Quick Pick

- problem: build (pseudo-)random join trees fast
- unranking without cross products is quite involved
- idea: randomly select an edge in the query graph
- extend join tree by selected edge

No longer uniformly distributed, but very fast
Quick Pick (2)

QuickPick(Query Graph G)

Input: a query graph $G = (\{R_1, \ldots, R_n\}, E)$

Output: a bushy join tree

$E' = E$;

Trees $= \{R_1, \ldots, R_n\}$;

while $|\text{Trees}| > 1$ {

choose a random $e \in E'$

$E' = E' \setminus \{e\}$

if e connects two relations in different subtrees $T_1, T_2 \in$ Trees

Trees $= \text{Trees} \setminus \{T_1, T_2\} \cup \text{CreateJoinTree}(T_1, T_2)$

}

return $T \in$ Trees

- repeated multiple times to find a good tree
Metaheuristics

- provide a very general optimization strategy
- applicable for many different problems
- work well even for very large problems
- but are often considered a "brute-force" method

We consider the metaheuristics formulated for the join ordering problem.
Iterative Improvement

- Start with random join tree
- Select rule that improves join tree
- Stop when no further improvement possible
Iterative Improvement (2)

IterativeImprovementBase(Query Graph G)

Input: a query graph $G = (\{ R_1, \ldots, R_n \}, E)$

Output: a join tree

```
do {
    JoinTree = random tree
    JoinTree = IterativeImprovement(JoinTree)
    if cost(JoinTree) < cost(BestTree) {
        BestTree = JoinTree
    }
} while (time limit not exceeded)

return BestTree
```
Iterative Improvement (3)

IterativeImprovement(JoinTree)

Input: a join tree

Output: improved join tree

do {
 JoinTree' = randomly apply a transformation from the rule set to the JoinTree
 if (cost(JoinTree') < cost(JoinTree)) {
 JoinTree = JoinTree'
 }
} while local minimum not reached

return JoinTree

- problem: local minimum detection
Simulated Annealing

- II: stuck in local minimum
- SA: allow moves that result in more expensive join trees
- lower the threshold for worsening
Simulated Annealing (2)

SimulatedAnnealing(Query Graph G)

Input: a query graph \(G = (\{R_1, \ldots, R_n\}, E) \)

Output: a join tree

BestTreeSoFar = random tree

Tree = BestTreeSoFar
Simulated Annealing (3)

\[
\text{do } \{ \\
\quad \text{do } \{ \\
\quad \quad \text{Tree'} = \text{apply random transformation to Tree} \\
\quad \quad \text{if } (\text{cost(Tree'}) < \text{cost(Tree)}) \{ \\
\quad \quad \quad \text{Tree} = \text{Tree'} \\
\quad \quad \} \text{ else } \{ \\
\quad \quad \quad \text{with probability } e^{-(\text{cost(Tree'})-\text{cost(Tree)})/\text{temperature}} \\
\quad \quad \quad \text{Tree} = \text{Tree'} \\
\quad \quad \} \\
\quad \text{if } (\text{cost(Tree)} < \text{cost(BestTreeSoFar)}) \{ \\
\quad \quad \text{BestTreeSoFar} = \text{Tree'} \\
\quad \} \\
\quad \} \text{ while equilibrium not reached} \\
\} \text{ while not frozen} \\
\text{return BestTreeSoFar}
\]
Simulated Annealing (4)

Advantages:
- can escape from local minimum
- produces better results than \(\Pi \)

Problems:
- parameter tuning
- initial temperature
- when and how to decrease the temperature
Tabu Search

- Select cheapest reachable neighbor (even if it is more expensive)
- Maintain tabu set to avoid running into circles
Tabu Search (2)

TabuSearch(Query Graph)

Input: a query graph \(G = (\{R_1, \ldots, R_n\}, E) \)

Output: a join tree

Tree = random join tree

BestTreeSoFar = Tree

TabuSet = \(\emptyset \)

do

Neighbors = all trees generated by applying a transformation to Tree

Tree = cheapest in Neighbors \ TabuSet

if cost(Tree) < cost(BestTreeSoFar)

BestTreeSoFar = Tree

if (|TabuSet| > limit) remove oldest tree from TabuSet

TabuSet = TabuSet \u222a \{Tree\}

return BestTreeSoFar