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Chapter I1: Basics from Probability Theory
and Statistics*

11.1 Probability Theory
Events, Probabilities, Random Variables, Distributions, Moment-
Generating Functions, Deviation Bounds, Limit Theorems
Basics from Information Theory

11.2 Statistical Inference: Sampling and Estimation
Moment Estimation, Confidence Intervals
Parameter Estimation, Maximum Likelihood, EM Iteration

11.3 Statistical Inference: Hypothesis Testing and Regression
Statistical Tests, p-Values, Chi-Square Test
Linear and Logistic Regression

*mostly following L. Wasserman, with additions from other sources
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1.1 Basic Probability Theory

Probability

Data generating
process

Observed data

Statistical Inference/Data Mining

* Probability Theory
— Given a data generating process, what are the properties
of the outcome?

o Statistical Inference

— Given the outcome, what can we say about the process that
generated the data?

— How can we generalize these observations and make predictions
about future outcomes?
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Sample Spaces and Events

« Asample space Q is a set of all possible outcomes of an experiment.
(Elements e in Q are called sample outcomes or realizations.)
« Subsets E of Q2 are called events.

Example 1.
— If we toss a coin twice, then Q = {HH, HT, TH, TT}.
— The event that the first toss is heads is A = {HH, HT}.

Example 2:
— Suppose we want to measure the temperature in a room.
— Let Q= R ={-o,0, 0}, 1.e., the set of the real numbers.
— The event that the temperature is between 0 and 23 degrees is A = [0, 23].
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Probability

« A probability space is a triple (Q2, E, P) with
— a sample space Q of possible outcomes,
— aset of events E over Q,
— and a probability measure P: E — [0,1].

Example: P[{HH, HT}] = 1/2; P{HH, HT, TH, TT}] = 1

« Three basic axioms of probability theory:
Axiom 1: P[A] > 0O (for any event A in E)
Axiom 2: P[Q2] =1
Axiom 3: If events A, A,, ... are disjoint, then P[U; A)] = 2. P[A]
(for countably many A)).
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Probability

More properties (derived from axioms)
P[] = O (null/impossible event)

P[Q] = 1 (true/certain event, actually not derived but 2nd axiom)
0<P[A]<1

If A < B then P[A] < P[B]

P[A] + P[-A] =1

P[A U B] = P[A] + P[B] — P[A m B] (inclusion-exclusion principle)

Notes:

— E is closed under n, U, and — with a countable number of operands
(with finite Q, usually E=29).

— It is not always possible to assign a probability to every event in E if
the sample space is large. Instead one may assign probabilities to a
limited class of sets in E.
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Venn Diagrams

Q

John Venn
1834-1923

Proof of the Inclusion-Exclusion Principle:

PIAUB] =P[(An-B)uU(AnB)uU(-ANB)]
= P[An —-B] + P[An B] + P[-A " B] + P[A " B] - P[An B]
=P[(An-B) U(AnB)]+P[(-AnB)uU(AnB)]-P[An B]
= P[A] + P[B] — P[A N B]
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Independence and Conditional Probabilities

« Two events A, B of a probability space are independent
If P[A n B] = P[A] P[B].

* A finite set of events A={A,, ..., A} Is independent
If for every subset S — A the equation
P[ ﬂ Ai] — H P[Ai]
AjeS AjeS

holds.

 The conditional probability P[A | B] of A under the
condition (hypothesis) B is defined as:
P[A|B] = P[ANB]
P[B]

« An event A is conditionally independent of B given C
If P[A| BC] =P[A| C].

IR&DM, WS'11/12 October 20, 2011 1.8



Independence vs. Disjointness

Set-Complement P[-A] =1 -P[A]

Independence P[A n B] = P[A] P[B]

P[AuU B] =1-(1-P[A]D(1 - P[B])

Disjointness PIANB]=0

P[A U B] = P[A] + P[B]

dentity P[A] = P[B] = P[A N B] = P[A U B]
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Murphy’s Law

“Anything that can go wrong will go wrong.”

Example:

« Assume a power plant has a probability of a
failure on any given day of p.

« The plant may fail independently on any given
day, i.e., the probability of a failure over n days
Is: P[failureinndays]=1-(1-p)"

Set p = 3 accidents / (365 days * 40 years) = 0.00021, then:

P[failure in 1 day] = 0.00021
P[failure in 10 days] = 0.002
P[failure in 100 days] = 0.020
P[failure in 1000 days] = 0.186
P[failure in 365*40 days] = 0.950
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Birthday Paradox

In a group of n people, what is the probability that at least 2 people
have the same birthday?

—> For n = 23, there is already a 50.7% probability of least 2 people
having the same birthday.

Let N denote the event that in a group of n-1 people a newly added person
does not share a birthday with any other person, then:

P[N=1] = 365/365, P[N=2]= 364/365, P[N=3] = 363/365, ...

P[N’=n] = P|at least two birthdays in a group of n people coincide]
=1-PI[N=1] P[N=2] ... P[N=n-1] =1 -] ., . ,1(1—K/365)

P[N’=1]=0
P[N’=10]=0.117
P[N’=23]=0.507
P[N’=41] = 0.903
P[N’=366]= 1.0
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Total Probability and Bayes’ Theorem

The Law of Total Probability:
For a partitioning of Q into events A, ..., A,;:

P[B]= P[B|AIPIA]

Thomas Bayes
1701-1761

P[B| A]P[A]
P[B]

Bayes’ Theorem: P[A|B] =

P[A|B] is called posterior probability
P[A] is called prior probability
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Random Variables

How to link sample spaces and events to actual data / observations?

Example:

Let’s flip a coin twice, and let X denote the number of heads we
observe. Then what are the probabilities P[X=0], P[X=1], etc.?

P[X=0] = P[{TT}] = 1/4 X P(X=x)
P[X=1] = P{HT, TH}] = 1/4 + 1/4 = 1/2 0 1/4
P[X=2] = P[{HH}] = 1/4 1 1/2

2 1/4

What is the probability of P[X=3] ? Distribution of X
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Random Variables

* A random variable (RV) X on the probability space (2, E, P) Is a
function X: Q > MwithM c Rs.t. {e| X(e) < x}eE forall x eM
(X Is observable).

Example: (Discrete RV)
Let’s flip a coin 10 times, and let X denote the number of heads we observe.
If e = HHHHHTHHTT, then X(e) = 7.

Example: (Continuous RV)
Let’s flip a coin 10 times, and let X denote the ratio between heads and tails
we observe. If e = HHHHHTHHTT, then X(e) = 7/3.

Example: (Boolean RV, special case of a discrete RV)
Let’s flip a coin twice, and let X denote the event that heads occurs first.
Then X=1 for {HH, HT}, and X=0 otherwise.
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Distribution and Density Functions

*F: M — [0,1] with Fy(X) = P[X <x] Is the
cumulative distribution function (cdf) of X.

* For a countable set M, the function f,: M — [0,1]
with fy (x) = P[X = x] is called the probability density function
(pdf) of X; in general fy(x) is F’y(X).

 For a random variable X with distribution function F, the inverse
function F1(q) := inf{x | F(x) > q} for g € [0,1] is called quantile
function of X.
(the 0.5 quantile (aka. “50™ percentile”) is called median)

Random variables with countable M are called discrete,
otherwise they are called continuous.

For discrete random variables, the density function is also
referred to as the probability mass function.
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Important Discrete Distributions

« Uniform distribution fver {1, 2, ..., m}:
P[X =k]= f,(k)=— forl<k<m
m

« Bernoulli distribution (single coin toss with parameter p; X: head or tail):

P[X =k] = f, (K)=p“@-p)"™* for k {01}

-« Binomial distribution (coin toss n times repeated; X: #heads):
n
P[X =k] = f, (k)=(k]pk(1— p)"* fork<n

« Geometric distribution (X: #coin tosses until first head):
P[X =k]=f (k)= (1-p) p

- Poisson distribution (Withkrate A):

A
PIX =K]=fx(K)=e" 7

« 2-Poisson mixture (with a,+a,=1):

K
P[X =k]="fy (k)= ale—il% + aZe_}LZ%
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Important Continuous Distributions

« Uniform distribution in the interval [a,b]
o (X)= bi for a<x<b (0 otherwise)
—a

« Exponential distribution (e.g. time until next event of a Poisson process)

with rate A = lim,, ., (# events in At) / At:
f.(X)=A1e™ forx>0 (0 otherwise)

« Hyper-exponential distribution:
fy ()= pl e +(1-p)te™

« Pareto distribution:
Example of a “heavy-tailed” distribution with

a+l
f. (X) a%(gj for x> b, 0 otherwise
X

» Logistic distribution:

1
Fy (X) = fx(x)—>
s 1+e7 % X

IR&DM, WS'11/12 October 20, 2011
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Normal (Gaussian) Distribution

* Normal distribution N(u,0?) (Gauss distribution; :
approximates sums of independent, _(x=p)

identically distributed random variables): f, (X)= 21 _g 20
o

* Normal (cumulativeg distribution function N(0,1):

Z X .
T 5 DA4ZTI968IUD e
D(z)= j ——e 2 dx 21
j’%’z 77“\
Theorem: fatn
Let X be Normal distributed with =7+ = ==t
expectation p and variance 2. Carl Friedrich
X — 7 Gauss, 1777-1855

Then Y =

O
IS Normal distributed with expectation 0 and variance 1.
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Multidimensional (Multivariate) Distributions

Let X,, ..., X, be random variables over the same probability space with domains
dom(X,), ..., dom(X,,).

with Z fol _____ Xm(Xl,...,Xm)zl (discrete case)

x,edom(X;) Xmedom(X )

The joint distribution of X, ..., X, has the density function fx1

or j jfxl ..... X (X.,--0s X, )dX ...dX, =1 (continuous case)
dom(X;) dom(X,,)

The marginal distribution of X, in the joint distribution of X, ..., X, has the
density function

y yy y fxl ..... X (Xl""’xm) or (discrete case)
X Xm

Xi1 Xy
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Important Multivariate Distributions

Multinomial distribution (n, m) (n trials with m-sided dice):  rwnacase
P[Xlzkl/\.../\xm:km]: R A

Multidimensional Gaussian distribution ( z, X ):

fxl,...,xm ()_() —

1 =) 7 (7 0)
Jen)"3

with covariance matrix 2 with X;; := Cov(X;,X;)

(Plots from http://www.mathworks.de/)
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Expectation Values, Moments & Variance

For a discrete random variable X with density f,
E[X]= Z k f, (K) isthe expectation value (mean) of X

keM

E[X']= Zki f. (K) is the i-th moment of X

keM

V[X]=E[(X —E[X])*]1=E[X?]-E[XT is the variance of X

For a continuous random variable X with density fy
E[X]= jx f. (X)dX is the expectation value (mean) of X

70
E[X']= X' f,(X)dX isthe i-th moment of X

—00

V[X]=E[(X —E[X]?]=E[X?]-E[XT* is the variance of X

Theorem: Expectation values are additive: E[X +Y]=E[X]+E[Y]
(distributions generally not)
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Properties of Expectation and Variance

« E[aX+Db] = aE[X]+Db for constants a, b

» E[X;+Xo+.. 4X,] = E[X,] + E[X,] + ... + E[X,]
(i.e. expectation values are generally additive, but distributions are not!)

« E[XY] = E[X]E[Y] If X and Y are independent

* E[X+ X +...+X\] = E[N] E[X]
If X, X, ..., Xy are independent and identically distributed (iid) RVs
with mean E[X] and N is a stopping-time RV

 Var[aX+b] = a? Var[X] for constants a, b

* Var[ X+ X,+...+X | = Var[X,] + Var[X,] + ... + Var[X ]
If X, X,, ..., X, are independent RVs

« Var[X +X,+...+X] = E[N] Var[X] + E[X]? Var[N]
If X, X,, ..., Xy are iid RVs with mean E[X] and variance Var[X]
and N is a stopping-time RV
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Correlation of Random Variables
Covariance of random variables X; and X;

Cov(X;, X;) = EI(X; —E[X;D(X; —E[X;])]
Var(X.) =Cov(X,, X,) = E[X?]-E[X]’

Correlation coefficient of X; and X,
Cov(X;, X;)

JVar(X;) Jvar(X;)

Conditional expectation of X given Y=y
(> X Ty (X]Y) (discrete case)

/O(Xi’xj)::

E[X|Y =y] =+

|x fyy (X]y)dx  (continuous case)

IR&DM, WS'11/12 October 20, 2011
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Transformations of Random Variables

Consider expressions r(X,Y) over RVs, such as X+Y, max(X,Y), etc.

1. Foreachzfind A, = {(x,y) | r(x,y)<z}
2. Find cdf F,(z) = P[r(xy) <z] = [ | A, Fxv (X, y) dxdy
3. Find pdf f,(z) = F’,(z)

Important case: Sum of independent RVs (non-negative) Z = X+Y

F(2) = PIr(xy) <21 = [ [ xiy<z Tx (X)) (y) dx dy “Convolution”
y X

=[5 feoFx 00fy (y) dxdy
= [ Fx (R, (z—x) dx

Discrete case: F,(2) = 2.2 wiy<r T ()T (Y)
Xy

=>" f.(x)F, (z-x)
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Generating Functions and Transforms

X, Y, ...: continuous random variables A, B, ...: discrete random variables with
with non-negative real values non-negative integer values
My (s) = [e¥ fy(x)dx =E[e™ ]: Gu(2)=17 f\(i)=E[2"]:
0 i=0
Moment-generating function of X Generating function of A

(z transform)

f*y (s) :O}e—sx fy (x)dx = E[e™* ] fa(=8)=M,(s) =Gp(e®)
0

Laplace-Stieltjes transform (LST) of X Laplace-Stieltjes transform of A

Examples: Exponential: Erlang-k: Poisson:
f(X)=ae™™ i (X)= “‘z(k“_k)l‘))!“ e ™ f,(k)=e" i‘—f
f*x(s):ﬁ f*X(S):(k:j—Sjk Gp(z) =e*t*)
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Properties of Transforms

Convolution of independent random variables:

FX+Y (Z): ijx (X) FY (Z — X) dx

My,y(8)=My(s)My(s)
f *X+Y (S): f *x (S) f *Y (S)

(continuous case)

Fros (0= 2 1,00 F (k=)

Gas(2)=GA(2)Cg(2)

(discrete case)

Many more properties for other transforms, see, e.g.:

L. Wasserman: All of Statistics

Arnold O. Allen: Probability, Statistics, and Queueing Theory
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Use Case: Score prediction for fast Top-k

. Theobald, Schenkel, Weikum: VLDB’04]
Queries [

L, L, L;

D,,:0.8] |D,:1.0 D¢ :0.9

Want to

Given: Inverted lists L; with continuous score
distributions captured by independent RV’s S,

predict: P[ZiSi >5]

D,:0.8] |Dg:0.9 D,:0.8

D,,:0.7] |D1:0.8 D,,:0.6

f(x) =+

L e
. N .
[l
o
w

« Consider score intervals [0, high; ] at current scan
positions in L;, then f;(x) = 1/high; (assuming
> |high, high, high, uniform score distributions)

« Convolution 81;82 IS given by
E |:81+S2 (Z) = jfsl (X) F32 (Z — X) dx

0
« But each factor is non-zero in 0 <x < high, and 0 <
Z-x < high, only (for high,< high,), thus

(x / (highy - high,) for O < x < high
1/ high, for highy < x < high,
1/ highy +1/high, —x/(high, - high,)

for high, < x < highy + high,

— Cumbersome amount of case differentiations
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Use Case: Score prediction for fast Top-k

[Theobald, Schenkel, Weikum: VLDB’04]

¢ TEmmmsEsss O Temmmmmmsmemmsmmmm——

Queries
Ll L2 L3
D,,:0.8] |D,:1.0 D¢ :0.9
D,:0.8] |Dg:0.9 D,:0.8
D,,:0.7] |D1:0.8 D,,:0.6
>[ighy_[ [igh; [ Jnigh,
I »1.0.6

Given: Inverted lists L; with continuous score
distributions captured by independent RV’s S,

Want to predict: P[Zi Si > 5]

» Instead: Consider the moment-generating function

for each S, S
Mi(s)zjgesxfi(x)dx=E[es I}

« For independent S;, the moment of the convolution
over all S is given by

M (s) =TT; M;(s)
* Apply Chernoff-Hoeffding bound on tail distribution

P[2;Si > |<infeo{e™ M(s)}

—> Prune D,, if P[S,+S;> d] <¢ (using 6 = 1.4-0.7 and
a small confidence threshold for ¢, e.g., €=0.05)
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Inequalities and Tail Bounds
Markov inequality: P[X >t] <E[X]/t fort> 0 and non-neg. RV X

Chebyshev inequality: P[ [ X—E[X]| > t] < Var[X]/t? fort> 0 and non-neg. RV X

Chernoff-Hoeffding bound: P[X =t] <inf e ?'My(6)]6=0

1 2nt? f Ili(p) iid
Corollarv: - _nl>t <920t or Bernoulli(p) 1id. RVs
g P{nzx' pzt|<2e X, oy X and any t >0
J2 e 12 gor N(0,1) distr. RV Z
Mill‘s inequality: P DZ‘ > t] < and t> 0

T t

Cauchy-Schwarz inequality: E[XY]< \/ E[X*]E[Y?]

Jensen’s inequality: E[g(X)] = g(E[X]) for convex function g

E[g(X)] < g(E[X]) for concave function g
(g is convex if for all ce[0,1] and x4, X,: g(cx, + (1-C)X,) < cg(x,) + (1-c)g(X,))

IR&DM, WS'11/12
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Convergence of Random Variables

Let X;, X,, ... be a sequence of RVs with cdf’s F;, F,, ...,
and let X be another RV with cdf F.

« X, converges to X in probability, X, —¢ X, if forevery ¢ >0
P[IX,—X|>¢] >0asn— w

X, converges to X in distribution, X, — X, if
lim ., . F.(x)=F(x)atall x for which F is continuous

* X, converges to X in quadratic mean, X, —q, X, if
E[(X,—X)?] > 0asn — «

« X, converges to X almost surely, X, —, X, if P[X, ->X] =1

Weak law of large numbers (for X, =3, . X;/n) _

that is: lim, ,, P[| X, —E[X]|>€] = 0

if X, Xy, .oy X, ... are iid RVs with mean E[X], then X, —p E[X]

Strong law of large numbers:

thatis: p[lim___ | X, —E[X]|>g] =0

if Xy, Xy, ..., X, ... are iid RVs with mean E[X], then X | —>.. E[X]

IR&DM, WS'11/12 October 20, 2011
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Convergence & Approximations

Theorem: (Binomial converges to Poisson)
et X be a random variable with Binomial distribution with
parameters n and p := A/n with large n and small constant A << 1.

Then im  f, (K)=e* -

Theorem: (Moivre-Laplace: Binomial converges to Gaussian)
et X be a random variable with Binomial distribution with
parameters n and p. For -co < a <b < oo it holds that:

im _ Plas—2 1P

~ Jnp(L-p)

®(z) is the Normal distribution function N(0,1); a, b are integers

<b]=d(b) - D(a)
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Central Limit Theorem

Theorem:

Let X,, ..., X, be n independent, identically distributed (iid) random
variables with expectation p and variance o2. The distribution
function F, of the random variable Z_ := X; + ... + X_

converges to a Normal distribution N(np, no?) with expectation nu
and variance no?. That is, for -oo <x <y <o it holds that:

im . Px< 22— < y 1= ao(y) - d(x)

Jno

Corollary:
— 1n C
X = - > Xj converges to a Normal distribution N(u, 64/n)
i=1

with expectation u and variance o?/n .
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Elementary Information Theory

Let f(x) be the probability (or relative frequency) of the x-th symbol

In some text d. The entropy of the text 1

(or the underlying prob. distribution f) is: H(d) = Z f (x) log, m
" X

H(d) is a lower bound for the bits per symbol

needed with optimal coding (compression).

For two prob. distributions f(x) and g(x) the
relative entropy (Kullback-Leibler divergence) of fto g is:

. f(x)
D(f|g):=3 f(x)I
(f]9) % (x)log; a(x)

Relative entropy is a measure for the (dis-)similarity of two probability or
frequency distributions. It corresponds to the average number of additional bits
needed for coding information (events) with distribution f when using an
optimal code for distribution g.

The cross entropy of f(x) to g(x) is:
H(f,g):=H(f)+D(f|g)= - f(x)log g(x)
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Compression

» Text is sequence of symbols (with specific frequencies)

« Symbols can be
» letters or other characters from some alphabet X

» strings of fixed length (e.g. trigrams, “shingles”)
* or words, bits, syllables, phrases, etc.

Limits of compression:
Let p; be the probability (or relative frequency)
of the iI-th symbol in text d 1
Then the entropy of the text: H(d) = Z p log, —
IS a lower bound for the i
average number of bits per symbol in any compression (e.g. Huffman codes)

Note:
Compression schemes such as Ziv-Lempel (used in zip) are better because they

consider context beyond single symbols; with appropriately generalized
notions of entropy, the lower-bound theorem does still hold.
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Summary of Section 11.1

» Bayes’ Theorem: very simple, very powerful
» RVs as a fundamental, sometimes subtle concept
* Rich variety of well-studied distribution functions
« Moments and moment-generating functions capture distributions
» Tail bounds useful for non-tractable distributions
« Normal distribution: limit of sum of i1id RVs
» Entropy measures (incl. KL divergence)
capture complexity and similarity of prob. distributions
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Reference Tables on Probability Distributions and Statistics (1)

Table 1A. (continued)

Appendix A

Random
Variable Parameters o(+)
[ ] [ ]
Statistical Tables i e
Hypergeometric N >0 p(k) = kj\n—k )
()
n
A.1 Discrete Random Variables nk >0 k=0,1,...,n, where
; ; : k<randn—-k<N-7.
Table 1A. Properties of Some Common Discrete Random Variables!
Random r\ (2 .
Variable Parameters p(+) ! b k) \k
Multivariate Siri=N plkyka,... k) = A2 e,
i=1 N
Bernoulli 0<p<1l p(k)=pkg** n
k(=)0, 1 Hypergeometric for k; € {0,1,...,n}, ki <7; Vi
1
and Z ki =n.
i=1
Binomial n p(k) = (:)pkq"'k,
0<p<l k=0,1,...,n Geometric 0<p<1l pk)=d¢*p, k=0,1,....
s o ks %) = n! ki ka2 ok _
Multinomial n,r,p;,k; p(k) PR k,.!pl D5 Py Bl bepei )= (r + : l)p'qk,
Z pi=1 (negative r positive
i=1 binomial) integer k=0,1,---
=
> ki=n, where k= (ki k..., k)
i=1 k
Poisson a>0 p(k)=e‘°‘;‘c—', k=0,1,---
l¢g=1-p

Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory
with Computer Science Applications, Academic Press, 1990
IR&DM, WS'11/12 October 20, 2011 11.36



Reference Tables on Probability Distributions and Statistics (2)

Table 1B. Properties of Some Common Discrete Random Variables Table 2A. Properties of Some Common Continuous Random Variables
Random
Random z-transform Variable Parameters Density f(-)
Variable g[2] E[X] Var[X]
Uniform a<b 5 1 ,a<z<b, O0otherwise
—a
Bernoulli + pz 3
e 2 H Exponential a >0 f(z)=ae @, >0, 0ifx<0
i i i a(az)??
Bigomisl (g +p2) np Lo Gamma Bya>0 f(z) = %lrl" 3 e % >0
0, z<0
Multinomial (p121 + p222 E[X;)= Var[X;] = npig; E(ockg i
+: +prz)" np; Erlang-k k>0 f(z) =4 Ié‘— 4 e~HkT >0
u>0 0, z<0
: N-7r)(N-n &
Hypergeometric — Br nr(N —r)(N —n)
N N%*(N -1) Hi?® G, >0 f() =) quie ™™, z>0
o im1
i
Multivariate Z e = ; 0, z<0
Hypergeometric — — — i=1

2)-1) ,—z/2
Chi-square n >0 f(z) = z(;';/ ;F(n72;/ ,z>0, 0ifz<0

Geometric 1 pqz % _q;
- 2
d Normal c>0 f(x)= WIEF exp (_%%’EL)
Pascal pr(1—g2)7" 0 % Ll(n +1)/2 9\ —(n+1)/2
(nexstive P p Student’st n flz) = %n?[‘_(nz/%)l (1 + %)
binomial) _ (n/m)"/zl"[(n+m)/2]z(("/2)_1) 0
F n,m f(.’E) == F(n/2)F(m/2)(1 + (n/m)x)(n+‘m)/2’ o>
Poisson ex(z-1) a a
3Hyperexponential with k stages.
- — Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory

with Computer Science Applications, Academic Press, 1990
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Reference Tables on Probability Distributions and Statistics (3)

Table 2B. Properties of Some Common Continuous Random Variables A.3 Statistical Tables
Random Laplace-Stieltjes
Variable E[X] Var([X] Transform X*([6] Table 3
3 z e—t’/2
Uniform atb b-a et —g~9¢ The Normal Distribution Functions ®(z2) = / = dt
2 12 8(a — b) -0 V2
Exponential 1 iz‘ L2
a a a+6
B
d g X 0.04 0.0 0.06 0. 0.08 0.
Gamma 8 .% a z 0.00 0.01 0.02  0.03 N 5 ' 6 07 09
a a a+6 0.0 .50000 .50299 .50798 .51197 .51595 .51994 50392 .52790 .53188 .53586
0.1 .53983 .54380 .SW776 .55172 55567 .55962 .56356 .S6749 .S7142 .57535
0.2 57906 .58317 .58706 .59095 .S9UB3 59871 .60257 60642 61026 .61409
0.3 61791 62172 .62552 .62930 .63307 .$3683 .64058 .64431 .64B03 65173
k 0.h 65542 .65910 .66276 .66640 67003 67364 67724 60082 .6BU39 L8793
Erlang-k 1 1 _kp 0.5 .69146 65497 .69847 .70192 L 70540 .7088': .71326 L71566 ._73_902 .732»0
m ku? ku+6 0.6 .72575 .72907 .73237 .73565 .73891 74215 74537 74857 .75175 75490
0.7 .75804 .76115 .7642% ,76730 .77035 77337 .77637 .77935 .78230 .78524
0.8 .78814 .79103 .79389 .79673 .79955 .20234 .80511 .80785 .81057 .81327
0.9 .B159% .B1859 .B2121 .B2381 .82639 82894 .83147 83398 .83646 .83891
k & 1.0 .84134 84375 .Bus1n LE48N9 .BS083 .8531n .85543 85769 BS993 84214
4 1 gi 1 qi i 1.1 .B6433 .B6ASD .86384 87076 .BT2BE .BTHGI ,B7698 .87900 .B8B100 88298
Hy ” 22_2 -3 — 1.2 .88u91 89686 .98R77 89045 .89251 09435 89417 89794 .89973 .F0147
K i=1 Mi M Smito 1.3 .90320 .90u90 .90658 90824 0988 (91149 91308 91466 91621 91774
1k .91924 92073 .92220 92340 92507 92647 92785 .92922 93056 .93189
1.5 .93319 .93N4B .9ISTH . 93LO9 .9IC2T L 9IGNT . O40LD 94179 94295 ,PWu08
1.6 .OUS20 .ON630 .OU7IE LONBNS LPUOS0 95053 .95154 95254 .9SIS2 L 9LUY
n/2 1.7 .95503 .95677 .95728 99818 .95907 95990 96080 .96164 ,F624é 96327
Chi- 2 1 1.8 .96U07 .OHUBS (96562 .94LIE (96712 96784 26856 96926 96995 97062
Wie # L 1+ 20 1.9 .97128 .97193 97057 97320 97381 .97UN1 97500 97558 97615 97670
+ 2.0 .97775 .97778 .97831 97882 .97932 97982 .98030 .98077 .98912u 98169
2.1 .98214 .98257 .98300 .9SIW1 .$BIBD ,9BND2 ,9Bu&1 98500 .TAS3I7 .9B574
2.2 .98410 .9861S .98679 .9RT13 .9874S .93778 .98809 .998u0 .98870 .9P899
2 102 .2 2.3 .92008 ,98956 .9E9B3 .99010 .990I6 .99051 99086 .99111 92134 .99158
Normal K g £Xp (_0/‘_50 ‘7) 2.4 .99180 99207 9922y 99245 99264 99284 99305 79324 9933 99341
2.5 .99379 .99396 99413 99430 .99UUS .FINEL .OINTT .FIUD 99506 99520
2.6 .99534 99547 99560 99573 .99585 99598 994609 99621 99632 90643
2.7 .99653 .996L4 (99674 99683 99697 99702 99711 .97720 .9:759 .9«:;33
’ n ; '8 .9974l 99752 .99740 .997567 99774 .99781 .99788 .09795 .09801 O
Sidetas Qoo 1 2 e B oy ik 3.3 .:9;‘;3' 199819 99875 99831 99834 .99aN1 99844 99851 .9¥BSL .G9B61
"= 3.0 .99865 .99859 (99874 99878 .99L82 99886 .9YBAY 99893 99896 .99900
3.1 .99903 .99906 .99910 99913 99916 99916 .99921 59924 99926 99929
3.2 .99931 99934 99936 99938 .FOON0 .9Pu2 ,99FuL .9PPUL 979UE 99950
2(9n + 2 4 3.3 .99952 99953 .99955 09957 GU958 99960 99961 (99962 .T9TEH 99965
F M _itm>2 Mn'{'$lifm>4 does not exist 3.0 99966 99968 99969 99970 99971 99972 99973 99774 99975 .99976
3
m—2 n(m — 2)%(m — 4) 3.5 90077 99978 .99978 99979 .99980 .99981 .99981 .99982 97983 99983
3.6 99984 .99985 99005 09984 99986 99987 99987 .99988 .99998 .99989
3.7 .99989 .99990 .99090 99990 99991 99991 99992 999D 99992 99992
3.8 0990 .00003 09003 L0909 9GO0 9059 999U 99995 99505 L 99995
4Hyperexponential with k stages. . =1 = -
N . Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory
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Reference Tables on Probability Distributions and Statistics (4)

A.4 The Laplace—Stieltjes Transform Table 11. Laplace Transform Pairs
Table 10. Laplace Transform Properties and Identities® Function Transform
Function Transform 5 g
Lo f(®) fr18) = f5- e~ f(t) dt
Lo 1116 = JiZ e £t dt 2 fH=c 9
2. af(t)+bg(t) af*[0] + bg*[6] 3. " n=1,2.3,- 5'?""_1
3. f(g), a>0 af*[af] L(a+1)
4. t% a>0 )
4. f(t—a)fort>a e~ f*[6) ¢
5. at 1
5. e_atf(t) f'[0+a] € 0_(17 9>a
_df*[8 6. te®t 1 , 6>a
6. tf(t) 7] (6 —a)?
7.t f(t) (—1)"(Ji1‘—fﬂL€1 7. treat . gs4
df (0 - a)n+1
8. [y flwgt—wdu  f[Blg"(6] 86 5(t) 1
0. 4L 8 76 - £(0) 9. é(t-a) em*?
n —af
arf(t) n g n—i p(i—1) 10.7 U(t—a) e”?
0. = B ] =3, e H ) 7
i=1
[ f@)ds £l L ft-aUt-a)  ef)
12. o) a a parameter of’18
da da
SThe Dirac delta function 6(-) is defined by &(t) = 0 for t # 0 but f:j: 6(t —
a)f(t)dt = f(a) for each f and each € > 0.
"The unit step function U(-) is defined by
5All functions f are assumed to be piecewise continuous and of exponential order. Ult—a) = { (1) gz: : ; Z_

That is, there exist positive constants M and a such that |f(t)] < Me3t for t > 0.
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