Generating Permutations
Generating Permutations

The algorithms so far have some drawbacks:

e greedy heuristics only heuristics

will probably not find the optimal solution

e DP algorithms optimal, but very heavy weight
e especially memory consumption is high

e find a solution only after the complete search
Sometimes we want a more light-weight algorithm:

e low memory consumption
e stop if time runs out
o still find the optimal solution if possible

Generating Permutations
Generating Permutations (2)

We can achieve this when only considering left-deep trees:
o left-deep trees are permutations of the relations to be joined
e permutations can be generated directly
e generating all permutations is too expensive

e but some permutations can be ignored:
Consider the join sequence R1RoR3Ry. If we know that RiR3R> is
cheaper than Ry R> Rz, we do not have to consider RiRaR3R,.

Idea: successively add a relation. An extended sequence is only explored if
exchanging the last two relations does not result in a cheaper sequence.

WCTNOIE -8 Generating Permutations

Recursive Search

ConstructPermutations(R)
Input: a set of relations R = {Ry,..., Ry} to be joined
Output:an optimal left-deep join tree

B=c¢
P=c¢
for VR € R {

ConstructPermutationsRec(Po < R; >,R \ {R;},B)
} return B

e algorithm considers a prefix P and the rest R
o keeps track of the best tree found so far B

e increases the prefix recursively

WCTNOIE -8 Generating Permutations

Recursive Search (2)

ConstructPermutationsRec(P, R, B)
Input: a prefix P, remaining relations R, best plan B
Output:side effects on B
if |[R|=0{
if B=eV C(B)> C(P){
B=P
}
} else {
for VR, € R {
if C(Po< R; >) < C(P[1:|P|—1]o < Ri,P[|P]] >) {
ConstructPermutationsRec(Po < R; >, R\ {Ri}, B)
¥
}
¥

WCTNOIE -8 Generating Permutations

Remarks

Good:
e linear memory
e immediately produces plan alternatives
e anytime algorithm

finds the optimal plan eventually
Bad:
e worst-case runtime of ties occur

e worst-case runtime of no ties occur is an open problem

Often fast, can be stopped anytime, but can perform poor.

NGOG -8 Transformative Approaches

Transformative Approaches

Main idea: [6]
e use equivalences directly (associativity, commutativity)

e would make integrating new equivalences easy

Problems:

e how to navigate the search space

e equivalences have no order

e how to guarantee finding the optimal solution
how to avoid exhaustive search

NGOG -8 Transformative Approaches

Rule Set

RiX Ry

(Rl X R2) X R3
Ry X (R2 X R3)
(Rl X Rg) X R3
Ry X (R2 X R3)

Ry X Ry

Ry X (R2 X R3)
(Rl X Rz) X Rs3
(Rl X R3) X Ry
Ry X (Rl X R3)

LR T

Commutativity
Right Associativity
Left Associativity
Left Join Exchange
Right Join Exchange

Two more rules are often used to transform left-deep trees:

e swap exchanges two arbitrary relations in a left-deep tree

e 3Cycle performs a cyclic rotation of three arbitrary relations in a

left-deep tree.

To try another join method, another rule called join method exchange is

introduced.

Transformative Approaches
Rule Set RS-0

e commutativity
o |eft-associativity

e right-associativity

Transformative Approaches
Basic Algorithm

ExhaustiveTransformation({Ry, ..., R,})
Input: a set of relations
Output: an optimal join tree
Let T be an arbitrary join tree for all relations
Done =) // contains all trees processed
ToDo = {T} // contains all trees to be processed
while |ToDo| > 0 {
T = an arbitrary tree in ToDo
ToDo = ToDo \ T;
Done = Done U {T};
Trees = ApplyTransformations(T);
for V. T € Trees {
if T & ToDo U Done
ToDo = ToDo U {T}
}
}

return arg min7cpone C(T)

Transformative Approaches
Basic Algorithm (2)

ApplyTransformations(T)
Input: join tree
Output: all trees derivable by associativity and commutativity
Trees = ()
Subtrees = all subtrees of T rooted at inner nodes
for V' S € Subtrees {
if S is of the form 51 X 5,
Trees = Trees U{S; X 51}
if S is of the form (51 X 5p) X S3
Trees = Trees U{S; X (Sp X S3)}
if S is of the form S; X (5, X S3)
Trees = Trees U{(S1 X Sp) X S3}
}

return Trees;

NGOG -8 Transformative Approaches

Remarks

e if no cross products are to be considered, extend if conditions for
associativity rules.

e problem 1: explores the whole search space
e problem 2: generates join trees more than once

e problem 3: sharing of subtrees is non-trivial

Transformative Approaches

oin Ordering

Search Space

1T

N A Y e A A A A A A e
B T e T S O W O e W W
N N . - \a . \
(ol e el ey ey (e
Ry SRy TRy TRy TRyt Ry L Ryt
Ny % N/ N \y/ % \y/
. oAl LA LK N

NGOG -8 Transformative Approaches

Introducing the Memo Structure

A memoization strategy is used to keep the runtime reasonable:

for any subset of relations, dynamic programming remembers the best
join tree.

this does not quite suffice for the transformation-based approach.

instead, we have to keep all join trees generated so far including those
differing in the order of the arguments of a join operator.

however, subtrees can be shared.

this is done by keeping pointers into the data structure (see next
slide).

NGOG -8 Transformative Approaches

Memo Structure Example

{Rl,Rg,R3} {Rl,Rg}NR3,R3N{R1,R2},
{Rl, R3} X Ry, Ry X {Rl, R3},
{Ro, R3} X Ry, Ri X {R>, R3}
{Ro, Rs} {Ro} M {R3}, {R3} M {Ro}
{R1, Rs} {Ri} X {Rs}, {Rs} X {Ri}
{R1, Ro} {Ri} X {Ro}, {Ro} X {R1}

{Rs} Rs
{Ro} Ro
{Ri} R

e in Memo Structure: arguments are pointers to classes
e Algorithm: ExploreClass expands a class

e Algorithm: ApplyTransformation2 expands a member of a class

Transformative Approaches
Memoizing Algorithm

ExhaustiveTransformation2(Query Graph G)

Input: a query specification for relations {Ry, ..., Ry}.
Output: an optimal join tree

initialize MEMO structure

ExploreClass({Ri, ..., Rn})

return arg minrcciass {r;,....R,} C(T)

e stored an arbitrary join tree in the memo structure

e explores alternatives recursively

Transformative Approaches
Memoizing Algorithm (2)

ExploreClass(C)

Input: aclassC C {Ry,...,Rn}

Output: none, but has side-effect on MEMO-structure

while not all join trees in C have been explored {
choose an unexplored join tree T in C
ApplyTransformation2(T)
mark T as explored

e considers all alternatives within one class
e transformations themselves are done in ApplyTransformation2

Transformative Approaches
Memoizing Algorithm (3)

ApplyTransformations2(T)
Input: a join tree of a class C
Output: none, but has side-effect on MEMO-structure
ExploreClass(left-child(T))
ExploreClass(right-child(T));
for V transformation 7 and class member of child classes {
for VT’ resulting from applying 7 to T {
if T/ not in MEMO structure {
add T’ to class C of MEMO structure
}

o first explores subtrees

e then applies all known transformations to the tree
e stores new trees in the memo structure

NGOG -8 Transformative Approaches

Remarks

e Applying ExhaustiveTransformation2 with a rule set consisting of
Commutativity and Left and Right Associativity generates
4n —3n+1 4 2rt2 _ p 2 duplicates

e Contrast this with the number of join trees contained in a completely
filled MEMO structure: 3" — 2"t 4+ n 41

e Solve the problem of duplicate generation by disabling applied rules.

Transformative Approaches
Rule Set RS-1

T1: Commutativity C; Mg G ~~ G My (7
Disable all transformations T7, T», and T3 for Xj.

To: Right Associativity (Cy Mg G) My G5 ~ Gy My (G M3 G3)
Disable transformations T, and T3 for X5 and enable all
rules for Xs3.

T3: Left associativity (3 Mg (C2 X1 C3) ~ (Cl Xy C2) X3 C3
Disable transformations T> and T3 for X3 and enable all
rules for M.

NGOG -8 Transformative Approaches

Example for chain Ry — R, — R3 — Ry

[Class i Initialization [Transformation [Step |

{R1,R2, R3, Ra} || {R1, R2} X111 {R3, Ra} | {R3, Ra} Mooo {R1, Ro} 3

R1 Mi00 {R2, R3, Ra} 4

{R1, Rz, R3} X100 R4 5

{R2, R3, R4} Mooo R1 8

R4 Mooo {R1, R2, Rs} 10

{R2, R3, R4} Ro X111 {R3, Ra} 4

{R3, R4} Moo Ra 6

{R2, R3} M100 Ra 6

R4 Moo {R2, R3} 7

{R1, R3, R}
{R1, R2, R4}

{R1,R2, R3} {R1,R2} X111 R3 5

R3 Mgoo {R1, R2} 9

R1 M100 {R2, R3} 9

{R2, R3} Mooo R1 9

{R3, Ra} R3 X111 Ry R4 Moo R3 2
{R2, R}
{R2, R3}
{R1, R4}
{R1, R3}

{R1, R2} R X111 Rp R> Moo Ri 1

Transformative Approaches
Rule Set RS-2

Bushy Trees: Rule set for clique queries and if cross products are allowed:
T1: Commutativity C; Mg G ~ G Xy Gy
Disable all transformations T7, T», T3, and T4 for X;.
To: Right Associativity (Ci Mg Go) My G5 ~ Gy My (G M3 (G3)
Disable transformations T», T3, and T, for X».
Ts3: Left Associativity C; Mg (C2 Xq C3) ~ (Cl Mo C2) X3 C3
Disable transformations T, T3 and T4 for Xs.
Ta: Exchange (G Mo G) M1 (G Xy Ga) ~ (G X3 G3) My (G X5 Cy)
Disable all transformations T7, T», T3, and T4 for Xg.
If we initialize the MEMO structure with left-deep trees, we can strip down
the above rule set to Commutativity and Left Associativity. Reason: from
a left-deep join tree we can generate all bushy trees with only these two
rules

NGOG -8 Transformative Approaches

Rule Set RS-3

Left-deep trees:
T1 Commutativity Rl MO R2 ~ R2 X1 Rl

Here, the R; are restricted to classes with exactly one
relation. T3 is disabled for Xj.

T> Right Join Exchange (C1 e 5] C2) Xqp C3 ~ (Cl Xy C3) X3 G
Disable T, for X3.

Join Ordering Randomized Approaches

Generating Random Join Trees

Generating a random join tree is quite useful:

allows for cost sampling

randomized optimization procedures

basis for Simulated Annealing, Iterative Improvement etc.
easy with cross products, difficult without

we consider with cross products first

Main problems:

generating all join trees (potentially)

creating all with the same probability

Randomized Approaches
Ranking/Unranking

Let S be a set with n elements.
e a bijective mapping f : S — [0, n[is called ranking
e a bijective mapping f : [0,n[— S is called unranking

Given an unranking function, we can generate random elements in S by
generating a random number in [0, n[and unranking this number.
Challenge: making unranking fast.

Join Ordering Randomized Approaches

Random Permutations

Every permutation corresponds to a left-deep join tree possibly with cross

products.
Standard algorithm to generate random permutations is the starting point

for the algorithm:

for Yk € [0, n[descending
swap(w[k], m[random(k)])

Array 7 initialized with elements [0, n].
random(k) generates a random number in [0, k].

Join Ordering Randomized Approaches

Random Permutations

e Assume the random elements produced by the algorithm are
Fn_1,...,r where 0 < r; <.
e Thus, there are exactly n(n— 1)(n—2)...1 = n! such sequences and

there is a one to one correspondance between these sequences and
the set of all permutations.

e Unrank r € [0, n![by turning it into a unique sequence of values
rn—1,...,10-
Note that after executing the swap with r,_1 every value in [0, n[is
possible at position 7[n — 1].
Further, w[n — 1] is never touched again.

e Hence, we can unrank r as follows. We first set r,_1 = r mod n and
perform the swap. Then, we define r' = |r/n| and iteratively unrank
r’ to construct a permutation of n — 1 elements.

Join Ordering Randomized Approaches

Generating Random Permutations

Unrank(n, r)
Input: the number n of elements to be permuted
and the rank r of the permutation to be constructed

Output:a permutation 7
for VO<i<n

w[i] =i
for Vn > i > 0 descending {

swap(r[i — 1], w[r mod i])

r=|r/i]
}

return ;

