Chapter X: Classification

Information Retrieval & Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2011/12

Chapter X: Classification*

- 1. Basic idea
- 2. Decision trees
- 3. Naïve Bayes classifier
- 4. Support vector machines
- 5. Ensemble methods

* Zaki & Meira: Ch. 24, 26, 28 & 29; Tan, Steinbach & Kumar: Ch. 4, 5.3–5.6

X.1 Basic idea

1. Definitions

- 1.1. **Data**
- 1.2. Classification function
- 1.3. Predictive vs. descriptive
- 1.4. Supervised vs. unsupervised

Definitions

- Data for classification comes in tuples (x, y)
 - Vector x is the attribute (feature) set
 - Attributes can be binary, categorical or numerical
 - Value y is the class label
 - We concentrate on binary or nominal class labels
 - Compare classification with regression!
- A classifier is a function that maps attribute sets to class labels, f(x) = y

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Definitions

- Data for classification comes in tuples (x, y)
 - Vector x is the attribute (feature) set
 - Attributes can be binary, categorical or numerical
 - Value y is the class label
 - We concentrate on binary or nominal class labels
 - Compare classification with attribute set regression!
- A classifier is a function that maps attribute sets to class labels, f(x) = y

WITH INDICATE				
Tid	Home	Marital	Annual	Defaulted
	Oy/ner	Status	Income	Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
4	No	Divorced	95K	Yes
4	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Definitions

- Data for classification comes in tuples (x, y)
 - Vector x is the attribute (feature) set
 - Attributes can be binary, categorical or numerical
 - Value y is the class label
 - We concentrate on binary or nominal class labels
 - Compare classification with regression!
- A classifier is a function that maps attribute sets to class labels, f(x) = y

		U	lass
Home	Marital	Annual	Defaulted
Owner	Status	Income	Perrower
Yes	Single	125K	No \
No	Married	100K 🖊	No 🐧
No	Single	70K	No
Yes	Married	120K	No
No	Divorced	95K	Yes
No	Married	60K	No
Yes	Divorced	220K	No
No	Single	85K	Yes
No	Married	75K	No 🎉
No	Single	90K	Yes
	Owner Yes No No Yes No No Yes No Yes No Yes No	OwnerStatusYesSingleNoMarriedNoSingleYesMarriedNoDivorcedNoMarriedYesDivorcedNoSingleNoMarried	Home OwnerMarital StatusAnnual IncomeYesSingle125KNoMarried100KNoSingle70KYesMarried120KNoDivorced95KNoMarried60KYesDivorced220KNoSingle85KNoMarried75K

IR&DM, WS'11/12 26 January 2012 X.1&2-4

Classification function as a black box

Descriptive vs. predictive

- In descriptive data mining the goal is to give a description of the data
 - Those who have bought diapers have also bought beer
 - These are the clusters of documents from this corpus
- In **predictive** data mining the goal is to predict the future
 - Those who will buy diapers will also buy beer
 - If new documents arrive, they will be similar to one of the cluster centroids
- The difference between predictive data mining and machine learning is hard to define

Descriptive vs. predictive classification

- Who are the borrowers that will default?
 - Descriptive
- If a new borrower comes, will they default?
 - Predictive
- Predictive classification is the usual application
 - What we will concentrate on

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

General classification framework

Classification model evaluation

- Recall the confusion matrix:
- Much the same measures as with IR methods
 - Focus on accuracy and error rate

Accuracy =
$$\frac{f_{11} + f_{00}}{f_{11} + f_{00} + f_{10} + f_{01}}$$

Error rate =
$$\frac{f_{10} + f_{01}}{f_{11} + f_{00} + f_{10} + f_{01}}$$

-But also precision, recall, F-scores, ...

Predicted class

	Class = 1	Class = 0
Class = 1	f_{11}	f_{10}
Class = 0	f_{01}	f_{00}

Actual class

Supervised vs. unsupervised learning

In supervised learning

- Training data is accompanied by class labels
- -New data is classified based on the training set
 - Classification

In unsupervised learning

- The class labels are unknown
- The aim is to establish the existence of classes in the data based on measurements, observations, etc.
 - Clustering

X.2 Decision trees

- 1. Basic idea
- 2. Hunt's algorithm
- 3. Selecting the split
- 4. Combatting overfitting

Zaki & Meira: Ch. 24; Tan, Steinbach & Kumar: Ch. 4

Basic idea

- We define the label by asking series of questions about the attributes
 - -Each question depends on the answer to the previous one
 - -Ultimately, all samples with satisfying attribute values have the same label and we're done
- The flow-chart of the questions can be drawn as a tree
- We can classify new instances by following the proper edges of the tree until we meet a leaf
 - Decision tree leafs are always class labels

Example: training data

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Example: decision tree

Hunt's algorithm

- The number of decision trees for a given set of attributes is exponential
- Finding the the most accurate tree is NP-hard
- Practical algorithms use greedy heuristics
 - The decision tree is grown by making a series of locally optimum decisions on which attributes to use
- Most algorithms are based on Hunt's algorithm

Hunt's algorithm

- Let X_t be the set of training records for node t
- Let $y = \{y_1, \dots, y_c\}$ be the class labels
- Step 1: If all records in X_t belong to the same class y_t , then t is a leaf node labeled as y_t
- Step 2: If X_t contains records that belong to more than one class
 - Select *attribute test condition* to partition the records into smaller subsets
 - Create a *child node* for each outcome of test condition
 - Apply algorithm recursively to each child

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No

Has multiple labels

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No

Has multiple labels

Only one label Has multiple labels

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No

Has multiple labels

Only one label Has multiple labels

Has multiple Only one label labels 26 January 2012

Home

Owner

Nο

Marital

Status

Married

Defaulted = No

Yes

Single,

Divorced

Defaulted = Yes

Defaulted = No

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No

Has multiple labels

Only one label Has multiple labels

Has multiple Only one labels 26 January 2012

Only one label Only one label

Selecting the split

- Designing a decision-tree algorithm requires answering two questions
 - 1. How should the training records be split?
 - 2. How should the splitting procedure stop?

Binary attributes

Nominal attributes

Multiway split

Binary split

Ordinal attributes

Continuous attributes

Selecting the best split

- Let $p(i \mid t)$ be the fraction of records belonging to class i at node t
- Best split is selected based on the degree of **impurity** of the child nodes
 - $-p(0 \mid t) = 0$ and $p(1 \mid t) = 1$ has high purity
 - $-p(0 \mid t) = 1/2$ and $p(1 \mid t) = 1/2$ has the *smallest purity* (highest impurity)
- Intuition: high purity ⇒ small value of impurity measures ⇒ better split

Example of purity

Example of purity

Impurity measures

$$Entropy(t) = -\sum_{i=0}^{c-1} p(i \mid t) \log_2 p(i \mid t)$$

$$Gini(t) = 1 - \sum_{i=0}^{c-1} (p(i \mid t))^2$$

$$Classification error(t) = 1 - \max_{i} \{p(i \mid t)\}$$

IR&DM, WS'11/12 26 January 2012 X.1&2-25

Comparing impurity measures

Comparing conditions

- The quality of the split: the change in the impurity
 - Called the gain of the test condition

$$\Delta = I(p) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$$

- *I*() is the impurity measure
- k is the number of attribute values
- p is the parent node, v_j is the child node
- N is the total number of records at the parent node
- $N(v_j)$ is the number of records associated with the child node
- Maximizing the gain ⇔ minimizing the weighted average impurity measure of child nodes
- If I() = Entropy(), then $\Delta = \Delta_{info}$ is called information gain

Computing the gain: example

	N1	N2
C0	4	2
C1	3	3
Gin	i = 0.	486

	N1	N2	
C0	1	5	
C1	4	2	
Gini = 0.375			

Computing the gain: example

	N1	N2	
C0	4	2	
C1	3	3	
Gini = 0.486			

	N1	N2	
C0	1	5	
C1	4	2	
Gini = 0.375			

	N1	N2
C0	4	2
C1	3	3
Gini = 0.486		

	N1	N2
C0	1	5
C1	4	2
Gini = 0.375		

7 5

	N1	N2
C0	4	2
C1	3	3
Gini = 0.486		

	N1	N2
C0	1	5
C1	4	2
Gini = 0.375		

$$7 \times 0.4898 + 5 \times 0.480$$

	N1	N2
C0	4	2
C1	3	3
Gini = 0.486		

	N1	N2
C0	1	5
C1	4	2
Gini = 0.375		

$$(7 \times 0.4898 + 5 \times 0.480) / 12 = 0.486$$

Problems of maximizing Δ

Problems of maximizing Δ

- Impurity measures favor attributes with large number of values
- A test condition with large number of outcomes might not be desirable
 - Number of records in each partition is too small to make predictions
- Solution 1: gain ratio = Δ_{info} / SplitInfo
 - SplitInfo = $-\sum_{i=1}^{k} P(v_i) \log_2(P(v_i))$
 - $P(v_i)$ = the fraction of records at child; k = total number of splits
 - -Used e.g. in C4.5
- Solution 2: restrict the splits to binary

Stopping the splitting

- Stop expanding when all records belong to the same class
- Stop expanding when all records have similar attribute values
- Early termination
 - -E.g. gain ratio drops below certain threshold
 - Keeps trees simple
 - -Helps with overfitting

Geometry of single-attribute splits

Decision boundaries are always axis-parallel for single-attribute splits

Geometry of single-attribute splits

Geometry of single-attribute splits

Combatting overfitting

- Overfitting is a major problem with all classifiers
- As decision trees are parameter-free, we need to stop building the tree before overfitting happens
 - -Overfitting makes decision trees overly complex
 - -Generalization error will be big
- Let's measure the generalization error somehow

Estimating the generalization error

• Error on training data is called re-substitution error

$$-e(T) = \Sigma e(t) / N$$

- e(t) is the error at leaf node t
- *N* is the number of training records
- e(T) is the error *rate* of the decision tree
- Generalization error rate:

$$-e'(T) = \Sigma e'(t) / N$$

- **Optimistic approach**: e'(T) = e(T)
- -Pessimistic approach: $e'(T) = \sum_{t} (e(t) + \Omega)/N$
 - Ω is a penalty term
- Or we can use testing data

Handling overfitting

- In pre-pruning we stop building the decision tree when some early stopping criterion is satisfied
- In post-pruning full-grown decision tree is trimmed
 - -From bottom to up try replacing a decision node with a leaf
 - If generalization error improves, replace the sub-tree with a leaf
 - New leaf node's class label is the majority of the sub-tree
 - We can also use minimum description length principle

Minimum description principle (MDL)

- The complexity of a data is made of two parts
 - The complexity of explaining a model for data
 - The complexity of explaining the data given the model
 - $-L = L(M) + L(D \mid M)$
- The model that minimizes L is the optimum for this data
 - This is the minimum description length principle
 - -Computing the least number of bits to produce a data is its Kolmogorov complexity
 - Uncomputable!
 - MDL approximates Kolmogorov complexity

MDL and classification

- The model is the classifier (decision tree)
- Given the classifier, we need to tell where it errs
- Then we need a way to encode the classifier and its error
 - -Per MDL principle, the better the encoder, the better the results
 - The art of creating good encoders is in the heart of using MDL

Summary of decision trees

- Fast to build
- Extremely fast to use
 - -Small ones are easy to interpret
 - Good for domain expert's verification
 - Used e.g. in medicine
- Redundant attributes are not (much of) a problem
- Single-attribute splits cause axis-parallel decision boundaries
- Requires post-pruning to avoid overfitting