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1. Introduction 

Analysis of major search engines query logs has been showing that long queries represent an 

increasingly higher fraction of the queries submitted to a web search engine. For instance, 

queries of length five words or larger have increased at a year rate of 10%. This increasing trend 

is also determined by the question answering field which is centered on long queries.  

Broadly, there are 2 main types of query reduction techniques: query reweighting and query 

reduction. Both of them are motivated by the observation that long queries usually contain 

superfluous terms, which if down-weighted or completely removed, result in improved 

performance. For example, consider the query “Easter egg hunts in northeast Columbus parks 

and recreation centers” which performs moderately well on most popular web search engines. 

If we remove (or down-weight in some fashion) the terms “and recreation centers”, we can 

observe a perceptible improvement in the quality of results. 

In query re-weighting, each term of the query is given a certain weight which represents its 

“importance” in the query. More important terms are given larger weights. The way these 

weights are obtained is a research topic by itself and it is beyond the purpose of this report. 

Query re-weighting requires the use of a ranking algorithm that permits the online assignment 

of weights to query terms – a difficult thing to implement given that most web retrieval 

algorithms use a learning to rank framework that relies on boolean match as well as several 

additional query-dependent and query-independent features. 

In query reduction, terms or combination of terms are completely dropped from the original 

query and the resulting shorter versions replace the original query (in case they perform 

better). Given this, query reduction requires analyzing a potentially exponential number of 

reduced versions of the original query which implies the usage of exponential complexity 

algorithms.  On the other hand, a very big advantage of this technique is that it can be 

seamlessly integrated with existing search engines, e.g. as a loosely-coupled layer on top of 

existing search engine implementations. At the same time query reduction relies heavily on 

query quality prediction measures like Clarity.  Broadly, there are 2 main categories of query 

quality prediction techniques depending on the time when the prediction is done: pre-retrieval 

(prediction is done before executing the query) and post-retrieval (prediction is done after 

executing the query). As opposed to pre-retrieval techniques which naturally rely only on query 

dependent features, the post-retrieval techniques combine query-dependent features with 



retrieved document features in order to predict the quality of a query. The number and the 

exact features to be used depend on the concrete implementation and they can be: BM25 

scores, PageRank scores, click-troughs and boolean features such as whether the query 

contains stop words, URLs, location words. The post-retrieval approaches rely on language 

models obtained from the retrieved results and consequently they are expensive to compute. 

Besides this, it has been shown that the existing query quality prediction techniques perform 

well on TREC data but not on web data (the main reason behind this being the lack of 

homogeneity in web data as opposed to TREC data). 

2. Query Reduction 

In this section we describe the main contributions of the paper with the focus being on the 

proposed approach to web query reduction. 

The main contributions of the paper consist in: 

- Proposing a query reduction method applicable to web queries (existing reduction 

techniques are performing well on TREC data one characteristic of whom is the 

homogeneity. On the other hand web data is not homogenous which makes the 

existing techniques ineffective). 

 

- Evaluating the proposed method on a large set of web queries 

extracted from the log a major search engine. 

The problem of query reduction can be described as follows:  

Let                  denote a ranking function that scores documents (D) with respect to a 

query P, represented as a set of query terms. Also, let Tf(P) denote a target measure of the 

effectiveness of the ranking produced by f for the query P.  

Given an arbitrary query Q = {q1, … , qn}, we use  to denote the power set of Q, i.e., the set 

containing all subsets of terms from query Q (including the original query Q). Then, the query 

reduction problem is to find a reduced version P* that achieves the highest value for the target 

measure as follows: 

 

 

 

Obviously, the target measures cannot be completely specified for inferences over all possible 

queries, and hence we need to estimate Tf(P). The query reduction task is then expressed as: 

 

 

 

 



The paper introduces a method for computing .  The prediction is done using a 

previously trained regressor as described below. 

The approach can be summarized as follows: It is divided in 2 main phases. In the first phase 

(training phase) a regressor(h*)  is trained using a consistent set of training queries({Q i}) 

represented as sets of terms (Q i= {ti,1, ti,2, … , ti,n} ). In the second phase (prediction phase) the 

performance of a new incoming query is predicted as follows: 

 

1. Create the set of reduced queries including the original query : P
Q 

= {Q, 

ReducedQuery1, … , ReducedQueryk} 

2. Predict the performance of each member of P
Q  

using regressor h*  

3. Choose the query with the best predicted  performance and return its results  

 

The workflow described above is straightforward. However, there are 2 aspects which 

differentiate the method from the rest. The first aspect worth noticing is that the method is not 

exponentially complex because it does not take into consideration all the possible reduced 

versions of the original query as most of the similar approaches do. Instead, it only takes into 

consideration the reduced versions which are obtained by dropping one term. Intuitively, this 

strategy turns the method into an approximated one (according to the experiments the method 

delivers very good results, so the approximation is a reasonable one). One of the reasons for 

which this approximation works is that the pruned candidates (i.e. the queries obtained by 

dropping more terms) are not strong candidates anyway so pruning them does not lead to 

significant loss of precision.  

A second aspect which needs to be mentioned is that the approach proposes 3 types of 

regressors or, as the authors call them, 3 different learning formulations of the original problem 

formulation. All of the 3 learning formulations described below transform the problem of query 

reduction into a query performance prediction problem: 

1. Independent Prediction: Given an original long query and its reduced versions, we 

predict the performance of each query independently. Then, we select the query 

that has the highest predicted performance. Thus, the query selection problem is 

transformed into a query performance prediction task: Given a query, and the 

retrieved results, the task is to predict the effectiveness of the retrieved results. 

Formally, given a set of functions we learn a non-linear regressor h* 

that minimizes the mean squared error as given by: 

 

 

 

 



For a given test query Qt we select the query P* with the largest predicted 

performance, i.e.: 

 

  

2. Difference Prediction: In this formulation, we predict the difference in performance 

between each reduced version and its original query, and then select the query that 

has the highest positive difference. If there is no reduced version with a predicted 

positive difference, then we choose the original query. Let D(Q; P) = T(P) - T(Q), 

denote the target measure. We learn a least-squared errors regressor h* given by: 

 

 

 

 

 

                    For a given test query, Qt, we choose a reduced representation P* as: 

 

 

 

3. Ranking Queries: In this formulation the goal is to rank the original query and its 

reduced versions in order to select the top ranking query. The ranking model is 

learned by training on pairwise preferences between queries. The pairwise 

preferences induce a partial ordering and the query at the top of the ordering is 

selected. 

 

We notice that computing the regressors is the core task here. The paper proposes using 

Random Forests in order to compute the Independent, Difference regressors and RankSVM to 

compute the Ranking regressor. The features used to build the Random Forests are divided in 2 

categories: Query features which refer only to characteristics of the query (lexical features 

flagging the presence of URL, stop words, or location words as well as query length) and Query-

document features (BM25 scores, PageRank scores, LR scores, click-through counts). 

 

3. Experimental Results 

All 3 regressors are trained using a number of around 12,000 queries extracted from the logs of 

a major search engine. The evaluation data consists in 6400 long queries frequency-weighted 

sampled from the Web search engine. For each long query all the reduced queries (by dropping 

1 term) are obtained. Each query is executed and afterwards human annotators are asked to 

judge the relevance of all queries (reduced & original) with respect to the original query. 

 

For each formulation, the paper reports results for 2 types of experiments. In Query 

Replacement experiments, if a reduced version is selected, it is used to replace the original 

query. In Results Interleaving, if a reduced version is selected, the results of the selected 



reduced version and the original query are interleaved. The interleave order depend on the sign 

of the difference between their predicted NDCG@5. 

 

Query Replacement 

 

Table 1 shows the performance of the different problem formulations. The paper 

compares the 3 formulations using 2 measures: 1) Overall NDCG@5, which is the macro-

averaged NDCG@5 over all queries and 2) Subset NDCG gain, the average 

improvements on the subset for which reduced versions were chosen. 

 
Table 1 

Difference achieves the best overall gain. Ranking's overall gain is lower but the subset 

gain is substantially higher. While, Difference and Ranking both achieve small but 

significant overall gains, Independent is actually worse than the original. This 

performance difference is due to two reasons. First, Difference and Ranking encode the 

relationship between the original query and its reduced versions, whereas Independent 

does not capture such relationships. Second, the Independent formulation appears to 

solve a harder learning problem. The regression in Independent attempts to minimize 

mean squared errors of the predicted and actual NDCG@5 values. 

 

Results Interleaving 

 

Table 2 shows the gains achieved by the interleaving results. Difference achieves the 

best overall gains, whereas Independent achieves the best subset gains. Difference and 

Ranking both have a positive impact on a large number of queries, 31% and 25% 

respectively, whereas Independent provides positive gains for only 4%. One of the 

reasons that Difference and Ranking achieve higher performance compared to 

Independent is because Difference and Ranking achieve better ranking of reduced 

versions compared to Independent, thus allowing more queries to benefit from 

interleaving. 



 
Table 2 

4. Strengths, Weaknesses and Extensions 

One of the main strenghts of the paper is that the proposed approach is a query reduction 

method which works well for web queries. As previously mentioned there are many existing 

query reduction methods but none of them is effective in the context of web queries mainly 

because they rely on the homogeneity of the data collection to be queried.  

A second siginificant strength of the approach presented in the paper is that it can be 

seamleassly integrated into an existing search engine and extend its functionality with the 

query reduction feature. The way the method works, allows one to integrate the query 

reduction functionality as a layer on top of an existing search engine. 

Yet another strength of the query reduction method presented in the paper is the linear 

complexity. As opposed to many other similar techniques, this method does not take into 

consideration all the possible reduced versions of an original long query (which would lead to 

exponential complexity) but only those obtained by dropping 1 term and consequently the 

complexity of the method is a linear one. 

Last but not least, the method provides significant query quality improvements for originally 

bad performing queries (see figure below). In other words, the method improves where there is 

room for improvement. Moreover with the results interleaving method (where the results from 

of the original and reduced query are interleaved) the risk of a worse result quality, due to an 

erroneous choice of a query, is minimized. 

 



As already mentioned the approach also has some weaknesses. The described approach 

evaluates for every web query whether there is a better performing reduced query version of it. 

This can be really burdensome for a search engine. 

Therefore the approach must be modified to increase the efficiency-performance ratio. On the 

figure above we can see that the NDCG@5 gain is the significantly higher for low-performance 

original queries. Hence, increasing the efficieny-performance ratio means evaluating the 

performance of the reduced web queries only for original queries which perform worse in 

NDCG@5. In order to do that, one possibility could be to choose a threshold for the predicted 

performance of the original query. For example the evaluation of reduced queries would only 

start if the predicted performance of the original query is below a threshold of 25 points on 

NDCG@5. The negative side-effect of this approach is that the performance of the original 

query still needs to be predicted for every issued query. Another approach could be to take a 

closer look to the training data, compute several statistical measures (mean, standard 

deviation) according to the length(number of words) of the queries and take a decision for a 

length threshold. With this approach the performance prediction of the original query and a 

possible evaluation of the reduced queries would only start if the original query exceeds a 

specific length. 
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