
A statistical model Μ is a set of distributions (or regression 

functions), e.g., all uni-modal, smooth distributions. 

 

Μ is called a parametric model if it can be completely described 

by a finite number of parameters, e.g., the family of Normal 

distributions for a finite number of parameters μ, σ: 

 

II.2 Statistical Inference:  

 Sampling and Estimation 
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Statistical Inference 

Given a parametric model M and a sample X1,...,Xn, 

how do we infer (learn) the parameters of M? 

For multivariate models with observed variable X and 

„outcome (response)“ variable Y, this is called prediction 

or regression, for a discrete outcome variable this is also 

called classification. 

 

r(x) = E[Y | X=x] is called the regression function. 
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Idea of Sampling 

Distribution X 
(e.g., a population,  

objects of interest) 

Samples X1,…,Xn 

drawn from X 
(e.g., people, objects) 

Statistical Inference 
What can we say about X based on 

        X1,…,Xn? 

Example: 
Suppose we want to estimate the average salary of employees in 

   German companies. 

 Sample 1: Suppose we look at n=200 top-paid CEOs of major banks. 

 Sample 2: Suppose we look at n=100 employees across all kinds of companies. 

Distrib. Param.            Sample Param. 

  μX          mean 

          variance       

  N          size    n 

X
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Basic Types of Statistical Inference 

Given a set of iid. samples X1,...,Xn ~ X  

of an unknown distribution X. 
   e.g.: n single-coin-toss experiments X1,...,Xn ~ X: Bernoulli(p) 

 

• Parameter Estimation 
    e.g.: - what is the parameter p of X: Bernoulli(p) ? 

           - what is E[X], the cdf FX of X, the pdf fX of X, etc.? 

 

• Confidence Intervals 
    e.g.: give me all values C=(a,b) such that P(p C) ≥ 0.95 

 where a and b are derived from samples X1,...,Xn  

 

• Hypothesis Testing  
    e.g.:    H0 : p = 1/2     vs.     H1 : p ≠ 1/2 
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Statistical Estimators 
A point estimator for a parameter  of a prob. distribution X is a 

random variable      derived from an iid. sample X1,...,Xn. 
 

Examples: Sample mean: 

Sample variance: 
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An estimator      for parameter  is unbiased 

if E[    ] = ;  

otherwise the estimator has bias E[    ] – . 

An estimator on a sample of size n is consistent 

if 01]|ˆ[|lim anyforP nn

Sample mean and sample variance    
are unbiased and consistent estimators of μX and      . 
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Estimator Error 

Let      be an estimator for parameter  over iid. samples X1, ...,Xn.  

The distribution of       is called the sampling distribution. 

The standard error for      is: 

n
ˆ

n
ˆ

n
ˆ

The mean squared error (MSE) for      is:      n
ˆ

2
n n

ˆ ˆbias ( ) Var[ ]

Theorem:  If bias  0 and se  0 then the estimator is consistent.  

The estimator      is asymptotically Normal if 

                      converges in distribution to standard Normal N(0,1).  
n

ˆ

n
ˆ( ) / se

]ˆ[)ˆ( nn Varse

])ˆ[()ˆ( 2

nn EMSE
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Types of Estimation 

•  Nonparametric Estimation 

No assumptions about model M nor the parameters θ of the 

underlying distribution X 

 “Plug-in estimators” (e.g. histograms) to approximate X 

 

•  Parametric Estimation (Inference) 

Requires assumptions about model M and the parameters θ of 

the underlying distribution X 

Analytical or numerical methods for estimating θ 

Method-of-Moments estimator 

Maximum Likelihood estimator 

  and Expectation Maximization (EM) 
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Nonparametric Estimation 

The empirical distribution function      is the cdf that  

puts probability mass 1/n at each data point Xi: 

nF̂

n
n ii 1

1
F̂ ( x ) I( X x )

n

A statistical functional (“statistics”) T(F) is any function over F, 

e.g., mean, variance, skewness, median, quantiles, correlation. 

The plug-in estimator of  = T(F) is:  n n
ˆ ˆT( F )

xXif

xXif
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 Simply use       instead of F to calculate the statistics T of interest. nF̂
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Histograms as Density Estimators 
Instead of the full empirical distribution, often compact data synopses  

may be used, such as histograms where X1, ...,Xn are grouped into  

m cells (buckets) c1, ..., cm with bucket boundaries lb(ci) and ub(ci) s.t. 
 

lb(c1) = ,  ub(cm ) = ,  ub(ci ) = lb(ci+1 ) for 1  i<m,  and 
 

freqf (ci ) =  
 

freqF (ci ) =  

 

Histograms provide a (discontinuous) density estimator. 

Example: 
X1= 1 

X2= 1 

X3= 2 

X4= 2 

X5= 2 

X6= 3 

… 
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Parametric Inference (1): 
Method of Moments 

Compute  j-th moment: 
 

  

Method-of-moments estimators are usually consistent and 

asymptotically Normal, but may be biased. 

n

i

j

ij X
n 1
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Suppose parameter θ = (θ1,…,θk ) has k components. 

dxxfxXE X

jj

jj )(][)(

j-th sample moment:                               for 1 ≤ j ≤ k  

Estimate parameter  by method-of-moments estimator       s.t.   n
ˆ

and 

… … 

and                                     (for the first k moments) 

11
ˆ)ˆ( n

22
ˆ)ˆ( n

knk
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 Solve equation system with k equations and k unknowns. 
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Parametric Inference (2): 
Maximum Likelihood Estimators (MLE) 

Let X1,...,Xn be iid. with pdf f(x;θ). 
 

Estimate parameter  of a postulated distribution f(x; ) such that 

   the likelihood that the sample values x1,...,xn are generated by 

   this distribution is maximized. 
 

    Maximum likelihood estimation: 

        Maximize L(x1,...,xn; ) ≈ P[x1, ...,xn originate from f(x; )] 

          Usually formulated as  

             Ln( ) = ∏i f(Xi; ) 

          Or (alternatively) 

    Maximize ln( ) = log Ln( ) 

   The value      that maximizes Ln( ) is the MLE of . 
 

 If analytically untractable  use numerical iteration methods 

n
ˆ
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Simple Example for 
Maximum Likelihood Estimator 

Given:  

• Coin toss experiment (Bernoulli distribution) with  

   unknown parameter p for seeing heads, 1-p for tails 

• Sample (data): h times head with n coin tosses 

Want: Maximum likelihood estimation of p 

Let  L(h, n, p) 
 

  with h = ∑i Xi 

hnh
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Maximize log-likelihood function:  

log L (h, n, p)  
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MLE for Parameters  
of Normal Distributions 
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MLE Properties 

Maximum Likelihood estimators are 

consistent, asymptotically Normal, and 

asymptotically optimal (i.e., efficient) in the following sense: 

Consider two estimators U and T which are asymptotically Normal. 

Let u2 and t2 denote the variances of the two Normal distributions 

to which U and T converge in probability. 

The asymptotic relative efficiency of U to T is ARE(U,T) := t2/u2 . 

 

Theorem: For an MLE       and any other estimator 

                the following inequality holds:   
n

ˆ
n

n n
ˆARE( , ) 1

That is, among all estimators MLE has the smallest variance. 
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Bayesian Viewpoint of Parameter Estimation 

• Assume prior distribution g( ) of parameter  

• Choose statistical model (generative model) f (x | )  

   that reflects our beliefs about RV X 

• Given RVs X1,...,Xn for the observed data,  

   the posterior distribution is h (  | x1,...,xn ) 

For X1= x1, ... ,Xn= xn the likelihood is 

 

which implies 

(posterior is proportional to 

 likelihood times prior) 

MAP estimator (maximum a posteriori):  

Compute  that maximizes h(  | x1, …, xn ) given a prior for . 
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Analytically Non-tractable MLE for parameters 
of Multivariate Normal Mixture 
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 Maximize log-likelihood function: 
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Consider samples from a k-mixture of m-dimensional Normal distributions 

with the density (e.g. height and weight of males and females): 
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Expectation-Maximization Method (EM) 

][]|,...[maxargˆ
1 zZPzZXXJ nz

Key idea: 

When L(X1,...,Xn, θ) (where the Xi and  are possibly multivariate) 

is analytically intractable then 

• introduce latent (i.e., hidden, invisible, missing) random variable(s) Z 

  such that 

• the joint distribution J(X1,...,Xn, Z, ) of the “complete” data 

   is tractable (often with Z actually being multivariate: Z1,...,Zm) 

• iteratively derive the expected complete-data likelihood by integrating J 

  and find best : 

EZ|X, [J(X1,…,Xn, Z, )] 
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EM Procedure 

E step (expectation):  

estimate posterior probability of Z:  P[Z | X1,…,Xn, 
(t)]  

assuming  were known and equal to previous estimate (t),  

and compute EZ|X,θ(t) [log J(X1,…,Xn, Z, (t))] 

by integrating over values for Z 

 

Initialization: choose start estimate for (0)  
(e.g., using Method-of-Moments estimator) 

Iterate (t=0, 1, …) until convergence: 

M step (maximization, MLE step):  

Estimate (t+1) by maximizing 
(t+1) = arg maxθ EZ|X,θ[log J(X1,…,Xn, Z, )] 

 Convergence is guaranteed  
       (because the E step computes a lower bound of the true L function,  
        and the M step yields monotonically non-decreasing likelihood),  

    but may result in local maximum of (log-)likelihood function 
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EM Example for Multivariate  

Normal Mixture 

i j ijijijnXZ ZPZxnZXXJE ]1[)1|,(log)],,,...,([log 1,|



Expectation step (E step): 
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0 otherwise 

( t 1)

October 25, 2011 II.19 IR&DM, WS'11/12 

See L. Wasserman, p.121 ff. 
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Confidence Intervals 

Estimator T for an interval for parameter  such that 

For the distribution of random variable X, a value  

x  (0<  <1) with 

is called a -quantile; the 0.5-quantile is called the median. 

For the Normal distribution N(0,1) the -quantile is denoted  . 

1]xX[P]xX[P

1]aTaT[P

[T-a, T+a] is the confidence interval and 1–  is the confidence level. 
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 For a given a or α, find a value z of N(0,1)  

  that denotes the [T-a, T+a] conf. interval 

  or a corresponding -quantile for 1–  . 



Confidence Intervals for Expectations (1) 

Let x1, ..., xn be a sample from a distribution with unknown 

expectation  and known variance 2.  

For sufficiently large n, the sample mean     is N( , 2/n) distributed 

and                     is N(0,1) distributed: 
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Confidence Intervals for Expectations (2) 
Let X1, ..., Xn be an iid. sample from a distribution X with unknown 

expectation  and unknown variance 2  and known sample variance S2. 

For sufficiently large n, the random variable 

S
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Summary of Section II.2 

• Quality measures for statistical estimators 

• Nonparametric vs. parametric estimation 

• Histograms as generic (nonparametric) plug-in estimators 

• Method-of-Moments estimator good initial guess but may be biased 

• Maximum-Likelihood estimator & Expectation Maximization 

• Confidence intervals for parameters 
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Normal Distribution Table 
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Student„s t Distribution Table 
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