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Introduction

● Problem of replicated content (i.e.,stealing of intellectual 
property).

● Solution to this problem, two main philosophies:
● Prevention
● Detection.
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Introduction – Prevention & 
Detection

●Prevention mechanisms:
● Subscription
● Distribute by CD-ROMs, example IEEE
● Watermark
● Active Documents, etc.

● Detection mechanism:
● Match new content to previously published ones.
● Operate on semantic level.
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Introduction - Examples

● Freely online available solutions:
● Http://plagiarisma.net/
● Http://www.articlechecker.com

● Commercial applications:
● http://www.writecheck.com
● http://www.plagiarismdetect.com/

http://plagiarisma.net/
http://www.articlechecker.com/
http://www.writecheck.com/
http://www.plagiarismdetect.com/
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Introduction - Problems

● Problem: huge amount of information available.

Source: http://www.worldwidewebsize.com/
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Types of Replication

● Billions of pages on the Internet, categorized as follows:
● 20 – 40 % identical copies
● Near duplicate pages
● Partial replication
● Semantic duplication.

●Research is focused into these categories:
● Paragraph replication
● Problem with spammers
● Return search snippets from search engines
● Mark novel information on web browsers.
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Previous work 

● Main papers that are referenced in this work are:

● Fingerprinting by Random Polynomials - Rabin O. M.
● Syntactic Clustering of the Web - Broder A. et.al.,
● Copy Detection Mechanism for Digital Documents - Brin 

S., et. al.
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Previous work - Fingerprints

● Given an n-bit message m0,...,mn-1, we view it as a 
polynomial of degree n-1 over the finite field.

● Pick a random irreducible polynomial p(x) of degree k 
over GF(2).

● Define a fingerprint of m to be the remainder r(x) of   
f(x) / p(x) over GF(2) which can be viewed as a 
polynomial of degree k-1 or as a k-bit number.
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Previous work – Syntactic 
Clustering

• Makes use of shingles.
• Clusters documents on semantic level
• Interesting approach on measuring document similarity.
• Reduced time complexity, without limitations.



 Detecting the Origin of Text Segments Efficiently 10

Previous work – Copy Detection 
Mechanism for D.D.

● A framework called COPS, which performs operations 
(Subset, Overlap, and Plagiarism)
● Chunking methods (used in other papers).
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Outline of the algorithm

● An important aspect for which the authors had to take 
into consideration were: 

● Space efficient 
● Real-time.

● A rough outline of the algorithm looks like this:
● Fingerprint each document,
● Selection algorithms: shingles to save in the hash table.
● Estimation algorithms: determine the origin of a shingle.
● Eviction algorithms: determine, which shingle to keep.
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Outline of the algorithm – Cont.

● Input to the algorithm:
● A set S of sequence of tokens.
● A “query” which consist of an additional sequence D.
● A parameter k - number of consecutive tokens in a shingle.

● Phases of the algorithm:
● Selection Phase
● Hashing Phase, and
● Estimation Phase.



 Detecting the Origin of Text Segments Efficiently 13

Selection Phase

● Each document is converted into a set of fingerprints:
● All shingles of D are generated and converted into a 62 bit 

fingerprint.
●  A subset of shingles is selected based on their fingerprints.
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Selection Phase - Methods

● Experimented with a numerous selection methods:
● All – a baseline algorithm that selects all shingles.
● Every l-th (lth)
● Modulo l (M-l)
● Winnowing w (W-w)
● Revised Hash-breaking (Hb-p)
● DCT (DCT-p), and
● Hailstorm.
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Selection Phase – All & l-th 
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Selection Phase – M-l
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Selection Phase - W-w
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Selection Phase – Hb-p

● Revised Hash-breaking
●  Apply a hash function h to each token.
●  Break the document into non-overlapping segments.
●  Fingerprint all the tokens contained in a segment.
●  Number of segments is 1/p.
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Selection Phase - Dct-p

● DCT fingerprinting:
● Text segments, using Hb-p,
●  Hash values for words in the segments,
●  Vertical translation of hash values, median located at 0,
●  Normalize the values by the max hash value,
●  Perform DCT with the normalized values,
●  Quantize each coefficient to be fitted into a small number 

of bits 2, 3, or 4,
●  Form a fingerprint with the quantized coefficients Qk's.
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Selection Phase - Hs

● Hailstorm (Hs)
●  Fingerprint every token
●  Select a shingle s iff the minimum fingerprint value of all 

tokens occurs at the first or last position of s.
●  Probability that a shingle is chosen is 2/k if all tokens are 

different.
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Selection Phase - Properties

● Contribution on this phase Hailstorm Alg.

● Properties of the algorithms:
● Winnowing – fulfills locality property.
● Modulo l and Hailstorm – fulfill context freeness (better).

●Lemma: In every document D, any token is covered by 
at least one k-shingle selected by algorithm Hailstorm.
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Hashing Phase

● Fixed-size hash table, split into buckets each 
containing up to 64 shingles.

● Space needed to store a shingle with its accompanying 
information varies between algorithms, is between 14-18 
bytes.
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Hashing Phase
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Hashing Phase – Shingle 
Information

● Parts contained in a shingle:
● The fingerprint of s itself,
● Its origin Ds,
● Its offset D2,
● Information about neighboring shingles in Ds, 
● Information for the eviction algorithm.
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Hashing Phase - Methods

● The work focuses on mainly three algorithms:
● Random – evict a random shingle.
● Copy – Count (CC) – copy count for each shingle.
● Lucky Shingle (LS) – 1-byte score, gives a weighted 

variant of copy count.
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Hashing Phase – Copy Count
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Hashing Phase – Lucky Score

● Lucky Score (LS) – incremental steps:
● Set lucky score to 1 for each shingle,
● Increment the score of the first and last shingle of a copied 

block by 
● If a shingle is the first or the last of its document, increment 

score additionally by 3
● For every y-th selected shingle in D, increment the score 

by 1 (y=7).
● If average score of all shingles reaches some limit, divide 

by 2.

floor  b−2
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Estimation Phase

● Input information: retrieved shingles, guess the origin of 
each shingle.

● Main work is focused on these methods:
● No Bridging (NB)
● Expansion (E)
● Bridging Algorithm (B)
● Bridging with Expansion (BE).
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Estimation Phase - Bridging

● Bridging Alg. (their work), for each two selected 
shingles s and s':

●  The offset of s in D is less than the offset of s'
●  For s and s', same origin is stored in the hash table.
●  Difference of their offset in D equals to the offset stored in  

 the hash table.
●  None of the shingles that occur after s and s' in D fulfill      

 the  previous properties.
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Estimation Phase – Bridging with 
Expansion

● Bridging with Expansion – previous properties hold, 
and two additional ones:

● First byte of the selected shingle immediately 
succeeding s in D matches the corresponding 
information in  the hash table.

● The first byte of the selected shingle immediately 
preceding s' in D matches the corresponding 
information in the hash table.
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Evaluation

● Evaluation was done on two separate datasets:
● Blog data set – 8.6 million pages
● German pages – 1.3 million pages

● Various sizes of shingles were used, k = 8 achieved 
highest results.

● Metrics to measure the performance of the framework:
● Dominant Origin (DO)
● Selected Shingle Ratio (SSR)
● Token Freshness (TF).
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Evaluation - Statistics

● Statistics on the two separate dataset:
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Evaluation – Experimental Setups

● Selection Phase
●  Version A: random eviction & no estimation
●  Version B: lucky eviction & BE estimation

● Eviction Phase
●  Version A: All the baseline algorithm
●  Version B: NHs 

● Estimation Phase
●  Version A: Copy Count
●  Version B: Lucky Shingle
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Evaluation - Selection Alg.
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Evaluation – Selection Alg.
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Evaluation - Selection Alg.
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Evaluation – Selection Alg.
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Evaluation - Eviction Alg.
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Evaluation - Estimation Alg.
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Evaluation - Estimation Alg.
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Evaluation – Estimation Alg.
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Overall Evaluation

● The performance of the system is the best when using NHs 
with lucky eviction and BE estimation, where with the 
decrease of m the performance decreases, while the results for 
both metrics (DO and TF) are quite good. 

●Whereas if used algorithm All ( when combined with lucky 
eviction and expansion) results are lower than those produced 
by NHs algorithm.
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Overall Evaluation
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Conclusions

● Pro's
● Fixed hash table size
● Good results
● Hailstorm

● Con's
● No reasoning on score changes in LS
● Security
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