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INTRODUCTION 

With the expanding use of the web and the databases, there is also an increasing need to be able 

to search the data fast and efficiently.  

The W3C standard used to represent information is RDF (Resource Description Framework), 

which consists of triples representing the relationships between its subjects (S), object (O) and 

the name of the relationships is given by the predicate (P) in increasingly gaining importance as 

more data is becoming available in the RDF format. It is used to represent data for various fields 

like social networks, Wikipedia and sciences. SPARQL is used as a query language for RDF data.  

Although disk space is becoming cheaper and does not pose a problem, executing queries on 

large databases can be a challenge due to the limited processing power. 

There are a number of query processing systems which have been developed. Some of the most 

notable ones are RDF-3X, Hexastore, Jena-TDB and MonetDB. 

RDF-3X is a SPARQL query processor whose storing and indexing RDF triples completely 

eliminates the need for physical-design tuning. It performs fast merge joins to the largest 

possible extent and it has a query optimizer for choosing optimal join orders using a cost model 

based on statistical synopses for entire join paths. 

The main features of the Hexastore query processor are the 6-way indexes and data 

compression. Together with RDF-3X it is one of the most powerful systems available today. 

Jena-TDB provides a large scale storage and query of RDF data sets using a pure Java engine. It 

provides a programmatic environment for RDF and SPARQL and includes a rule-based inference 

engine. 

MonetDB provides a storage model based on vertical fragmentation, a modern CPU-tuned query 

execution architecture, automatic and self-tuning indexes. Its internal data representation is 

memory-based, relying on the huge memory addressing ranges of contemporary CPUs. 

The systems available today have their limitations with respect to query performance. Systems 

which generate indexes on the data perform well on queries with highly selective triple patterns. 

Queries with low-selectivity triple patterns, but highly selective join results have the lowest 

execution time at systems which use join selectivity estimation or per-computed join tables and 

indexes.  

The category of queries which poses problems for most of the systems are the queries with low-

selectivity triple patterns generating a large number of results.  

The authors of the paper propose a new system for query execution, BitMat, which performs 

well on low-selectivity triple pattern queries  for both low and high-selectivity join results. The 

main features of the proposed system are: 

 compressed bit-matrix structure for storing huge RDF graphs 

 a novel, lightweight, SPARQL query processing method 

 the algorithm doesn't need  intermediate join tables 
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In the following sections we are going to present the construction of the BitMat, describe the 

algorithm and discus the experimental results and conclude the report with the observed 

strengths and weaknesses of the BitMat algorithm as well as further work. 

BITMAT CONSTRUCTION 

The data is represented as a 3D bit-cube, in which each dimension represents the subjects (S), 

predicates (P), objects (O). The sets VS, VP and VO to denote the sets of distinct subjects, 

predicates and objects in the RDF data. Each cell in the 3D cube represents a unique RDF triple. 

The 3D bit-cube is sliced along a dimension, which gives us two 2D matrices. By slicing along the 

P-dimension we get two matrices namely S-O and O-S as the inverted equivalent of the first 

matrix. The P-O matrix is obtained by slicing along the S-dimension and the S-P matrix is 

obtained by slicing along the O-dimension. We do not compute the inverted matrices for P-S and 

P-O since experience shows that the usage of those matrices is rare. There are |VS| x |VP| x |VO| 

possible triples but RDF data contains a considerably fewer number of triples. This property is 

used to reduce the storage place by applying a gap compression scheme. By gap compression we 

represent a bit-row of “0100111” by “[0]1123”. 

Next to the 3D bit-cube we also store the number of triples in each compressed BitMat and a row 

and a column bit-array which give a condensed representation of all the non-empty row and 

column values in the given BitMat.  

Figure 1 illustrates the construction of the 3D bit-cube from RDF data in the first step. 

 

The matrix that is obtained after the slicing along the P-dimension and its inverse are displayed 

in Figure 2. 

Figure 1. Bit-cube construction 
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BITMAT ALGORITHM 

BITMAT OPERATIONS 

Before describing the actual BitMat algorithm two operations have to be introduced, namely 

Fold and Unfold. These operations will be later on used within the BitMat algorithm.  

The fold operation represented by the method fold(BitMat, RetainDimension) returns bit Array 

folds the input BitMat by retaining the given dimension. The variable RetainDimension can have 

two values, “rows” and “column”. If it takes the value “columns”, in an S-O matrix all the subject 

bit-rows are OR-ed together to obtain an “object” bit-array.  

The unfold operation, unfold(BitMat, MaskbitArray, RetainDimension) unfolds the MaskBitArray  

on the BitMat. Intuitively, it ANDs the MaskBitArray with each row of the BitMat. 

PROPERTIES 

There are three properties which describe the join process.  

Property 1. Each triple pattern in a given join query has a set of RDF triples associated with it 

which satisfy that triple pattern. These triples generate bindings for the variables in that triple 

pattern. If the triples associated with another triple pattern containing the same variable cannot 

generate a particular binding, then that binding should be dropped. In that case, all the triples 

having that binding value should be dropped from the triple patterns which contain that 

variable.  

Property 2. If two join variables in a given query appear in the same triple pattern, then any 

change in the bindings of one join variable can change the bindings of the other join variable as 

well. 

Figure 2. Matrices obtained after slicing 
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Property 3. A join between two or more triple patterns over a join variable indicates an 

intersection between bindings of that join variable generated by the triples associated with the 

respective triple patterns.  

CONSTRAINT GRAPH CONSTRUCTION 

The constraint graph G is constructed as follows: 

 Triple patterns are represented as tp-nodes and join variables as jvar-nodes.  

 An undirected, unlabeled edge between a jvar-node and a tp-node marks that the join 

variable appears in the triple pattern corresponding to the tp-node.  

 If two jvar-nodes appear in the same triple pattern there is an unlabeled, undirected 

edge between them.  

 An undirected, labeled edge between two tp-nodes exists if they share a join variable 

between them. The label denotes the type of join between the triple patterns and an edge 

can also have multiple labels. 

STEP 1 - PRUNING 

In the pruning algorithm the constraints in the constraint graph G, are propagated from root to 

leaves.  

The Gvar graph is a subgraph of G, which only contains jvar-nodes. If  Gvar is cyclic, any cyclic 

edges are removed. The  Gvar graph is walked from root to leaves in a breadth-first order and in 

order to assure complete propagation also the reverse is being done. In order to the children of a 

node only get processed after its ancestors, the algorithm uses a topological sort of the nodes. 

For each two adjacent tp-nodes the intersection of their bindings is generated. This is done in 

the second algorithm, lines 2-5, where the bitwise AND between the folded bit-arrays is 

computed. For the bindings which get dropped after the intersection, remove the corresponding 

triples from the BitMats' tp-nodes. In the second algorithm, this is performed in lines 6-9 using 

the unfold operation.  

At the end of the reversed traversal in Algorithm 1, the set of remaining triples is minimal if  

Gvar is acyclic and it cannot be guaranteed to be minimal if  Gvar is cyclic. 

Algorithm 1 Pruning Step 

1: queue q = topological_sort(V(Gjvar)) 

2: for each J in q do 

3: prune_for_jvar(J) 

4: end for 

5: queue q_rev = q.reverse() - leaves(Gjvar) 

6: for each K in q_rev do 

7: prune_for_jvar(K) 

8: end for 
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Algorithm 2 prune_for_jvar(jvar-node J) 

1: MaskBitArrJ – a bit-arry containing all 1 bits. 

2: for each tp-node T adjacent to J do 

3: dim = getDimension(J,T) 

4:  MaskBitArrJ =  MaskBitArrJ AND fold( MaskBitArrT, dim) 

5: end for 

6: for each tp-node T adjacent to J do 

7: dim = getDimension(J,T) 

8: unfold( MaskBitArrJ, MaskBitArrT, dim) 

9: end for 

STEP 2 – GENERATING FINAL RESULTS  

In order to avoid building intermediate join results, the algorithm builds a left-deep join tree. 

The results are output in a “streaming fashion. That is for k as the number of variables in the 

query, a map of the bindings which are generated for all the variables at a time is kept and one 

result is output when each of the k variables have been mapped.  

Given we have n triple patterns in a query and each of the BitMats associated with the triple 

patterns has at most N triples. The BitMat which has the least number of triples is being 

processed first. Bindings for the variables in the tp-node corresponding to the BitMat1 are 

generated and stored in a map. The next tp-node is selected so that it shares a join variable with 

any of the previously selected tp-nodes. Locate the triples which can satisfy the bindings in 

BitMat2, the corresponds BitMat to tp-node2. If there aren't any bindings in the map to satisfy 

the bindings in  BitMat2, the variable bindings stored in the map are discarded and another tp-

node from  BitMat1 is selected to generate new bindings. If there are common variable bindings 

between  BitMat2 and  BitMat2, move on and pic another tp-node. Repeat the above procedure 

until all triple patterns are processed and all variables have consistent bindings and output the 

result. This is done until all the triples in BitMat1 are exhausted. 

EXPERIMENTS 

EXPERIMENTAL SETTINGS 

In the experiments the BitMat method was compared to RDF-3X and MonetDB, as two of the best 

systems available. The UniProt dataset with 845,075,855 triples was used and another dataset 

containing 1,334,081,176 triples was generated using LUMB. For the UniProt dataset 13 queries 

were executed in the tests and for the dataset generated by LUMB 6 queries were executed. The 

tests were performed on both cold and warm cache.   

EXPERIMENT RESULTS 

BitMat performed better than the other two systems on queries which have low-selectivity triple 

patterns and high-selectivity join results and also had a better performance on star-join queries. 
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On queries with low-selectivity triple patterns and low-selectivity join results BitMat had a 

better performance than the RDF-3X and MonetDB systems, meaning the aim to develop a 

system which has a better performance on low-selectivity tripe-patterns and low-selectivity join 

results was accomplished. On highly-selective triple patterns with highly-selective join results 

RDF-3X outperformed BitMat and MonetDB. 

For the UniProt datasets the geometrical mean was better for BitMat on a cold cache while for a 

warm cache MonetDB had a better geometrical mean. In the LUMB generated datasets BitMat 

had outperformed the other two systems on both cold and warm cache with a considerably 

better geometrical mean.  

If Q1 is not part of the geometrical mean computation BitMat, RDF-3X has a better performance 

on both warm and cold cache for the UniProt datasets and for the LUMB generated datasets it 

outperforms BitMat on a warm cache. 

STRENGTHS, WEAKNESSES, FURTHER WORK 

STRENGTHS 

 The BitMat algorithm achieved its goal of performing better than the other available 

algorithms on low-selectivity triple patterns and low-selectivity join results queries. 

 It works directly on compressed-data, without having to create intermediate join results. 

 It has a compressed bit-matrix structure for storing huge RDF graphs. 

WEAKNESSES 

 The authors suggest that in order to benefit from the advantages of both BitMat and 

those of the other state-of-the-art systems, one idea would be to make a hybrid between 

BitMat and the other systems. One of the main questions when trying to develop such a 

hybrid system is whether the different query processing systems are compatible with 

each other and how difficult to implement the hybrid would be. 

 For a query having n triple patterns, the size of the amount of memory necessary at the 

beginning is equivalent to the sum of the sizes of each of the BitMats, since the current 

implementation of the algorithm loads the BitMat associated with each triple pattern at 

the beginning of the query processing. Therefore, it is currently not feasible to handle 

queries which have triple patterns for all variable positions. An example for such a query 

is the following: 

     SELECT ?y WHERE { 

                ?x similar_to ?y 

                ?y ?m ?n 

    } 

The query would be equivalent to searching for a movie to which another movie is 

similar, and about which we have additional information. 
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This is a drawback of the algorithm because loading all of the BitMats could  take a  lot of 

time in the initialization phase. In the experimental UniProt queries Q11 – Q13 it has 

been proved that having to load entire BitMats slows down the initialization phase. 

 According to the authors of the paper, joins across S-P and P-O dimensions are rare in 

the context of assertional RDF data, and therefore they are not handled by the algorithm.  

This basically means that queries of the following form cannot be handled: 

              SELECT ?x WHERE { 

            :the_matrix ?x ?y 

               ?x applies_to :movie 

    } 

The query can be expressed in simple words like this: get all relations that the matrix has 

to other movies. One could argue whether this is a disadvantage or not, since in real life 

such an information need might be indeed rare. 

 According to the experiments, BitMat has a better performance than the other available 

systems for low-selectivity triple patterns with low-selectivity join results. Given the fact 

that in a real life situation, the posed queries also belong to the other two categories of 

queries, the overall performance is subjective. In the UniProt experiments, the 

geometrical mean of the performance of BitMat is only better than RDF-3X if Q1 is 

included. We consider that this argument is not strong enough to state that BitMat’s 

overall performance is better than that of the other available systems. 

 The paper mentions that for Uniprot query Q5, the initialization and the pruning phases 

were very fast, but 90% of the time was spent in the result construction phase. It doesn't 

mention the complexity of the construction phase, but it points out that the use of the 

“locality” in memory would reduce the time needed for the construction phase. It would 

have been useful in terms of assessing the algorithm to have a complexity estimation, so 

that we could deduce to what extent the use of the “locality” in memory would improve 

the performance. 

On the other hand, for Uniprot queries Q11-Q13, 90% of the query processing time was 

spent on initialization to load the BitMats associated with the triple pattern. The authors 

suggest solving this problem with the use of lazy loading, which would only load the 

BitMats associated with the tp-nodes instead of loading all the BitMats at the beginning, 

wait till the first join and then load only the required part of the BitMat necessary for the 

unfold operation. 

 The queries used in the experiments were not organized for the three different query 

categories that were mentioned in the paper, namely: 

o highly-selective triple patterns queries 

o queries with low-selectivity triple patterns and highly-selective join results 

o queries with low-selectivity triple patterns and low-selectivity join results 
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Only the queries which belong to the third category were pointed out, but not those 

which belong to the first or the second category. Not having an exact classification of the 

queries used in the experiment makes it difficult to evaluate the performance of the 

BitMat query processor for each of the three query categories. 

 The current BitMat query processor does not support FILTER conditions on literals, 

which are supported by the SPARQL query language. The paper does not address the 

issue of how such a functionality could be implemented in the future. 

 Since the paper has been made some improvements to the RDF-3X system, some bugs 

were removed and it would be interesting to see a more up-to-date comparison of the 

performance of the two systems. This would probably also remove the cases when the 

RDF-3X system aborted and contribute to a more accurate evaluation.  

FURTHER WORK 

 BitMat doesn't support a formal SPARQL query parser interface and the interface used to 

output the results is still under development. The authors mention that this will be 

implemented but do not give details about how they are going to do it. 

 In the future versions of the query processor, it should be enhanced to make use of the 

“locality” in memory. 


