Seminar "Cloud Computing®

Dr. Katja Hose, Dr. Klaus Berberich, Jorg Schad

“Efficient B-tree Based Indexing for Cloud Data Processing”

S.Wuetal., VLDB 10

presented by Frederic Raber

UNIVERSITAT
DES
SAARLANDES

Motivation: Indexing

 For quickly retrieving data, we need an Index

 Example: Youtube

— find Video by its ID

Motivation: Solutions

» Mostly used solution: Hash-Table (Key-Value-Pairs)

* In Youtube example: Map from ID to movie file

] —t+—>|item| |
1
2
3
4
]
B
Fi
8 —t—>|item
g —t+—=|item
10
1
: —»lite |—|—!-|__e...| I
.
™
-
-

Motivation: Problems

* Problem: Often need secondary index
 Youtube videos are mostly not searched by ID, but by name or author

— need to generate secondary index

Motivation: Secondary indices

 Solution: Generate the secondary index by a map-reduce job

» Execute this as a batch job repeatedly after a certain interval

— high overhead for recreating the index

— updates are not propagated directly, only after index recreation

Motivation: Secondary indices

» Better: create a global B-Tree for the data on a server
— Index is updated directly
— No overhead for batching a map-reduce job
— Central server is a bottleneck, high risk of failure

— Not scalable

Motivation: What we need

» SO0 we need a solution which is

A\

Providing instant updates

A\

Fast

v

Highly scalable

v

Fault tolerant

A new approach

* |Index over the index”
 B+-tree on intra-node level

> Global index (CG-index) for these local indices
> Clustered through the compute nodes

> Routing by BATON overlay protocol (last talk)

A new approach

cluster switch [hmmi—=

rack switch rack switch

compute node Nj

Pointer
Aer |

CG-index

|
\

+
[
!

1] Lo
4 A%y A

] _ .
local B'-tree - B @ C |

_ DU P G,
(a) System Architecture

Open questions

1. Which local tree-nodes should be in the global index?
2. How is a B+tree-node indexed in the CG-index?

3. How is the data retrieved?

4. How are updates performed?

5. How is data consistency assured?

Outline

 Motivation

 Solutions: creation & usage
e Solutions: maintenance

e Tuning
e Evaluation

e Conclusion

BATON

* BAlanced Tree Over-lay Network

* Distrubuted tree structure for dynamic P2P-systems

e Based on B-tree

 Self-balancing, like AVL-tree

» Designed for handling dynamic node join and departure

* In this paper only used for routing purposes

BATON

e Each tree node corresponds to a network node

 Additional links on each node to:

* Adjacent nodes in-order

* Nodes in the same routing level

Node m: level=3, number=6
parent=f, leftchild=null, rightchild=r

Level O

Level 1

Level 4

Left routing table:

- leftadjacent=f, rightadjacent=r

Node | Left | Right | Lower | Upper
child | child | bound | bound
Ol null | null lower lupper
1]k P q Kiower | Kupper
211 null | null Bt hippa
Right routing table:
Node | Left | Right | Lower | Upper
child | child | bound | bound
Oln null | null Niiver D
1|0 s t O\awer Qupper

IndeXx selection

1. Which local tree-nodes should be in the global index?

All of them?
— No, would take too much space

— Select only some

IndeXx selection

1. Which local tree-nodes should be in the global index?

e Don't index root or leaf nodes

e If a node is indexed,
Its direct children must not be indexed

* Only index nodes, if benefit is greater
than maintenance cost

Index selection algorithm
Expand

1. Start with the root node as actual node

2. Compute if it is beneficial to index the
child nodes

3. If yes, index them and remove actual
node from the index. Goto 2

Index selection algorithm (2)
Collapse

1. Check if (maintenance cost for indexing
child nodes > benefit)

2. If yes, remove their index and index the
parent node

Index creation

2. How is a B+tree-node indexed in the CG-index?

1. Compute the key range for the node

— look up Iin the parent node

r [0, 100] | 45

60

80

51 8|12 22 | 26 | 30

35

35

40 | 45

b[0,12] c [12,35]

d [35,45]

Index creation

2. How is a B+tree-node indexed in the CG-index?

1. Compute the key range for the node

— look up Iin the parent node

r[0,100] | 45 | 60 | 80
? 1 12[§5
5| & |12 22 | 26 | 30 | 35 35 | 40 | 45
b[0,12] c [12,35] d [35.,45]

Index creation

2. How is a B+tree-node indexed in the CG-index?

1. Compute the key range for the node

— look up Iin the parent node

r [0, 100] | 45 | 60 | 80
Ofw2]§5
5| & |12 22 | 26 | 30 | 35 3540 | 45
b[0,12] c [12.35] d [35.45]

Index creation

2. How is a B+tree-node indexed in the CG-index?

2. Find the corresponding CG-Node in BATON

— go down the tree until lower bound of range
Is found

— go up the tree until the complete range is
covered by this subtree

3. Store the node index there

Index creation - example

— go down the tree until lower bound of range is found

— go up the tree until the complete range is covered by this subtree

[76,96]

Y T e e o m—

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Index creation - example

— go down the tree until lower bound of range is found

— go up the tree until the complete range is covered by this subtree

PRSP () s s [76,96]
. _z'_}__ Ejgjﬂ_ F(60, ﬁi GSD ,89)

Y T e e o ——

H(0,12) 1(18,25) J(25,38) K(45,50) L(75 80) M(89,100)

—

Index creation - example

— go down the tree until lower bound of range is found

— go up the tree until the complete range is covered by this subtree

[76,96]

Y T e e o m—

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Index creation - example

— go down the tree until lower bound of range is found

— go up the tree until the complete range is covered by this subtree

[76,96]

Y T e e o m—

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Index creation - example

— go down the tree until lower bound of range is found

— go up the tree until the complete range is covered by this subtree

[76,96] ‘

Y T e e o m—

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

IndeXx structure

How does an index entry look like?

e Each entry has 4 attributes:
* blk : disk block number
* range: range of values in this node
 keys: search keys used

* ip : ip of remote node

Data retrieval

1. How is the data retrieved?

1. Find all (local) B+-tree nodes in CG-Index which overlap with query range R
* Go to the CG-node with the lower bound of R

* Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

2. Search the fetched B+-trees in parallel

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

G(80,89)

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

G(80,89)

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

G(80,89)

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

G(80,89)

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

G(80,89)

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

G(80,89)

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Optimization
Currently: Going down and up in tree after finding lowest key

— Don't search for node with lowest key, but for arbitrary one in the search range R
— reduces the cost by k / [R|, where

k ist the total number of nodes
|IR| is the number of nodes in the range R

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

G(80,89)

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

G(80,89)

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

G(80,89)

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Data retrieval

Go to the CG-node with the lower bound of R

Traverse all sibling nodes until the upper bound of R, fetch B+-trees in indices

A(50,60)

(63,96] |

G(80,89)

TR e e o

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Optimization 2

» Our approach is working sequential, fetching nodes one after
another

— search indices in parallel

1. Find parent node which covers the whole tree

2. After this, broadcast message is sent to

Final search algorithm

1. Find node in the range R
2. Find parent node which covers the whole tree

3. Send broadcast message to child nodes, which then search in
parallel

Final search algorithm

1. Find node in the range R

2. Find parent node which covers the whole tree

3. Send broadcast message to child nodes, which then search in
parallel

(63,96]

T TS e e — —

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Final search algorithm

1. Find node in the range R

2. Find parent node which covers the whole tree

3. Send broadcast message to child nodes, which then search in
parallel

(63,96]

[A
S S, W
B(2530) |

I

G(R0,89)

T TS e e — —

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Final search algorithm

1. Find node in the range R

. Find parent node which covers the whole tree

N)

3. Send broadcast message to child nodes, which then search in
parallel

(63,96]

[A

—— N
=3

B(25.30) | .
/

G(R0,89)

T TS e e — —

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Final search algorithm

1. Find node in the range R

2. Find parent node which covers the whole tree

3. Send broadcast message to child nodes, which then search in
parallel

(63,96]

[A

—— N
=3

B(25.30) | .
/
E(38.45)

T TS e e — —

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Final search algorithm

1. Find node in the range R

2. Find parent node which covers the whole tree

3. Send broadcast message to child nodes, which then search in
parallel

(63,96]

T TS e e — —

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Final search algorithm

1. Find node in the range R

2. Find parent node which covers the whole tree

3. Send broadcast message to child nodes, which then search in
parallel

(63,96]

/
E(38,45)

T TS e e — —

H(0,12) 1(18,25) J(25,38) K(45,50) L(75,80) M(89,100)

Outline

 Motivation

e Solutions: creation & usage

e Solutions: maintenance

e Tuning
e Evaluation

e Conclusion

Updates

4. How are updates performed?

e Trivial for local B+ - trees
» Harder for global CG-index
« 2 different types of updates for CG-index:

e Lazy updates:
* Missed updates do not lead to wrong results
« All updates are committed together after a time threshold

« Eager updates:
* Missed updates do lead to wrong results
« Committed immediately

» Only updates in left- and rightmost part of B+-tree can lead to
changed query ranges
— only eager update for some of these nodes possible

Lazy updates

What to do if two nodes n1 and n2 are merged/split?

1. If both n1 and n2 are in the CG-index and are merged
— replace their entries with the merged one

2. If only one is in the CG-index (let's say n1) and merged
— replace entry of n1 with merged one

3. If nis in the CG-index and split
— replace entry of n with entries of the 2 new nodes

Eager updates

» Updates shrinking the node range generate false positives:

* Node n is stored with range [10,20] in the index

» Update deletes 10, next smallest tuple is 12
— range is now [12,20]

* For range query from [5,11], index will also return n, although there is no
tuple
— But this doesn't violate consistency, no data is missed

— Apply lazy update technique

Eager updates
» Updates expanding the node range generate false negatives:

* Node n is stored with range [10,20] in the index

 Update inserts 8
— range is now [8,20]

« For range query from [5,9], index will not return n, although there is a tuple

— Violates consistency, data is missed

— Apply eager update technique

Replication

How is data consistency assured?

* Left and right neighbour nodes have a copy
e Left node is primary copy
» On update, copies are notified first, main node is commiting as the last
* Nodes ping their routing neighbours frequently — check if alive
* If primary node restarts after failure
— compares timestamps with current master node

— applies missing updates

Outline

 Motivation

» Solutions: creation & usage
e Solutions: maintenance

* Tuning
e Evaluation

e Conclusion

Tuning

» Several tuning approaches proposed, but not yet implemented

1. Routing Buffer
Buffer often visited nodes

2. Selective expansion
Only select children nodes which are used

Tuning : routing buffer

Routing Buffer

* Reduce cost for traversing the BATON routing tree

« If Baton node is found for a query: requesting compute node saves the node's
IP and range in a buffer

* Node is then checking first its buffer for the next query

» Buffer has S entries, LRU strategy

— Frequently queried ranges are accelerated

Tuning: selective expansion

Selective expansion

* Indexing strategy indexes all children
* Nodes have often more than 100 children with real data

* Not efficient if only one child is frequently used

— compute benefit for each single child, not for the whole group
— decide which children should be indexed

— keep parent indexed as long as not all children are indexed

Tuning: selective expansion

Selective expansion
— compute benefit for each single child, not for the whole group
— decide which children should be indexed

— keep parent indexed as long as not all children are indexed

/) 210.20][50,100]

b [0,20] ¢ [20,50] d [50,80] e [80,100]
£ 1203014474 2 [30.40] h [40,50]
\\
A 12005 A 125.30] A/ K [40,451 /1 [45,50]

Outline

 Motivation

» Solutions: creation & usage
e Solutions: maintenance

e Tuning
 Evaluation

e Conclusion

Hardware

e Amazon EC2 cloud

» 250 Mbps network

e Each node:
e |ntel Xeon, 1.7 Ghz
* 1.7 GB memory

» 500.000 tuples on each node, random generated

« Skew in generated data by zipfian law

Test 1 — query throughput

Query Scalability

35000
5 30000
L1h]
w
5 25000
-
3 20000 "
S
3 15000 |
g _
|_
> 10000
L1h]
0
c 5000
0
16 32 64 96 128 192 256

Number of Nodes

« Exact query (s=0) fastest

» Greater range (s) slower,
because more nodes
involved

Query Throughput (per sec)

100000 ¢

10000 |

100

Test 2 — scalability

Query Scalability

CG-Index s=0.06 --—%-
ScalableBTree s=0.04 -

ScalableBTree s=0.06 O

CG Inde:u: S= 0 04 —x—

¢ W

__-___H"_"____._____._ i

E -.'
16 32 64 96 128 192 556

Number of Nodes

* CG scales almost linear

« SBT only until certain
number of nodes

 Overall performance of
CG a lot better

Update Throughput (x1000)

Test 3 — updates

Update Scalability

CG-Index —+— '
ScalableBTree ----3-—--

10000 |

1000 |

100 |

10 I:I"'Ix]] I]]
16 32 64 96 128 192 256

Elapsed Time (sec)

» Overall performance of
CG better

» CG broadcasts only
some updates to index

« SBT broadcasts every
update

70000

Test 4 — mixed workload

Mixed Workload

60000

256 Node, ScalableBTree —8—

256 Node, CG-Index - 5¢----
128 Node, ScalableBtree &
128 NDdE, CG-index %

q
50000 F. _
40000 f _
30000 + e _

" ---X‘hﬁ

20000 . N ¥ -L_}{-“- 7
T *&' :‘*% e s s *
10000 | _
0 | o 0 0

: - ;; 60 80 100

Percent of Range Query

« SBT better for point
queries

* CG needs several hops
because of BATIN

» Pay-off for range queries

Time (sec)

Test 5 — flexibility

Cost of Data Redistribution

2500 T : !
sequential expansion —+—
parallel expansion ---—-----
sequential collapse %
2000 - parallel collapse -3
1500 +
1000 '
500 +
0 S — %
16<->32 32<->64 64<->128

Number of Nodes

128<->256

 Parallel

(all nodes join at one time)
vs. sequential

(nodes join one after another)

*Good overall performance

» Parallel faster than
sequential

« Expansion faster than
collapse

Missing parts

» Missing tests
« Evaluation against Hashing approach
» Flexibility of other approaches
* Only few tests with point queries

... maybe because CG performed worse in these fields...?

* How is the BATON tree behaving on a split / merge of an indexed B+ - node ?

— the authors even refused this question on the conference...

Outline

 Motivation

» Solutions: creation & usage
e Solutions: maintenance

e Tuning
e Evaluation

e Conclusion

Conclusion

» Secondary indices are often needed

» Current solutions delay updates or do not scale

B+ - trees locally and
BATON on top of these trees

Presented a decentralized solution, using
iy
— Efficient updates and direct availability
— Good scalability
— Good performance for range queries

— Weaknesses on point queries

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72

