child(T));
for ∀ transformation T and class member of child classes {

for ∀T ′ resulting from applying T to T {
if T ′ not in MEMO structure {

add T ′ to class C of MEMO structure
}

}
}

• first explores subtrees
• then applies all known transformations to the tree
• stores new trees in the memo structure

192 / 575

Join Ordering Transformative Approaches

Remarks

• Applying ExhaustiveTransformation2 with a rule set consisting of
Commutativity and Left and Right Associativity generates
4n − 3n+1 + 2n+2 − n − 2 duplicates

• Contrast this with the number of join trees contained in a completely
filled MEMO structure: 3n − 2n+1 + n + 1

• Solve the problem of duplicate generation by disabling applied rules.

193 / 575

Join Ordering Transformative Approaches

Rule Set RS-1

T1: Commutativity C1 �0 C2 C2 �1 C1

Disable all transformations T1, T2, and T3 for �1.

T2: Right Associativity (C1 �0 C2) �1 C3 C1 �2 (C2 �3 C3)
Disable transformations T2 and T3 for �2 and enable all
rules for �3.

T3: Left associativity C1 �0 (C2 �1 C3) (C1 �2 C2) �3 C3

Disable transformations T2 and T3 for �3 and enable all
rules for �2.

194 / 575

Join Ordering Transformative Approaches

Example for chain R1 − R2 − R3 − R4
Class Initialization Transformation Step

{R1, R2, R3, R4} {R1, R2} �111 {R3, R4} {R3, R4} �000 {R1, R2} 3
R1 �100 {R2, R3, R4} 4
{R1, R2, R3} �100 R4 5
{R2, R3, R4} �000 R1 8
R4 �000 {R1, R2, R3} 10

{R2, R3, R4} R2 �111 {R3, R4} 4
{R3, R4} �000 R2 6
{R2, R3} �100 R4 6
R4 �000 {R2, R3} 7

{R1, R3, R4}
{R1, R2, R4}
{R1, R2, R3} {R1, R2} �111 R3 5

R3 �000 {R1, R2} 9
R1 �100 {R2, R3} 9
{R2, R3} �000 R1 9

{R3, R4} R3 �111 R4 R4 �000 R3 2
{R2, R4}
{R2, R3}
{R1, R4}
{R1, R3}
{R1, R2} R1 �111 R2 R2 �000 R1 1

195 / 575

Join Ordering Transformative Approaches

Rule Set RS-2

Bushy Trees: Rule set for clique queries and if cross products are allowed:

T1: Commutativity C1 �0 C2 C2 �1 C1

Disable all transformations T1, T2, T3, and T4 for �1.

T2: Right Associativity (C1 �0 C2) �1 C3 C1 �2 (C2 �3 C3)
Disable transformations T2, T3, and T4 for �2.

T3: Left Associativity C1 �0 (C2 �1 C3) (C1 �2 C2) �3 C3

Disable transformations T2, T3 and T4 for �3.

T4: Exchange (C1 �0 C2) �1 (C3 �2 C4) (C1 �3 C3) �4 (C2 �5 C4)
Disable all transformations T1, T2, T3, and T4 for �4.

If we initialize the MEMO structure with left-deep trees, we can strip down
the above rule set to Commutativity and Left Associativity. Reason: from
a left-deep join tree we can generate all bushy trees with only these two
rules

196 / 575

Join Ordering Transformative Approaches

Rule Set RS-3

Left-deep trees:

T1 Commutativity R1 �0 R2 R2 �1 R1

Here, the Ri are restricted to classes with exactly one
relation. T1 is disabled for �1.

T2 Right Join Exchange (C1 �0 C2) �1 C3 (C1 �2 C3) �3 C2

Disable T2 for �3.

197 / 575

Join Ordering Randomized Approaches

Generating Random Join Trees

Generating a random join tree is quite useful:

• allows for cost sampling

• randomized optimization procedures

• basis for Simulated Annealing, Iterative Improvement etc.

• easy with cross products, difficult without

• we consider with cross products first

Main problems:

• generating all join trees (potentially)

• creating all with the same probability

198 / 575

Join Ordering Randomized Approaches

Ranking/Unranking

Let S be a set with n elements.

• a bijective mapping f : S → [0, n[is called ranking

• a bijective mapping f : [0, n[→ S is called unranking

Given an unranking function, we can generate random elements in S by
generating a random number in [0, n[and unranking this number.
Challenge: making unranking fast.

199 / 575

Join Ordering Randomized Approaches

Random Permutations

Every permutation corresponds to a left-deep join tree possibly with cross
products.
Standard algorithm to generate random permutations is the starting point
for the algorithm:

for ∀k ∈ [0, n[descending

swap(π[k], π[random(k)])

Array π initialized with elements [0, n[.
random(k) generates a random number in [0, k].

200 / 575

Join Ordering Randomized Approaches

Random Permutations

• Assume the random elements produced by the algorithm are
rn−1, . . . , r0 where 0 ≤ ri ≤ i .

• Thus, there are exactly n(n − 1)(n − 2) . . . 1 = n! such sequences and
there is a one to one correspondance between these sequences and
the set of all permutations.

• Unrank r ∈ [0, n![by turning it into a unique sequence of values
rn−1, . . . , r0.
Note that after executing the swap with rn−1 every value in [0, n[is
possible at position π[n − 1].
Further, π[n − 1] is never touched again.

• Hence, we can unrank r as follows. We first set rn−1 = r mod n and
perform the swap. Then, we define r ′ = ⌊r/n⌋ and iteratively unrank
r ′ to construct a permutation of n − 1 elements.

201 / 575

Join Ordering Randomized Approaches

Generating Random Permutations

Unrank(n, r)
Input: the number n of elements to be permuted

and the rank r of the permutation to be constructed
Output:a permutation π
for ∀0 ≤ i < n

π[i] = i

for ∀n ≥ i > 0 descending {
swap(π[i − 1], π[r mod i])
r = ⌊r/i⌋

}
return π;

