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Chapter II: Basics from Probability Theory 

and Statistics* 

II.1 Probability Theory 

Events, Probabilities, Random Variables, Distributions, Moment-

Generating Functions, Deviation Bounds, Limit Theorems 

Basics from Information Theory 

 

II.2 Statistical Inference: Sampling and Estimation 

Moment Estimation, Confidence Intervals 

Parameter Estimation, Maximum Likelihood, EM Iteration 

 

II.3 Statistical Inference: Hypothesis Testing and Regression 

Statistical Tests, p-Values, Chi-Square Test 

Linear and Logistic Regression 

*mostly following L. Wasserman, with additions from other sources 
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II.1 Basic Probability Theory 

• Probability Theory 
– Given a data generating process, what are the properties 

  of the outcome? 
 

• Statistical Inference 
– Given the outcome, what can we say about the process that 

generated the data? 

– How can we generalize these observations and make predictions 
about future outcomes? 

 

Data generating 

process 
Observed data 

Probability 

Statistical Inference/Data Mining 
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Sample Spaces and Events 

• A sample space  is a set of all possible outcomes of an experiment. 

 (Elements e in  are called sample outcomes or realizations.) 

• Subsets E of  are called events. 

 

Example 1: 

– If we toss a coin twice, then  = {HH, HT, TH, TT}. 

– The event that the first toss is heads is A = {HH, HT}. 

 

Example 2: 

– Suppose we want to measure the temperature in a room.  

– Let  = R = {-∞, ∞}, i.e., the set of the real numbers. 

– The event that the temperature is between 0 and 23 degrees is A = [0, 23]. 
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Probability 

• A probability space is a triple ( , E, P) with 

– a sample space  of possible outcomes, 

– a set of events E over , 

– and a probability measure P: E  [0,1]. 

 

Example: P[{HH, HT}] = 1/2; P[{HH, HT, TH, TT}] = 1  

 

• Three basic axioms of probability theory: 

Axiom 1: P[A] ≥ 0 (for any event A in E) 

Axiom 2: P[ ] = 1 

Axiom 3: If events A1, A2, … are disjoint, then P[ i Ai] = i P[Ai] 

(for countably many Ai). 
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Probability 
More properties (derived from axioms) 

P[ ] = 0 (null/impossible event) 

P[ ] = 1 (true/certain event, actually not derived but 2nd axiom) 

0 ≤ P[A] ≤ 1 

If A  B then P[A] ≤ P[B] 

P[A] + P[ A] = 1     

P[A  B] = P[A] + P[B] – P[A  B] (inclusion-exclusion principle)           

Notes: 

– E is closed under , , and – with a countable number of operands 

(with finite , usually E=2 ). 

– It is not always possible to assign a probability to every event in E if 

the sample space is large. Instead one may assign probabilities to a 

limited class of sets in E. 
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Venn Diagrams 

Proof of the Inclusion-Exclusion Principle: 

P[A  B]  = P[ (A  B)  (A  B)  ( A  B) ] 

         = P[A  B] + P[A  B] + P[ A  B]  + P[A  B] – P[A  B] 

         = P[(A  B)  (A  B)] + P[( A  B)  (A  B)] – P[A  B] 

         = P[A] + P[B] – P[A  B]  

A 

B 

 

John Venn 

1834-1923 

A  B 
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Independence and Conditional Probabilities 

• Two events A, B of a probability space are independent 

   if P[A  B] = P[A] P[B]. 

• The conditional probability P[A | B] of A under the 

   condition (hypothesis) B is defined as: 

][

][
]|[

BP

BAP
BAP

• A finite set of events A={A1, ..., An} is independent 

  if for every subset S  A the equation  

                             

 

  holds. 

i i
A SA S ii

P[ A ] P[A ]

• An event A is conditionally independent of B given C 

   if P[A | BC] = P[A | C]. 
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Independence vs. Disjointness 

P[A] = P[B] = P[A  B] = P[A  B] Identity 

Disjointness 

P[A  B] = P[A] P[B] Independence 

P[A  B] = 1 – (1 – P[A])(1 – P[B]) 

P[⌐A] = 1 – P[A] Set-Complement 

P[A  B] = 0 

P[A  B] = P[A] + P[B] 
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Murphy’s Law 

 “Anything that can go wrong will go wrong.” 

 

  Set p = 3 accidents / (365 days * 40 years) = 0.00021, then: 
 

    P[failure in 1 day] = 0.00021   

    P[failure in 10 days] = 0.002 

    P[failure in 100 days] = 0.020 

    P[failure in 1000 days] = 0.186 

    P[failure in 365*40 days] = 0.950 

Example: 
•  Assume a power plant has a probability of a    

    failure on any given day of p. 

•  The plant may fail independently on any given  

    day, i.e., the probability of a failure over n days 

    is: P[failure in n days] = 1 – (1 – p)n   
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Birthday Paradox 
In a group of n people, what is the probability that at least 2 people 

have the same birthday? 

 For n = 23, there is already a 50.7% probability of least 2 people 

having the same birthday. 

 

   

Let N denote the event that in a group of n-1 people a newly added person 

does not share a birthday with any other person, then: 

     P[N=1] = 365/365, P[N=2]= 364/365, P[N=3] = 363/365, … 
 

P[N‟=n] = P[at least two birthdays in a group of n people coincide]  

= 1 – P[N=1] P[N=2] … P[N=n-1] = 1 – ∏ k=1,…,n-1 (1 – k/365) 
 

P[N’=1] = 0 

P[N’=10] = 0.117 

P[N’=23] = 0.507 

P[N’=41] = 0.903 

P[N’=366] = 1.0 
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Total Probability and Bayes’ Theorem 

The Law of Total Probability: 

For a partitioning of  into events A1, ..., An: 

Bayes‟ Theorem: 
][

][]|[
]|[

BP

APABP
BAP

P[A|B] is called posterior probability 

P[A] is called prior probability 

Thomas Bayes 

1701-1761 

][]|[][
1

i

n

i

i APABPBP
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How to link sample spaces and events to actual data / observations? 

 

Example: 

   Let’s flip a coin twice, and let X denote the number of heads we 

observe. Then what are the probabilities P[X=0], P[X=1], etc.? 

 

 P[X=0] = P[{TT}] = 1/4 

 P[X=1] = P[{HT, TH}] = 1/4 + 1/4 = 1/2 

 P[X=2] = P[{HH}] = 1/4 

 

What is the probability of P[X=3] ? 

 

Random Variables 

x P(X=x) 

0 1/4 

1 1/2 

2 1/4 

Distribution of X 
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• A random variable (RV) X on the probability space ( , E, P) is a 

  function X:   M with M  R s.t. {e | X(e)  x} E for all x M  

  (X is observable). 

Example: (Discrete RV) 

Let’s flip a coin 10 times, and let X denote the number of heads we observe.  

If e = HHHHHTHHTT, then X(e) = 7. 

 

Example: (Continuous RV) 

Let’s flip a coin 10 times, and let X denote the ratio between heads and tails 

we observe. If e = HHHHHTHHTT, then X(e) = 7/3. 

 

Example: (Boolean RV, special case of a discrete RV) 

Let’s flip a coin twice, and let X denote the event that heads occurs first.  

Then X=1 for {HH, HT}, and X=0 otherwise. 

 

Random Variables 
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Distribution and Density Functions 

Random variables with countable M are called discrete, 

otherwise they are called continuous. 

For discrete random variables, the density function is also 

referred to as the probability mass function. 

 

• FX: M  [0,1] with FX(x) = P[X  x] is the  

   cumulative distribution function (cdf) of X. 

 

• For a countable set M, the function fX: M  [0,1]  

   with fX(x) = P[X = x] is called the probability density function 

   (pdf) of X; in general fX(x) is F’X(x). 

 

• For a random variable X with distribution function F, the inverse 

  function F-1(q) := inf{x | F(x) > q} for q  [0,1] is called quantile 

  function of X. 

  (the 0.5 quantile (aka. “50th percentile”) is called median) 

 

October 20, 2011 II.15 IR&DM, WS'11/12 



Important Discrete Distributions 

nkforpp
k

n
kfkXP knk

X )1()(][

• Binomial distribution (coin toss n times repeated; X: #heads): 

• Poisson distribution (with rate ): 

!
)(][

k
ekfkXP

k

X

mkfor
m

kfkXP X 1
1

)(][

• Uniform distribution over {1, 2, ..., m}: 

• Geometric distribution (X: #coin tosses until first head): 

ppkfkXP k

X )1()(][

• 2-Poisson mixture (with a1+a2=1): 

!k
ea

!k
ea)k(f]kX[P

kk

X
22

2
11

1

• Bernoulli distribution (single coin toss with parameter p; X: head or tail): 

}1,0{)1()(][ 1 kforppkfkXP kk

X
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Important Continuous Distributions 

• Exponential distribution (e.g. time until next event of a Poisson process)  

    with rate  = lim t 0 (# events in t) / t : 

)0(0)( otherwisexforexf x

X

• Uniform distribution in the interval [a,b] 

)0(
1

)( otherwisebxafor
ab

xfX

• Hyper-exponential distribution: 

• Pareto distribution: 

Example of a “heavy-tailed” distribution with 

1x

c
X )x(f

otherwisebxfor
x

b

b

a
xf

a

X 0,)(

1

xx

X epepxf 21

21 )1()(

• Logistic distribution: 

X x

1
F ( x )

1 e
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Theorem: 

Let X be Normal distributed with  

expectation  and variance 2. 

Then                     

is Normal distributed with expectation 0 and variance 1. 

X
:Y

Normal (Gaussian) Distribution 
• Normal distribution N( , 2) (Gauss distribution; 

  approximates sums of independent,  

  identically distributed random variables): 
2

2

2

2

)(

2

1)(

x

X exf

• Normal (cumulative) distribution function N(0,1): 
z x

dxez 2

2

1

2

)(

Carl Friedrich  

Gauss, 1777-1855 
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Multidimensional (Multivariate) Distributions 
Let X1, ..., Xm  be random variables over the same probability space with domains 

dom(X1), ..., dom(Xm).  

 

The joint distribution of X1, ..., Xm has the density function  )...,,( 1...,,1 mXX xxf
m

1)...,,(...
)( )(

1...,,

11

1

Xdomx Xdomx

mXX

mm

m
xxfwith

The marginal distribution of Xi in the joint distribution of X1, ..., Xm has the 

density function 

1 1 1

1
)...,,(...... 1...,,

x x x x

mXX

i i m

m
orxxf

1 1 1

1 1111...,, ......)...,,(......
X X X X

iimmXX
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m
dxdxdxdxxxf

1...),...,(... 11

)(

,...,

)(

1

1

dxdxxxfor mm

Xdom

XX
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m

(discrete case) 

(continuous case) 

(discrete case) 

(continuous case) 
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Multinomial distribution (n, m)  (n trials with m-sided dice): 

Important Multivariate Distributions 

m
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Multidimensional Gaussian distribution (         ): 

with covariance matrix  with ij := Cov(Xi,Xj) 
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(Plots from http://www.mathworks.de/) 
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Expectation Values, Moments & Variance 

For a discrete random variable X with density fX  

Mk

X kfkXE )(][ is the expectation value (mean) of X 

Mk

X

ii kfkXE )(][ is the i-th moment of X 

222 ][][]])[[(][ XEXEXEXEXV is the variance of X 

For a continuous random variable X with density fX  

dxxfxXE X )(][ is the expectation value (mean) of X 

is the i-th moment of X 

222 ][][]])[[(][ XEXEXEXEXV is the variance of X 

dxxfxXE X

ii )(][

Theorem: Expectation values are additive: 
(distributions generally not) 

][][][ YEXEYXE
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Properties of Expectation and Variance 

• Var[aX+b] = a2 Var[X] for constants a, b 

• Var[X1+X2+...+Xn] = Var[X1] + Var[X2] + ... + Var[Xn] 

   if X1, X2, ..., Xn are independent RVs 

• E[aX+b] = aE[X]+b for constants a, b 

• Var[X1+X2+...+XN] = E[N] Var[X] + E[X]2 Var[N]  

  if X1, X2, ..., XN are iid RVs with mean E[X] and variance Var[X]  

  and N is a stopping-time RV 

• E[X1+X2+...+Xn] = E[X1] + E[X2] + ... + E[Xn] 

  (i.e. expectation values are generally additive, but distributions are not!) 

• E[X1+X2+...+XN] = E[N] E[X]  

   if X1, X2, ..., XN are independent and identically distributed (iid) RVs 

   with mean E[X] and N is a stopping-time RV 

• E[XY] = E[X]E[Y] if X and Y are independent 
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Correlation of Random Variables 

Correlation coefficient of Xi and Xj 

)()(

),(
:),(

ji

ji

ji
XVarXVar

XXCov
XX

Covariance of random variables Xi and Xj 

])][])([[(),( jjiiji XEXXEXEXXCov

22 ][][),()( XEXEXXCovXVar iii

Conditional expectation of X given Y=y 

X|Y

X|Y

x f (x | y)
E[X | Y y]

x f (x | y)dx

(discrete case) 

(continuous case) 
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Transformations of Random Variables 
Consider expressions r(X,Y) over RVs, such as X+Y, max(X,Y), etc. 

1. For each z find Az = {(x,y) | r(x,y) z} 

2. Find cdf FZ(z) = P[r(x,y)  z] =  

3. Find pdf fZ(z) = F’Z(z)  

Important case: Sum of independent RVs (non-negative) Z = X+Y 

 

FZ(z) = P[r(x,y)  z] =  

 

 

A X,Yz
f (x, y)dx dy

x y z X Y
y x

f (x)f (y)dx dy

z x z

X Yy 0 x 0
f (x)f (y) dxdy

z

X Yx 0
f (x)F (z x) dx

“Convolution” 

Discrete case: 
Z x y z X Y

x y

F (z) f (x)f (y)

z

0x YX )xz(F)x(f

October 20, 2011 II.24 IR&DM, WS'11/12 



Generating Functions and Transforms 
X, Y, ...: continuous random variables  
                 with non-negative real values  

0

sx sX
X Xf * ( s ) e f ( x )dx E [ e ]

Laplace-Stieltjes transform  (LST) of X  

A, B, ...: discrete random variables with 
                  non-negative integer values  

sx sX
X X

0

M ( s ) e f ( x )dx E [e ] :
i A

A A
i 0

G ( z ) z f ( i ) E[ z ] :

Moment-generating function of X  Generating function of A 
(z transform)  

Examples: 

x
Xf ( x ) e

Xf * ( s )
s

k 1
kx

X

k( kx )
f ( x ) e

( k 1)!

k
X

k
f * ( s )

k s

k

Af ( k ) e
k !

Poisson: 

( z 1 )
AG ( z ) e

Erlang-k: Exponential: 

* s
A A Af ( s ) M ( s ) G ( e )

Laplace-Stieltjes transform of A  
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Properties of Transforms 

z

YXYX dxxzFxfzF
0

)()()(

Convolution of independent random variables: 

)(*)(*)(* sfsfsf YXYX

X Y X YM ( s ) M ( s )M ( s )

A B A BG ( z ) G ( z )G ( z )

k

i

BABA ikFifkF
0

)()()(

(continuous case) (discrete case) 

Many more properties for other transforms, see, e.g.:  
L. Wasserman: All of Statistics 

Arnold O. Allen: Probability, Statistics, and Queueing Theory 
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Given: Inverted lists Li with continuous score 

distributions captured by independent RV’s Si 

Want to predict:  
 

• Consider score intervals [0, highi ] at current scan 

positions in Li, then fi(x) = 1/highi (assuming 

uniform score distributions) 
 

• Convolution S1+S2 is given by 

 
• But each factor is non-zero in 0 ≤ x ≤ high1 and 0 ≤ 

z-x ≤ high2 only (for high1≤ high2), thus 

 

 

 

 

 Cumbersome amount of case differentiations 

i iP S

1 2 1

2 1 2

1 2 1 2

2 1 2

/ ( ) 0

1/
( )

1/ 1/ /( )

x high high for x high

high for high x high
f x

high high x high high

for high x high high

D10:0.8 

 

D7 : 0.8 

 

D21:0.7 

 

high1 

 

… 

 

 

 

 

 

 

 

 

 

 

 

… 
 

D4:1.0 

 

D9 :0.9 

 

D1:0.8 

 

high2 

 

… 

 

 

 

 

 

 

 

D21:0.3 

 

 

 

… 

D6 :0.9 

 

D7 :0.8 

 

D10:0.6 

 

high3 

 

… 

 

 

 

 

D21:0.6 

 

 

 

 

 

 

… 

L1 L2 L3 

 

Use Case: Score prediction for fast Top-k 

Queries [Theobald, Schenkel, Weikum: VLDB’04] 

z

SSSS dxxzFxfzF
0

)()()(
2121
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Use Case: Score prediction for fast Top-k 

Queries 
Given: Inverted lists Li with continuous score 

distributions captured by independent RV’s Si 

Want to predict:  

 

• Instead: Consider the moment-generating function 

for each Si 

 

• For independent Si, the moment of the convolution 

over all Si is given by 

 

• Apply Chernoff-Hoeffding bound on tail distribution 

 

 

 

 Prune D21 if P[S2+S3 > δ] ≤ ε (using δ = 1.4-0.7 and  

a small confidence threshold for ε, e.g., ε=0.05) 

[Theobald, Schenkel, Weikum: VLDB’04] 

i iP S
D10:0.8 

 

D7 : 0.8 

 

D21:0.7 

 

high1 

 

… 

 

 

 

 

 

 

 

 

 

 

 

… 
 

D4:1.0 

 

D9 :0.9 

 

D1:0.8 

 

high2 

 

… 

 

 

 

 

 

 

 

D21:0.3 

 

 

 

… 

D6 :0.9 

 

D7 :0.8 

 

D10:0.6 

 

high3 

 

… 

 

 

 

 

D21:0.6 

 

 

 

 

 

 

… 

L1 L2 L3 

 

( ) ( )iiM s M s

0
( ) ( )

s sSsx i
i iM s e f x dx E e

0inf { ( )}s
i i sP S e M s
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Inequalities and Tail Bounds 

t
XP [ X t ] inf e M ( ) | 0Chernoff-Hoeffding bound: 

Markov inequality: P[X  t]  E[X] / t   for t > 0 and non-neg. RV X 

Chebyshev inequality: P[ |X E[X]|  t]  Var[X] / t2   for t > 0 and non-neg. RV X 

Corollary:  
22nt

i

1
P X p t 2e

n

Mill„s inequality: 

2t / 22 e
P Z t

t

for N(0,1) distr. RV Z  

and t > 0 

for Bernoulli(p) iid. RVs  

X1, ..., Xn and any t > 0 

Jensen‟s inequality:  E[g(X)]  g(E[X]) for convex function g 

   E[g(X)]  g(E[X]) for concave function g 
  (g is convex if for all c [0,1] and x1, x2: g(cx1 + (1-c)x2)  cg(x1) + (1-c)g(x2)) 

Cauchy-Schwarz inequality: 2 2E[XY] E[X ]E[Y ]
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Convergence of Random Variables 
Let X1, X2, ... be a sequence of RVs with cdf’s F1, F2, ..., 

and let X be another RV with cdf F. 
 

• Xn converges to X in probability, Xn P X, if for every  > 0 

   P[|Xn X| > ]  0 as n   

• Xn converges to X in distribution, Xn D X, if  

   lim n   Fn(x) = F(x) at all x for which F is continuous 

• Xn converges to X in quadratic mean, Xn qm X, if  

   E[(Xn X)2]  0 as n   

• Xn converges to X almost surely, Xn as X, if P[Xn X] = 1 

Weak law of large numbers (for                            ) 

if X1, X2, ..., Xn, ... are iid RVs with mean E[X], then  

that is:  

 

Strong law of large numbers: 

if X1, X2, ..., Xn, ... are iid RVs with mean E[X], then 

that is:    

n PX E[X]

n nlim P[| X E[X] | ] 0

n ii 1..nX X / n

n asX E[X]

n nP[lim | X E[X] | ] 0
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Convergence & Approximations 

Theorem: (Binomial converges to Poisson) 

Let X be a random variable with Binomial distribution with 

parameters n and p := λ/n with large n and small constant λ << 1. 

 

Then 

Theorem: (Moivre-Laplace: Binomial converges to Gaussian) 

Let X be a random variable with Binomial distribution with 

parameters n and p. For -∞ < a ≤ b < ∞ it holds that: 

 

 

 

Φ(z) is the Normal distribution function N(0,1); a, b are integers 

 

!
)(lim

k
ekf

k

Xn

)()(]
)1(

[lim abb
ppn

pnX
aPn
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Central Limit Theorem 

Theorem:  

Let X1, ..., Xn be n independent, identically distributed (iid) random 

variables with expectation µ and variance σ2. The distribution 

function Fn of the random variable Zn := X1 + ... + Xn 

converges to a Normal distribution N(nμ, nσ2) with expectation nμ 

and variance nσ2. That is, for -∞ < x ≤ y < ∞ it holds that: 

)()(][lim xyy
n

nZ
xP n

n

Corollary:  

                              converges to a Normal distribution N(μ, σ2/n) 

                   with expectation μ and variance σ2/n . 

n

i
iX

n
:X

1

1
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Elementary Information Theory 

For two prob. distributions f(x) and g(x) the 
relative entropy (Kullback-Leibler divergence) of f to g is: 

2
x

f ( x )
D( f g ) : f ( x )log

g( x )

Let f(x) be the probability (or relative frequency) of the x-th symbol 
in some text d. The entropy of the text  
(or the underlying prob. distribution f) is: 
 
H(d) is a lower bound for the bits per symbol  
needed with optimal coding (compression). 

x xf
xfdH

)(

1
log)()( 2

Relative entropy is a measure for the (dis-)similarity of two probability or 
frequency distributions. It corresponds to the average number of additional bits 
needed for coding information (events) with distribution f when using an 
optimal code for distribution g. 

The cross entropy of f(x) to g(x) is: 

x

xgxfgfDfHgfH )(log)()()(:),(
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Compression 
• Text is sequence of symbols (with specific frequencies) 
• Symbols can be 

• letters or other characters from some alphabet Σ 
• strings of fixed length (e.g. trigrams, “shingles”) 
• or words, bits, syllables, phrases, etc. 

Limits of compression: 

   Let pi be the probability (or relative frequency) 

   of the i-th symbol in text d 

   Then the entropy of the text: 

   is a lower bound for the  

   average number of bits per symbol in any compression (e.g. Huffman codes) 
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Note: 
Compression schemes such as Ziv-Lempel (used in zip) are better because they 
consider context beyond single symbols; with appropriately generalized 
notions of entropy, the lower-bound theorem does still hold. 
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Summary of Section II.1 

• Bayes‟ Theorem: very simple, very powerful 

• RVs as a fundamental, sometimes subtle concept 

• Rich variety of well-studied distribution functions 

• Moments and moment-generating functions capture distributions 

• Tail bounds useful for non-tractable distributions 

• Normal distribution: limit of sum of iid RVs 

• Entropy measures (incl. KL divergence) 

  capture complexity and similarity of prob. distributions 
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Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory  

with Computer Science Applications, Academic Press, 1990 

Reference Tables on Probability Distributions and Statistics (1) 
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Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory  

with Computer Science Applications, Academic Press, 1990 

Reference Tables on Probability Distributions and Statistics (2) 
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Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory  

with Computer Science Applications, Academic Press, 1990 

Reference Tables on Probability Distributions and Statistics (3) 
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Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory  

with Computer Science Applications, Academic Press, 1990 

Reference Tables on Probability Distributions and Statistics (4) 
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