On social networks and collaborative recommendation

Social Networks WS09/10 Speaker: Julia Wolf

based on a paper by Ioannis Konstas, Vassilios Stathopoulos and Joemon M Jose

Outline

- The Network
- Collaborative Recommendation
- Collaborative Filtering
- The Social Graph
- Random Walks with Restarts
- Experiments and Results
- Conclusion

Outline

The Network

- Collaborative Recommendation
- Collaborative Filtering
- The Social Graph
- Random Walks with Restarts
- Experiments and Results
- Conclusion

The Network: Last.fm

lost.fm Music	Radio Events Vide	os Charts	Community		Inbox Logou	t 👱 yzeal 👻
Play Sony Fantasy Festival on Las	t.fm		e	English Paint it Black Help	Music search	٩
Community » People						
Find	people on Last.fm			Go to the Gr	r groups? oup Search	
Search by username	e or real name	Sea	arch	Cooking fo Go to the Mu	r music? sic Search or Event Searc	ch
Browse People				You don't have any be able to see what browsing for people	friends yet. Once you ma they're listening to in real t with similar music taste.	ike some, you'll time! Try
Looking for people with music listeners recommended by Las	c taste similar to yours? Check st fm	: out your neighb	ours, like-minded	Buy a subscripti	on for a friend	
Counter	Cormony			When you subscribe listening, ad-free bro buy a subscription fo	to Last.fm you get uninter wsing and streaming plus or someone as a 1, 3, 6 or	rrupted radio more. You can 12 months-long
Music taste	The Pussycat Dolls, Owl City			gift		
				Recent Subscriber	s	Subscribe 🕑
Type in some artist names separated by commas.		end_of_tv	vilight Hone	yGrrl		
	DIOWSE	nore options		brambleir	meso	alino
Recently Active Pe	ople					See more 文
Cidero 22, Male, Austria Last track: Paramo Ignorance	ore –	ANNANN_LFC Annann Cantabi Thailand Listening: Pir Were Here	ile, 23, Female, nk Floyd – Wish You	_		

Last.fm - recommendations

Music Recommended by Last.fm

Play all Recommendations

Simple Plan

18,339,530 plays (691,750 listeners)

rock, punk rock, pop punk, punk, emo

Simple Plan is a French Canadian pop/rock band formed in Montréal, Québec. They began with the formation of the Canadian punk band Reset in 1993, by high-school friends Pierre Bouvier and Charles-André (Chuck) Comeau. Read more

Eve 6

4,511,764 plays (360,002 listeners)

rock, alternative, alternative rock, 90s, punk

Eve 6 is an alternative/post-grunge rock band which formed in 1995 in La Crescenta, California, United States. The band split in 2004 and reunited in October, 2007. Max Collins – lead vocals, bass Jon Siebels – guitar, vocals Read more Similar Artists from Your Library

Similar Artists from Your Library

The

All-American...

Elliot Minor

Θ

Ø

Third Eye Blind

Last.fm - recommendations (2)

Outline

- The Network
- Collaborative Recommendation
- Collaborative Filtering
- The Social Graph
- Random Walks with Restarts
- Experiments and Results
- Conclusion

Collaborative Recommendation

- Content-based
 - based on correlation between content and a user's preferences
 - limited to dictionary-bound relations

Collaborative filtering (CF)

Outline

- The Network
- Collaborative Recommendation
- Collaborative Filtering
- The Social Graph
- Random Walks with Restarts
- Experiments and Results
- Conclusion

Collaborative Filtering (CF)

- Memory-based:
 - based on users' ratings of items
 - Aggregate ratings of *k* nearest neighbours.
- Problems:
 - integrating friendship and social tagging

Collaborative Filtering (2)

Model-based:

- **clusters** based on similar rating behaviour
- patterns recognised inside the clusters

Problems:

- fine-tuning of parameters
- generalisation of models
- integrating additional information

Collaborative Filtering (3)

- User ratings are bounded and discrete (e.g. 0 to 5 stars on Amazon *****).
- Memory-based CF systems:
 - user based
 - item based

CF – user based

- User based:
 - Predict rating *p_{a,i}* based on users *u* with similar ratings to those of the active user *a*.
 - weighted combination of the ratings:

$$p_{a,i} = \bar{r}_a + \frac{\sum_{u=1}^{N} (r_{u,i} - \bar{r}_u) \mathbf{w}_{a,u}}{\sum_{u=1}^{N} \mathbf{w}_{a,u}}$$

a : active user

- *i* : item not yet rated by *a*
- $P_{a,l}$: predicted rating of a to i
- $r_{u,i}$: rating of user *u* to *i*
- $ar{r}$: mean rating of user
- $W_{a,u}$: similarity weight between a and u

CF - item based

- Item based:
 - Predict rating $p_{a,i}$ based on items k with similar ratings to item i.
 - weighted combination of the ratings:

$$p_{a,i} = \overline{r_i} + \frac{\sum_{k=1}^{M} (r_{a,k} - \overline{r_k}) \mathbf{w}_{i,k}}{\sum_{k=1}^{M} \mathbf{w}_{i,k}}$$

- a : active user
- *i* : item not yet rated by *a*
- $P_{a,l}$: predicted rating of a to i
- $r_{a,k}$: rating of items k by a
- $ar{r}$: mean rating of item
- $W_{i,k}$: similarity weight between *i* and *k*

CF on Last.fm

Item based systems:

- significantly less items than users
- true for most **commercial** applications
- Last.fm:
 - significantly more tracks than users
 - ⇒ Consider a user based system.
- important if we think about the sizes of the item-item or user-user similarity matrices

CF - Pearson correlation

- Compute the similarity weights *Wa,u*.
- Pearson correlation score is used:

$$w_{a,u} = \frac{\sum_{i=1}^{M} (r_{a,i} - \bar{r}_a) (r_{u,i} - \bar{r}_u)}{\sigma_a \sigma_u}$$

a	: active user
i	: item not yet rated by a
σ_{a}	: standard deviation of a's ratings
$r_{u,i}$: rating of items i by user u
\bar{r}	: mean rating of item
$\mathbf{w}_{t,k}$: similarity weight between <i>i</i> and <i>k</i>

CF – integrating social components

- We rely on playcount instead of ratings.
- Integrate friendship and tagging into the model.
- ► ⇒ Compute three similarity weights based on
 - playcount,
 - tags and
 - friendships.

CF – integrating social components (2)

- Use the Pearson correlations coefficient for each.
- Replace the similarity weights with

$$w_{a,u} = \alpha w_{a,u}^{(I)} + \beta w_{a,u}^{(F)} + \gamma w_{a,u}^{(T)}$$

where

$$\alpha + \beta + \gamma = 1$$

and $w_{a,u}^{(I)}$, $w_{a,u}^{(F)}$ and $w_{a,u}^{(T)}$ are based on user tracks, user friendships and user tags respectively.

Different view on the problem

- View different similarities as a graph with different node types.
- Starting from a user: through friendship and preferences, where will he end up?
- ⇒ Random Walk model over the graph

Outline

- The Network
- Collaborative Recommendation
- Collaborative Filtering
- The Social Graph
- Random Walks with Restarts
- Experiments and Results
- Conclusion

Last.fm social graph - friends

→ friendship user

Corresponding adjacency matrix:

 $UU := \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$

User-User matrix (UU)

Social graph - tracks

Corresponding adjacency matrix:

	1	3	0
	0	5	0
UTr :=	3	0	0
011.	0	314	0
	0	0	20
	4	2	1

User-Track matrix (UTr)

The numbers correspond to the times a user has listened to a track. They can be very high.

Social graph - tags

Corresponding adjacency matrix:

$$UTg:=\left[\begin{array}{ccccccc} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right]$$

User-Tag matrix (UTg)

Social graph - tags/tracks

Corresponding adjacency matrix:

$$\mathsf{TrTg}:=\begin{bmatrix} 1 \ 1 \ 0 \ 0 \end{bmatrix}$$

Track-Tag matrix (TrTg)

Complete social graph - matrix

What we call the social graph S is now made up of UU, UTr, UTg and TrTg as follows:

	Users	Tracks	Tags	
Users	UU	UTr	UTg	
Tracks	UTr [⊤]	0	TrTg	=: S
Tags	UTg [⊤]	TrTg [⊤]	0	

Social graph – normalisation

- ▶ playcount in UTr for each ranges from 1 to 11640
 ⇒ Normalise the other sub-matrices of S:
- Replace each bond of friendship in UU with the average user playcount.
- Apply an exponential decay function to the popularity values in UTg and TrTg.
- Most popular tags get the average user playcount.

26

Social graph – example

In our example from before, where the average playcount is 39, that yields:

$$\mathsf{UU} = \begin{bmatrix} 0 & 39 & 39 & 0 & 39 & 0 \\ 39 & 0 & 0 & 39 & 0 & 0 \\ 0 & 39 & 0 & 0 & 39 & 0 \\ 0 & 39 & 0 & 0 & 39 & 0 \\ 0 & 0 & 39 & 0 & 0 \\ 0 & 0 & 39 & 0 & 0 \\ 0 & 0 & 39 & 0 & 0 \end{bmatrix} \qquad \mathsf{UTg} = \begin{bmatrix} \mathsf{14} & \mathsf{0} & \mathsf{14} & \mathsf{0} \\ 0 & \mathsf{0} & \mathsf{0} & \mathsf{0} \\ 0 & \mathsf{0} & \mathsf{14} & \mathsf{0} \\ 0 & \mathsf{0} & \mathsf{0} & \mathsf{39} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{39} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{39} \\ \mathsf{0} & \mathsf{14} & \mathsf{14} & \mathsf{0} \end{bmatrix} \qquad \mathsf{TrTg} = \begin{bmatrix} \mathsf{14} & \mathsf{14} & \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} & \mathsf{14} & \mathsf{39} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{39} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{39} \\ \mathsf{0} & \mathsf{14} & \mathsf{14} & \mathsf{0} \end{bmatrix}$$

Here I simply assumed $f(x) = 39 * e^{-x}$ as the exponential decay function and truncated the values.

Social graph – example (2)

- We want to use **S** as a transition probability table.
- \Rightarrow Normalise S.

$$\mathsf{UU} = \begin{bmatrix} 0 & 39 & 39 & 0 & 39 & 0 \\ 39 & 0 & 0 & 39 & 0 & 0 \\ 39 & 0 & 0 & 39 & 0 & 0 \\ 0 & 39 & 0 & 0 & 39 & 0 \\ 0 & 39 & 0 & 0 & 39 & 0 \\ 0 & 0 & 39 & 0 & 0 & 0 \end{bmatrix} \quad \mathsf{UU'} = \begin{bmatrix} 0 & \frac{39}{117} & \frac{39}{117} & 0 & \frac{39}{117} & 0 \\ \frac{39}{78} & 0 & 0 & \frac{39}{78} & 0 & 0 \\ \frac{39}{78} & 0 & 0 & 0 & \frac{39}{78} & 0 \\ \frac{39}{78} & 0 & 0 & \frac{39}{78} & 0 \\ \frac{39}{78} & 0 & 0 & \frac{39}{78} & 0 \\ \frac{39}{78} & 0 & 0 & \frac{39}{78} & 0 \\ \frac{39}{78} & 0 & 0 & \frac{39}{78} & 0 \\ \frac{39}{78} & 0 & 0 & \frac{39}{78} & 0 \\ \frac{39}{78} & 0 & 0 & \frac{39}{78} & 0 \\ 0 & 0 & \frac{39}{78} & 0 & 0 \\ 0 & 0 & \frac{39}{78} & 0 & 0 \\ \frac{39}{78} & 0 & 0 & \frac{39}{78} & 0 \\ 0 & 0 & \frac{39}{78} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Outline

- The Network
- Collaborative Recommendation
- Collaborative Filtering
- The Social Graph
- Random Walks with Restarts
- Experiments and Results
- Conclusion

Random Walks with Restarts (RWR)

• We use Random Walks to compute the relatedness of two nodes in a graph.

Start with node *x*.

- Perform a Random Walk by randomly following links to other nodes.
- There's also a probability *a* to restart at *x* in each step.

A Random Walk b 20

RWR – definitions

- **p**^(t) is a column vector.
 p^(t)_i is probability that we are at node i in step t
- q corresponds to the starting setup.
- S (column normalised) is the transition probability table. Its elements S_{l,j} give the probability of *j* being the next state if we are in state *i*.

RWR – probabilities

 steady-state probabilities for each node: Apply

$$\mathbf{p}^{(t+1)} = (1-a)\mathbf{S}\mathbf{p}^{(t)} + a\mathbf{q}$$

until convergence.

► long-term visit rates of each node based on the starting node x.

RWR - relatedness

- **p**_i^(l) is the measure of relatedness between x and *i*.
- By taking into account users'
 - music taste,
 - tagging behaviour and

• friendships

the Random Walks method allows us to predict preferences of users to paricular tracks.

Outline

- The Network
- Collaborative Recommendation
- Collaborative Filtering
- The Social Graph
- Random Walks with Restarts
- Experiments and Results
- Conclusion

Experiments: Last.fm - data

- The following amount of data was extracted from the Last.fm social network:
- > 3148 users
- 30520 tracks
- 12565 tags
- 5616 bonds of friendship

 In order to make the resulting matrices less sparse, only very active users were selected. The rest of the dataset was populated with respect to those users.

Experiments – ground truth

- > 20% of the tracks each user has listened to will be set to 0 in UTr.
- We can later compare our results to this ground truth.

Experiments – CF

- Predict the playcount of the tracks in S for each user.
 - ⇒ ranked vector of the best 1000 tracks in descending order of playcount
- Playcount variables have a wide range (1– 11640).
 - ⇒ Standardise the playcount and the mean of the nearest neighbours.

Experiments – CF (2)

 Substract the mean and devide with the standard deviation:

$$p_{a,i} = \frac{\sum_{u=1}^{n} \left(\frac{r_{u,i} - \bar{r}_a}{\sigma_a} - \frac{\bar{r}_u - \bar{r}_a}{\sigma_a} \right) W_{a,u}}{\sum_{u=1}^{n} W_{a,u}}$$

 σ_a : standard deviation of a's ratingsa: active useri: item not yet rated by a $p_{a,l}$: predicted rating of a to i $\mathcal{P}_{u,i}$: rating of user u to i \bar{r} : mean rating of user $W_{a,u}$: similarity weight between a and u

Experiments – CF – parameters

- The CF method adopted in these experiments uses two parameters:
 - The treshold number of common tracks between users Tr, emperically estimated to 20.
 - The number of nearest neighbours *k* with the highest correlation to a user, again estimated to 15.

Both were estimated using a withheld part of the graph.

Experiments – CF – matrices

- Three user-user similarity matrices were computed:
 - $w_{\alpha,u}^{(I)}$: based on UTr, the standard used in CF systems

- $w_{a,u}^{(F)}$: based on UU, measuring correlation based on friendship
- $w_{a,u}^{(T)}$: based on UTg, measuring correlation based on collaborative annotation

Experiments – CF – results

Experiments – CF – results (2)

- Additional information about friendship and social tagging makes the performance worse.
- Possible reason:
 Weights and parameters, have not been tuned finely enough.
- So the memory based CF method cannot incorporate social knowledge in a trivial way.

Experiments – RWR

- Top 1000 tracks in descending order for each user:
- N: numer of columns in S
- ▶ *u*_{*a*} : user currently under evaluation
- Create a query vector **q** with $q_t = 1$ if $S_{u,t} > 0$ and $q_{u_a} = 1$, i=1..N.

Experiments – RWR (2)

- Normalise **q** so that $\|\mathbf{q}\|_1 = 1$.
- A series of experiments was performed to determine the restart probability a = 0.8.
- ▶ high restart probability *a* ⇒ Model goes back to the initial *q* more frequently.

 \Rightarrow It stays in the neighbourhood of u_a .

Experiments – RWR (3)

- Perform a Random Walk on S and get the \Rightarrow stationary probability vector for u_a .
- Order the tracks in descending order and select the first 1000.
- Compare them to the ground truth.

Experiments – RWR – results

Experiments – results

- Random Walks outperforms the baseline CF method.
- Random Walks using S is not significantly better than Random Walks using only UTr.

Experiments – results – numbers

• Let's take a closer look at the numbers:

		P5	P20	P1000	num_rel_ret
\mathbf{cf}	UTr	0.1472	0.0934	0.0144	45268
	UTrUU	0.0719	0.0470	0.0104	32862
	UTrUTg	0.1046	0.0698	0.0129	40546
	UTrUTgUU	0.0628	0.0416	0.0102	32106
rwr	UTr	0.1747	0.1229	0.0221	69514
	UTrUU	0.1726	0.1229	0.0222	69742
	UTrUTg	0.1486	0.1145	0.0227^{*}	71404^{*}
	UTrUTgUU	0.1483	0.1139	0.0228	71645

• **Bold** numbers indicate statistical significance (at p < 0.001).

Experiments – results – numbers (2)

		P5	P20	P1000	num_rel_ret
\mathbf{cf}	UTr	0.1472	0.0934	0.0144	45268
	$\mathrm{UTr}\mathrm{UU}$	0.0719	0.0470	0.0104	32862
	UTrUTg	0.1046	0.0698	0.0129	40546
	UTrUTgUU	0.0628	0.0416	0.0102	32106
rwr	UTr	0.1747	0.1229	0.0221	69514
	$\mathrm{UTr}\mathrm{UU}$	0.1726	0.1229	0.0222	69742
	UTrUTg	0.1486	0.1145	0.0227^{*}	71404^{*}
	UTrUTgUU	0.1483	0.1139	0.0228	71645

The number of relevant retrieved (num_rel_ret) tracks using UTrUTg is significantly higher than that using UTrUU.

Experiments – results

- In Last.fm users usually spend
 - more time looking for music they like and annotating
 - than looking for friends.

- ⇒ UU matrix is relatively sparse compared to the UTg matrix.
 - ⇒ It doesn't influence the results as significantly.
- This is typical for special interest social networks like Last.fm, Flickr or YouTube (unlike Facebook).

Experiments – results – reasons

- Random Walks outperforms CF because
 - the graph model captures relationships better
 - we can recognise more elaborate patterns and rules.

Outline

- The Network
- Collaborative Recommendation
- Collaborative Filtering
- The Social Graph
- Random Walks with Restarts
- Experiments and Results
- Conclusion

Conclusion

- Random Walk with Restarts doesn't need so much fine-tuning of parameters
 it is more robust than CF.
- Iack of scalability:

 On-line response time is not acceptable when applied to large social graphs in situations that need real-time response, like searching.

⇒ Use an approximation of RWR instead (with >90% quality).

Thank you for your attention!

Resources

 Ioannis Konstas, Vassilios Stathopoulos, Joemon M. Jose: On social networks and collaborative recommendation, SIGIR Conference 2009, pp. 195–202.

