
 Detecting the Origin of Text Segments Efficiently 1

Detecting the Origin of Text Segments
Efficiently

by Abdel-Hamid O., Behzadi B, Christoph S., Henzinger M.

Presentation on Hot Topic in Information Retrieval
by, Besnik Fetahu.

 Detecting the Origin of Text Segments Efficiently 2

Introduction

● Problem of replicated content (i.e.,stealing of intellectual
property).

● Solution to this problem, two main philosophies:
● Prevention
● Detection.

 Detecting the Origin of Text Segments Efficiently 3

Introduction – Prevention &
Detection

●Prevention mechanisms:
● Subscription
● Distribute by CD-ROMs, example IEEE
● Watermark
● Active Documents, etc.

● Detection mechanism:
● Match new content to previously published ones.
● Operate on semantic level.

 Detecting the Origin of Text Segments Efficiently 4

Introduction - Examples

● Freely online available solutions:
● Http://plagiarisma.net/
● Http://www.articlechecker.com

● Commercial applications:
● http://www.writecheck.com
● http://www.plagiarismdetect.com/

http://plagiarisma.net/
http://www.articlechecker.com/
http://www.writecheck.com/
http://www.plagiarismdetect.com/

 Detecting the Origin of Text Segments Efficiently 5

Introduction - Problems

● Problem: huge amount of information available.

Source: http://www.worldwidewebsize.com/

 Detecting the Origin of Text Segments Efficiently 6

Types of Replication

● Billions of pages on the Internet, categorized as follows:
● 20 – 40 % identical copies
● Near duplicate pages
● Partial replication
● Semantic duplication.

●Research is focused into these categories:
● Paragraph replication
● Problem with spammers
● Return search snippets from search engines
● Mark novel information on web browsers.

 Detecting the Origin of Text Segments Efficiently 7

Previous work

● Main papers that are referenced in this work are:

● Fingerprinting by Random Polynomials - Rabin O. M.
● Syntactic Clustering of the Web - Broder A. et.al.,
● Copy Detection Mechanism for Digital Documents - Brin

S., et. al.

 Detecting the Origin of Text Segments Efficiently 8

Previous work - Fingerprints

● Given an n-bit message m0,...,mn-1, we view it as a
polynomial of degree n-1 over the finite field.

● Pick a random irreducible polynomial p(x) of degree k
over GF(2).

● Define a fingerprint of m to be the remainder r(x) of
f(x) / p(x) over GF(2) which can be viewed as a
polynomial of degree k-1 or as a k-bit number.

 Detecting the Origin of Text Segments Efficiently 9

Previous work – Syntactic
Clustering

• Makes use of shingles.
• Clusters documents on semantic level
• Interesting approach on measuring document similarity.
• Reduced time complexity, without limitations.

 Detecting the Origin of Text Segments Efficiently 10

Previous work – Copy Detection
Mechanism for D.D.

● A framework called COPS, which performs operations
(Subset, Overlap, and Plagiarism)
● Chunking methods (used in other papers).

 Detecting the Origin of Text Segments Efficiently 11

Outline of the algorithm

● An important aspect for which the authors had to take
into consideration were:

● Space efficient
● Real-time.

● A rough outline of the algorithm looks like this:
● Fingerprint each document,
● Selection algorithms: shingles to save in the hash table.
● Estimation algorithms: determine the origin of a shingle.
● Eviction algorithms: determine, which shingle to keep.

 Detecting the Origin of Text Segments Efficiently 12

Outline of the algorithm – Cont.

● Input to the algorithm:
● A set S of sequence of tokens.
● A “query” which consist of an additional sequence D.
● A parameter k - number of consecutive tokens in a shingle.

● Phases of the algorithm:
● Selection Phase
● Hashing Phase, and
● Estimation Phase.

 Detecting the Origin of Text Segments Efficiently 13

Selection Phase

● Each document is converted into a set of fingerprints:
● All shingles of D are generated and converted into a 62 bit

fingerprint.
● A subset of shingles is selected based on their fingerprints.

 Detecting the Origin of Text Segments Efficiently 14

Selection Phase - Methods

● Experimented with a numerous selection methods:
● All – a baseline algorithm that selects all shingles.
● Every l-th (lth)
● Modulo l (M-l)
● Winnowing w (W-w)
● Revised Hash-breaking (Hb-p)
● DCT (DCT-p), and
● Hailstorm.

 Detecting the Origin of Text Segments Efficiently 15

Selection Phase – All & l-th

 Detecting the Origin of Text Segments Efficiently 16

Selection Phase – M-l

 Detecting the Origin of Text Segments Efficiently 17

Selection Phase - W-w

 Detecting the Origin of Text Segments Efficiently 18

Selection Phase – Hb-p

● Revised Hash-breaking
● Apply a hash function h to each token.
● Break the document into non-overlapping segments.
● Fingerprint all the tokens contained in a segment.
● Number of segments is 1/p.

 Detecting the Origin of Text Segments Efficiently 19

Selection Phase - Dct-p

● DCT fingerprinting:
● Text segments, using Hb-p,
● Hash values for words in the segments,
● Vertical translation of hash values, median located at 0,
● Normalize the values by the max hash value,
● Perform DCT with the normalized values,
● Quantize each coefficient to be fitted into a small number

of bits 2, 3, or 4,
● Form a fingerprint with the quantized coefficients Qk's.

 Detecting the Origin of Text Segments Efficiently 20

Selection Phase - Hs

● Hailstorm (Hs)
● Fingerprint every token
● Select a shingle s iff the minimum fingerprint value of all

tokens occurs at the first or last position of s.
● Probability that a shingle is chosen is 2/k if all tokens are

different.

 Detecting the Origin of Text Segments Efficiently 21

Selection Phase - Properties

● Contribution on this phase Hailstorm Alg.

● Properties of the algorithms:
● Winnowing – fulfills locality property.
● Modulo l and Hailstorm – fulfill context freeness (better).

●Lemma: In every document D, any token is covered by
at least one k-shingle selected by algorithm Hailstorm.

 Detecting the Origin of Text Segments Efficiently 22

Hashing Phase

● Fixed-size hash table, split into buckets each
containing up to 64 shingles.

● Space needed to store a shingle with its accompanying
information varies between algorithms, is between 14-18
bytes.

 Detecting the Origin of Text Segments Efficiently 23

Hashing Phase

 Detecting the Origin of Text Segments Efficiently 24

Hashing Phase – Shingle
Information

● Parts contained in a shingle:
● The fingerprint of s itself,
● Its origin Ds,
● Its offset D2,
● Information about neighboring shingles in Ds,
● Information for the eviction algorithm.

 Detecting the Origin of Text Segments Efficiently 25

Hashing Phase - Methods

● The work focuses on mainly three algorithms:
● Random – evict a random shingle.
● Copy – Count (CC) – copy count for each shingle.
● Lucky Shingle (LS) – 1-byte score, gives a weighted

variant of copy count.

 Detecting the Origin of Text Segments Efficiently 26

Hashing Phase – Copy Count

 Detecting the Origin of Text Segments Efficiently 27

Hashing Phase – Lucky Score

● Lucky Score (LS) – incremental steps:
● Set lucky score to 1 for each shingle,
● Increment the score of the first and last shingle of a copied

block by
● If a shingle is the first or the last of its document, increment

score additionally by 3
● For every y-th selected shingle in D, increment the score

by 1 (y=7).
● If average score of all shingles reaches some limit, divide

by 2.

floor b−2

 Detecting the Origin of Text Segments Efficiently 28

Estimation Phase

● Input information: retrieved shingles, guess the origin of
each shingle.

● Main work is focused on these methods:
● No Bridging (NB)
● Expansion (E)
● Bridging Algorithm (B)
● Bridging with Expansion (BE).

 Detecting the Origin of Text Segments Efficiently 29

Estimation Phase - Bridging

● Bridging Alg. (their work), for each two selected
shingles s and s':

● The offset of s in D is less than the offset of s'
● For s and s', same origin is stored in the hash table.
● Difference of their offset in D equals to the offset stored in

 the hash table.
● None of the shingles that occur after s and s' in D fulfill

 the previous properties.

 Detecting the Origin of Text Segments Efficiently 30

Estimation Phase – Bridging with
Expansion

● Bridging with Expansion – previous properties hold,
and two additional ones:

● First byte of the selected shingle immediately
succeeding s in D matches the corresponding
information in the hash table.

● The first byte of the selected shingle immediately
preceding s' in D matches the corresponding
information in the hash table.

 Detecting the Origin of Text Segments Efficiently 31

Evaluation

● Evaluation was done on two separate datasets:
● Blog data set – 8.6 million pages
● German pages – 1.3 million pages

● Various sizes of shingles were used, k = 8 achieved
highest results.

● Metrics to measure the performance of the framework:
● Dominant Origin (DO)
● Selected Shingle Ratio (SSR)
● Token Freshness (TF).

 Detecting the Origin of Text Segments Efficiently 32

Evaluation - Statistics

● Statistics on the two separate dataset:

 Detecting the Origin of Text Segments Efficiently 33

Evaluation – Experimental Setups

● Selection Phase
● Version A: random eviction & no estimation
● Version B: lucky eviction & BE estimation

● Eviction Phase
● Version A: All the baseline algorithm
● Version B: NHs

● Estimation Phase
● Version A: Copy Count
● Version B: Lucky Shingle

 Detecting the Origin of Text Segments Efficiently 34

Evaluation - Selection Alg.

 Detecting the Origin of Text Segments Efficiently 35

Evaluation – Selection Alg.

 Detecting the Origin of Text Segments Efficiently 36

Evaluation - Selection Alg.

 Detecting the Origin of Text Segments Efficiently 37

Evaluation – Selection Alg.

 Detecting the Origin of Text Segments Efficiently 38

Evaluation - Eviction Alg.

 Detecting the Origin of Text Segments Efficiently 39

Evaluation - Estimation Alg.

 Detecting the Origin of Text Segments Efficiently 40

Evaluation - Estimation Alg.

 Detecting the Origin of Text Segments Efficiently 41

Evaluation – Estimation Alg.

 Detecting the Origin of Text Segments Efficiently 42

Overall Evaluation

● The performance of the system is the best when using NHs
with lucky eviction and BE estimation, where with the
decrease of m the performance decreases, while the results for
both metrics (DO and TF) are quite good.

●Whereas if used algorithm All (when combined with lucky
eviction and expansion) results are lower than those produced
by NHs algorithm.

 Detecting the Origin of Text Segments Efficiently 43

Overall Evaluation

 Detecting the Origin of Text Segments Efficiently 44

Conclusions

● Pro's
● Fixed hash table size
● Good results
● Hailstorm

● Con's
● No reasoning on score changes in LS
● Security

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

