Chapter II.3

- 1. Hypothesis testing
- 2. Linear regression
 - 2.1. Regularizers
 - 2.2. Model selection
- 3. Logistic regression
- 4. Summary

Hypothesis testing

- Suppose we throw a coin n times and we want to estimate if the coin is fair, i.e. if Pr(heads) = Pr(tails).
- Let $X_1, X_2, ..., X_n \sim \text{Bernoulli}(p)$ be the i.i.d. coin flips Coin is fair $\Leftrightarrow p = 1/2$
- Let the null hypothesis H_0 be "coin is fair".
- The alternative hypothesis H_1 is then "coin is not fair"
- Intuitively, if $|n^{-l}\sum_i X_i 1/2|$ is large, we should reject the null hypothesis
- But can we formalize this?

Hypothesis testing terminology

- $\theta = \theta_0$ is called simple hypothesis
- $\theta > \theta_0$ or $\theta < \theta_0$ is called composite hypothesis
- H_0 : $\theta = \theta_0$ vs. H_1 : $\theta \neq \theta_0$ is called **two-sided test**
- H_0 : $\theta \le \theta_0$ vs. H_1 : $\theta > \theta_0$ and H_0 : $\theta \ge \theta_0$ vs. H_1 : $\theta < \theta_0$ are called **one-sided tests**
- Rejection region R: if $X \in R$, reject H_0 o/w retain H_0
 - Typically $R = \{x : T(x) > c\}$ where T is a **test statistic** and c is a **critical value**
- Error types:

	Retain H ₀	Reject H ₀
H_0 true	✓	type I error
H_1 true	type II error	✓

The *p*-values

- The p-value is the probability that if H_0 holds, we observe values at least as extreme as the test statistic
 - It is *not* the probability that H_0 holds
 - If p-value is small enough, we can reject H_0
 - -How small is small enough depends on application
- Typical *p*-value scale:

<i>p</i> -value	evidence
< 0.01	very strong evidence against H_0
0.01-0.05	strong evidence against H ₀
0.05-0.1	weak evidence against H_0
> 0.1	little or no evidence against H_0

The Wald test

For two-sided test H_0 : $\theta = \theta_0$ vs. H_1 : $\theta \neq \theta_0$

Test statistic $W = \frac{\hat{\theta} - \theta_0}{\hat{se}}$, where $\hat{\theta}$ is the sample estimate and

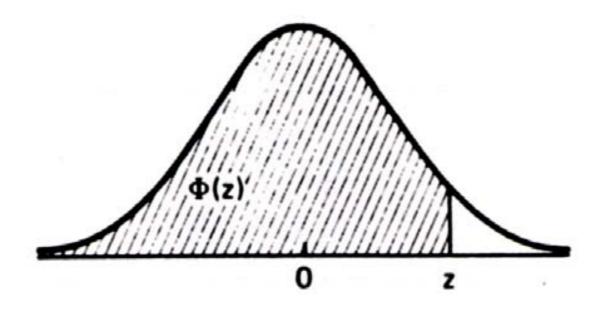
 $\hat{se} = se(\hat{\theta}) = \sqrt{Var[\hat{\theta}]}$ is the standard error.

W converges in probability to N(0,1).

If w is the observed value of Wald statistic, the p-value is $2\Phi(-|w|)$.

The coin-tossing example revisited

Using Wald test we can test if our coin is fair. Suppose the observed average is 0.6 with estimated standard error 0.049. The observed Wald statistic w is now $w = (0.6 - 0.5)/0.049 \approx 2.04$. Therefore the p-value is $2\Phi(-2.04) \approx 0.041$, and we have strong evidence to reject the null hypothesis.



The χ^2 distribution

Let $X_1, X_2, ..., X_n$ be i.i.d. N(0,1) distributed random variables.

The random variable $\chi_n^2 = \sum_{i=1}^n X_i^2$

is χ^2 -distributed with *n* degrees of freedom.

$$f(x) = \frac{x^{(n/2)-1}e^{-x/2}}{2^{n/2}\Gamma(n/2)} \quad \text{for } x > 0$$

$$E[x] = n$$
$$Var[x] = 2n$$

Pearson's χ^2 test for multinomial data

If $X = (X_1, X_2, ..., X_k)$ has Multinomial(n, p) distribution, then MLE of p is $(X_1/n, X_2/n, ..., X_k/n)$. Let $p_0 = (p_{01}, p_{02}, ..., p_{0k})$ and we want to test H_0 : $p = p_0$ vs. H_1 : $p \neq p_0$.

Pearson's χ^2 statistic is

$$T = \sum_{j=1}^{k} \frac{(X_j - np_{0j})^2}{np_{0j}} = \sum_{j=1}^{k} \frac{(X_j - E_j)^2}{E_j}$$

where $E_j = E[X_j] = np_{0j}$ is the expected value of X_j under H_0 .

The *p*-value is $\Pr(\chi_{k-1}^2 > t)$ where *t* is the observed value of *T*.

Extending Pearson to non-multinomial

- Pearson's χ^2 can be used to test the fitness of sample to any distribution (goodness-of-fit test)
- Let $X_1, X_2, ..., X_n$ be the sample and $f(x; \theta)$ some probability distribution with parameters θ
- Divide the possible values of X_i s (under the null hypothesis) into kdisjoint intervals and let Oj be the number of times we see value in
- Compute the theoretical interval frequencies $p_j(\theta) = \int_{I_j} f(x;\theta) dx$ Obtain estimates $\tilde{\theta}$ by maximizing

$$Q(\boldsymbol{\theta}) = \prod_{j=1}^{k} p_{i}(\boldsymbol{\theta})^{O_{j}}$$

• Now the multinomial χ^2 test applies with k-1-s degrees of freedom, where s is the number of parameters in θ

Extending Pearson to test of independence

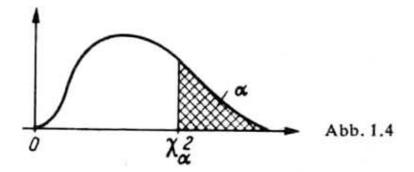
- Pearson's χ^2 can also be used to test the independence of two variables
- Let X_1 , X_2 , ..., X_n and Y_1 , Y_2 , ..., Y_n be two samples
- Divide the outcomes into r (for X_i s) and c disjoint intervals and compute the frequencies
- Populate r-by-c table O with the frequencies (O_{lk} tells how many (X_i , Y_i) pairs have values from rth and cth interval, respectively)
- Assuming independency, the expected value for O_{lk} is

$$E_{lk} = \frac{\sum_{j=1}^{c} O_{lj} \sum_{j=1}^{r} O_{jk}}{\sum_{i=1}^{r} \sum_{j=1}^{c} O_{ij}}$$

- The value of the test statistic is $\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} E_{ij})^2}{E_{ij}}$
- There are (r-1)(c-1) degrees of freedom

χ² distribution table

1.1.2.10. Obere 100α -prozentige Werte χ^2_{α} der χ^2 -Verteilung (s. 5.2.3.)



Anzahl der Freiheits- grade m	Wahrscheinlichkeit $p = \alpha$															
	0,99	0,98	0,95	0,90	0,80	0,70	0,50	0,30	0,20	0,10	0,05	0,02	0,01	0,005	0,002	0,001
1	0,00016	0,0006	0,0039	0,016	0,064	0,148	0,455	1,07	1,64	2,7	3,8	5,4	6,6	7,9	9,5	10,83
2	0,020	0,040	0,103	0,211	0,446	0,713	1,386	2,41	3,22	4,6	6,0	7,8	9,2	10,6	12,4	13,8
3	0,115	0,185	0,352	0,584	1,005	1,424	2,366	3,67	4,64	6,3	7,8	9,8	11,3	12,8	14,8	16,3
4	0,30	0,43	0,71	1,06	1,65	2,19	3,36	4,9	6,0	7,8	9,5	11,7	13,3	14,9	16,9	18,5
5	0,55	0,75	1,14	1,61	2,34	3,00	4,35	6,1	7,3	9,2	11,1	13,4	15,1	16,8	18,9	20,5
6	0,87	1,13	1,63	2,20	3,07	3,83	5,35	7,2	8,6	10,6	12,6	15,0	16,8	18,5	20,7	22,5
7	1,24	1,56	2,17	2,83	3,82	4,67	6,35	8,4	9,8	12,0	14,1	16,6	18,5	20,3	22,6	24,3
8	1,65	2,03	2,73	3,49	4,59	5,53	7,34	9,5	11,0	13,4	15,5	18,2	20,1	22,0	24,3	26,1
9	2,09	2,53	3,32	4,17	5,38	6,39	8,34	10,7	12,2	14,7	16,9	19,7	21,7	23,6	26,1	27,9
10	2,56	3,06	3,94	4,86	6,18	7,27	9,34	11,8	13,4	16,0	18,3	21,2	23,2	25,2	27,7	29,6
11	3,1	3,6	4,6	5,6	7,0	8,1	10,3	12,9	14,6	17,3	19,7	22,6	24,7	26,8	29,4	31,3
12	3,6	4,2	5,2	6,3	7,8	9,0	11,3	14,0	15,8	18,5	21,0	24,1	26,2	28,3	30,9	32,9
13	4,1	4,8	5,9	7,0	8,6	9,9	12,3	15,1	17,0	19,8	22,4	25,5	27,7	29,8	32,5	34,5
14	4,7	5,4	6,6	7,8	9,5	10,8	13,3	16,2	18,2	21,1	23,7	26,9	29,1	31,3	34,0	36,1
15	5,2	6,0	7,3	8,5	10,3	11,7	14,3	17,3	19,3	22,3	25,0	28,3	30,6	32,8	35,6	37,7
16	5,8	6,6	8,0	9,3	11,2	12,6	15,3	18,4	20,5	23,5	26,3	29,6	32,0	34,3	37,1	39,3
17	6,4	7,3	8.7	10,1	12,0	13,5	16,3	19,5	21,6	24,8	27,6	31,0	33,4	35,7	38,6	40,8
18	7,0	7,9	9,4	10,9	12,9	14,4	17,3	20,6	22,8	26,0	28,9	32,3	34,8	37,2	40,1	42,3
19	7,6	8,6	10,1	11,7	13,7	15,4	18,3	21,7	23,9	27,2	30,1	33,7	36,2	38,6	41,6	43,8
20	8,3	9,2	10,9	12,4	14,6	16,3	19,3	22,8	25,0	28,4	31,4	35,0	37,6	40,0	43,0	45,3
21	8,9	9,9	11,6	13,2	15,4	17,2	20,3	23,9	26,2	29,6	32,7	36,3	38,9	41,4	44,5	46,8
22	9,5	10,6	12,3	14,0	16,3	18,1	21,3	24,9	27,3	30,8	33,9	37,7	40,3	42,8	45,9	48,3
23	10,2	11,3	13,1	14,8	17,2	19,0	22,3	26,0	28,4	32,0	35,2	39,0	41,6	44,2	47,3	49,7
24	10,9	12,0	13,8	15,7	18,1	19,9	23,3	27,1	29,6	33,2	36,4	40,3	43,0	45,6	48,7	51,2
25	11,5	12,7	14,6	16,5	18,9	20,9	24,3	28,2	30,7	34,4	37,7	41,6	44,3	46,9	50,1	52,6
26	12,2	13,4	15,4	17,3	19,8	21,8	25,3	29,2	31,8	35,6	38,9	42,9	45,6	48,3	51,6	54,1.
27	12,9	14,1	16,2	18,1	20,7	22,7	26,3	30,3	32,9	36,7	40,1	44,1	47,0	49,6	52,9	55,5
28	13.6	14.8	16.9	18.9	21.6	23.6	27.3	31.4	34.0	37.9	41.3	45,4	48,3	51,0	54.4	56,9

Testing with implicit distribution

- Suppose we have found association rule "diapers" ⇒ "beer" with confidence 0.9
 - -I.e. $\mathbf{E}[\text{"}x \text{ buys beer"} | \text{"}x \text{ buys diapers"}] = 0.9 in the sample$
- Possible explanation: everybody buys beer
 - -Result is not interesting
 - also "vegetables" ⇒ "beer" has high confidence, etc.
 - -Null hypothesis: "Result is due to the fact that (almost) everybody buys beer"
- How can we test that?

Testing "diapers" ⇒ "beer", part 1

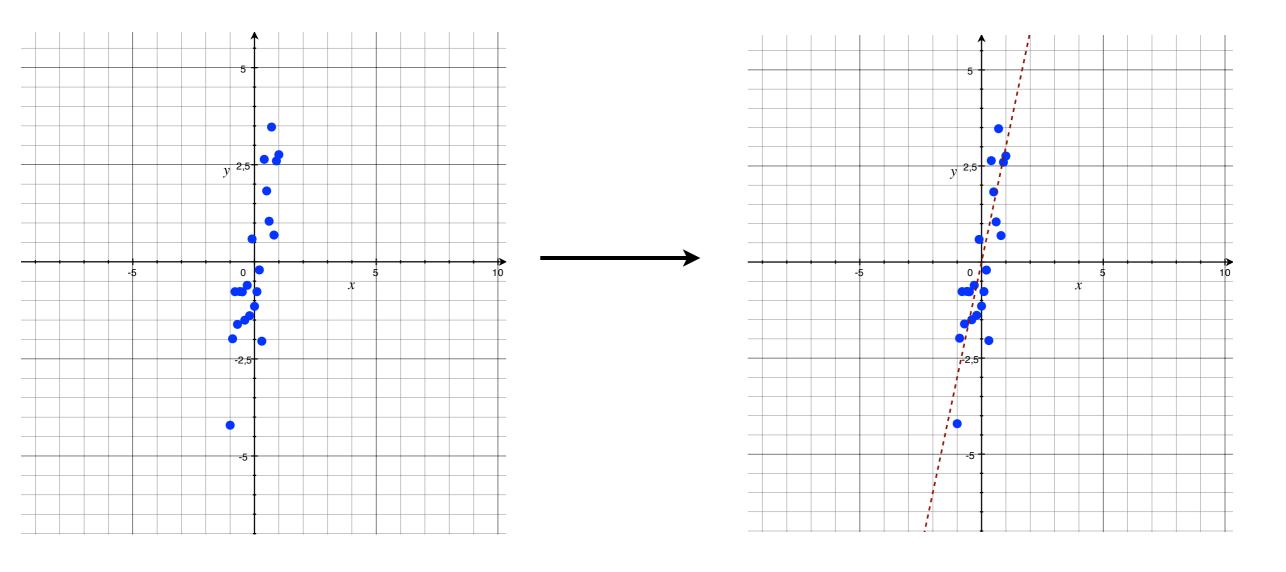
- The idea: generate data sets that have similar properties to the real data, but are random
 - See how good your result is in these random data sets
 - -Let N be the number of data sets and M the number of times the result is at least as good in random data than it is in the real data
 - The empirical p-value is then (M + 1)/(N + 1)
- Independent random data:
 - Data is n-by-m (m items) binary matrix
 - Let c be m-dimensional vector of column margins
 - -Make random matrix (a_{ij}) by sampling $a_{ij} \sim \text{Bernoulli}(c_j)$

Testing "diapers" ⇒ "beer", part 2

- Independent random samples have estimated column margins c
- They do not take into account that some people buy many different things while others buy only few
 - Compute also row margins r
- Let $\mathcal{M}(r, c)$ be a family of 0/1 matrices with row margin r and column margin c
 - Sample u.a.r. from this family and test in that sample
- Problem: how to sample efficiently
 - In this case solution is known (so-called swap randomization)

Linear Regression

• Fit a line to a set of observation points



Intermission: basic linear algebra

A linear combination of n vectors \mathbf{v}_i is $\mathbf{w} = \sum_{i=1}^n \alpha_i \mathbf{v}_i$

A set of vectors $V = \{v_1, v_2, ..., v_n\}$ is *linearly independent* if no vector $v \in V$ can be written as a linear combination of vectors of $V \setminus \{v\}$. Otherwise V is *linearly dependent*.

The vector *inner product* of two vectors is $\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i=1}^{n} v_i w_i$

The vector *outer product* of n- and m-dimensional (row) vectors v and w is n-by-m matrix $v^Tw = (a_{ij})$ where $a_{ij} = v_iw_j$.

IR&DM, WS'11/12 27 October 2011

Intermission: basic linear algebra

The product of *n*-by-*k* matrix *A* and *k*-by-*m* matrix *B* is the *n*-by-*m* matrix (c_{ij}) with $c_{ij} = \sum_{l=1}^{k} a_{il} b_{lj}$.

The column rank of matrix M is the number of linearly independent columns of M. The row rank is the number of linearly independent rows.

Fact. The row and column rank of n-by-m real matrix M are the same and called the rank of M. Hence $rank(M) \le min(n, m)$.

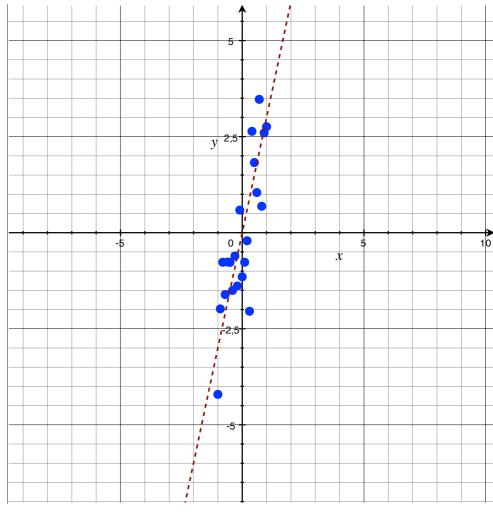
The *inverse* of an *n*-by-*n* square matrix A, if exists, is the unique n-by-n matrix B for which AB = I, where I is the n-by-n identity matrix. The inverse of A is denoted by A^{-1} .

An *n*-by-*n* matrix *A* is *invertible* (i.e. has inverse) iff rank(A) = n.

Single-variable case

- A simple case with one variable
 - -vector y is called the response variables (or regressands)
 - vector x is called the predictor variables (or regressors)
 - -constant β is called the parameter
 - -random variable ε is called the **error**

$$y = \beta x + \varepsilon$$



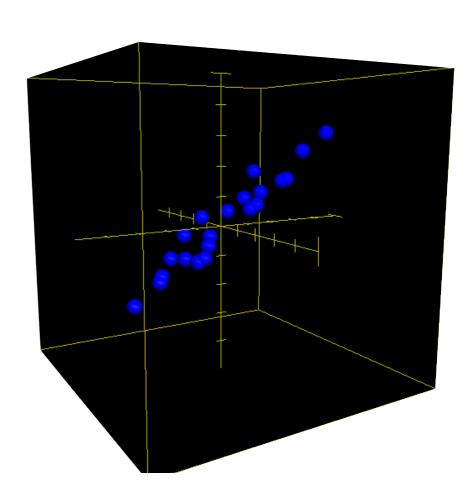
IR&DM, WS'11/12 27 October 2011 II.3-18

Multi-dimensional case

- The regressors are multi-dimensional
- Each regressor is a row of design matrix X
- Parameters form a vector β , and errors form a vector ε
 - -n respond variables and errors, k parameters, X is n-by-k

$$y = X\beta + \varepsilon$$

$$y_i = \sum_{j=1}^k x_{ij} \beta_j + \varepsilon_i$$

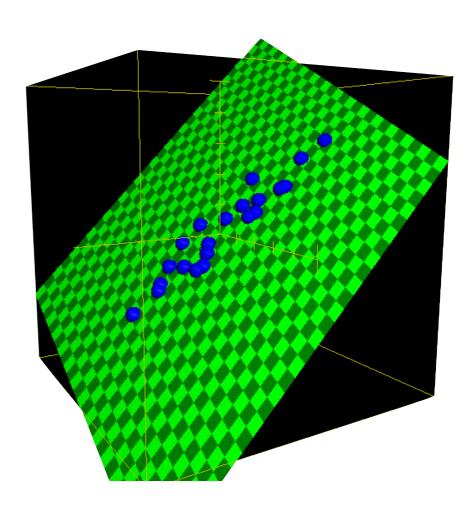


Multi-dimensional case

- The regressors are multi-dimensional
- Each regressor is a row of design matrix X
- Parameters form a vector β , and errors form a vector ε
 - -n respond variables and errors, k parameters, X is n-by-k

$$y = X\beta + \varepsilon$$

$$y_i = \sum_{j=1}^k x_{ij} \beta_j + \varepsilon_i$$



Important assumptions

- The design matrix must have full column rank
 - $-\operatorname{rank}(X) \ge k$
 - $-n \ge k$ is a necessary but not sufficient condition
 - -"There has to be enough data per parameter"
- The i.i.d. errors ε_i are $N(0,\sigma^2)$ distributed
 - With this assumption ordinary least squares matches maximum likelihood estimation
- The assumptions on errors can weakened
 - Uncorrelated only conditional to regressors
 - Mean and variance only conditional to regressors

Ordinary least squares linear regression

Problem. Find β that minimize

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{k} x_{ij} \beta_j \right)^2$$

Solution. Estimate β with

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

The fitted values of y are

$$\hat{y} = X\hat{\beta}$$

Some comments on OLS

- The matrix $X^{\dagger} = (X^TX)^{-1}X^T$ is the *Moore–Penrose* pseudo-inverse of X
 - The full column rank of X is required for (X^TX) to be invertible (HW)
 - Alternatively, the full column rank guarantees unique solutions
- Fact: The Moore–Penrose pseudo-inverse is the least-squares solution to linear program $y = X\beta$
 - -I.e. setting $\beta = X^{\dagger}y$ minimizes the squared error, as supposed
 - If X is invertible, $X^{\dagger} = X^{-1}$, as supposed (HW)

The intercept

- So far we have considered through-the-origin regression
 - The fitted line crosses the origin
- Usually we add an *intercept* β_0

$$y_i = \sum_{j=1}^k x_{ij} \beta_j + \beta_0 + \varepsilon_i$$

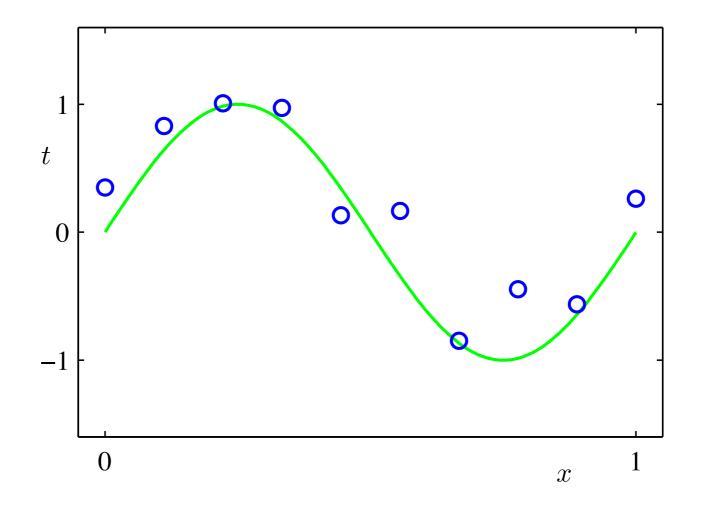
• To simplify notation, this is done by adding an extra column full of 1s to X

$$y_i = \sum_{j=0}^{k} x_{ij} \beta_j + \varepsilon_i$$
 where $x_{i0} = 1$ for all i

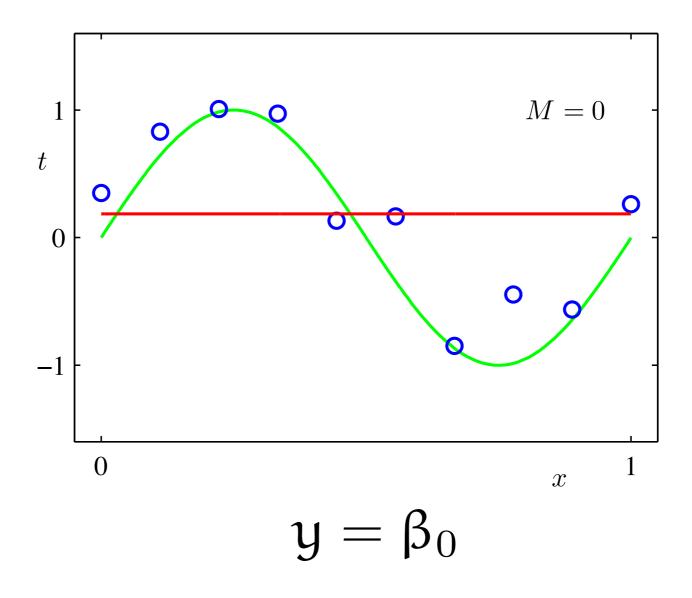
Non-linear regressors

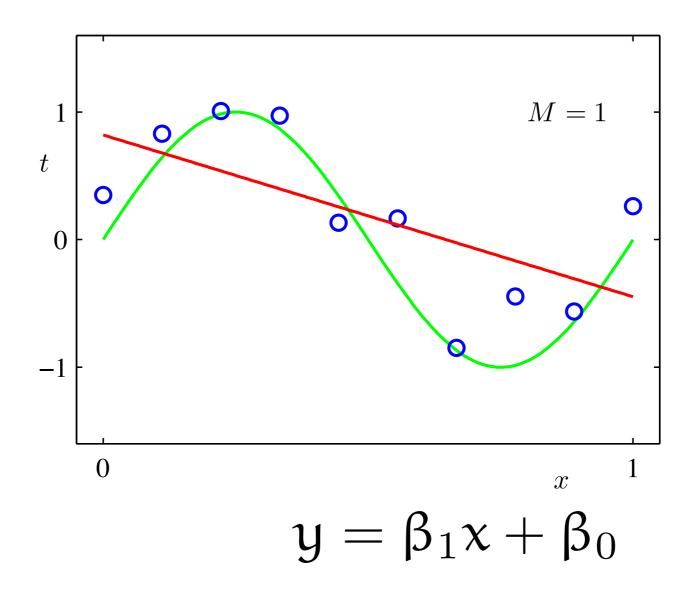
- The all-linear model is very restrictive
- The regressors x can be non-linear
 - But the response variables y must be linear combination of regressors
 - An example: polynomial of degree M

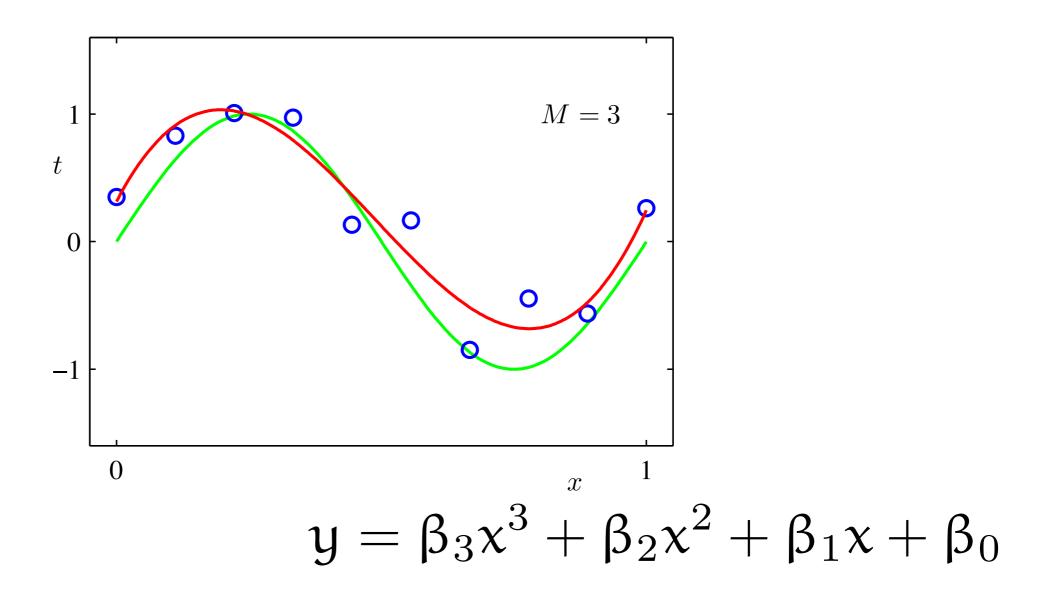
$$y_i = \sum_{d=0}^{M} x_i^d \beta_d + \varepsilon_i$$

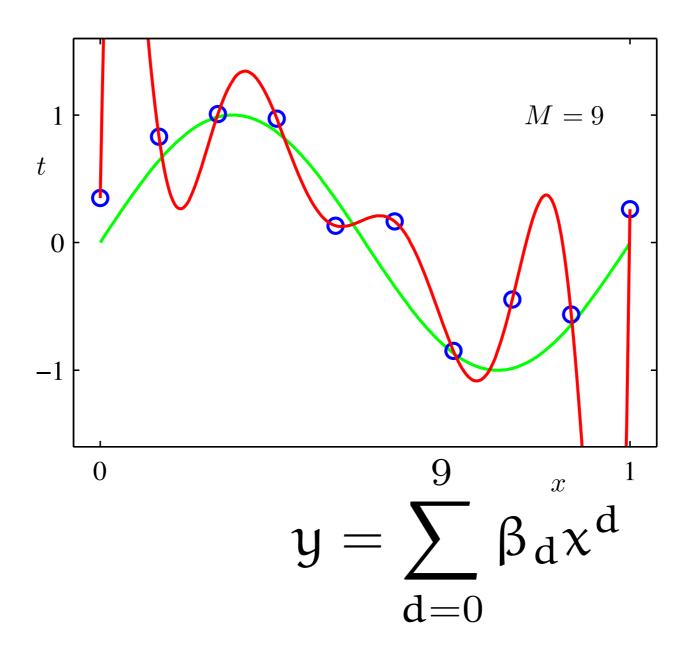


N=10 data points and $\sin(2\pi x)$







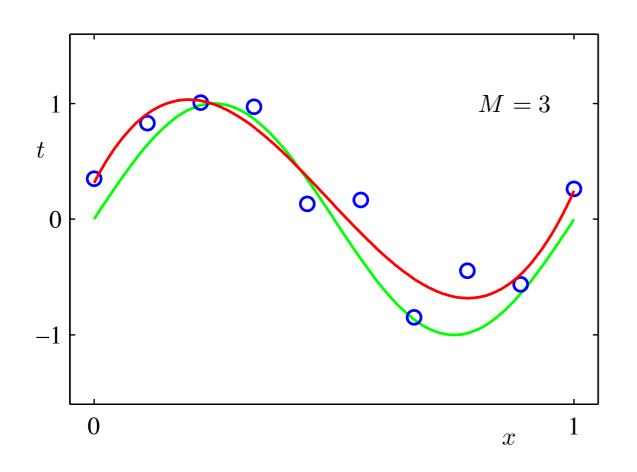


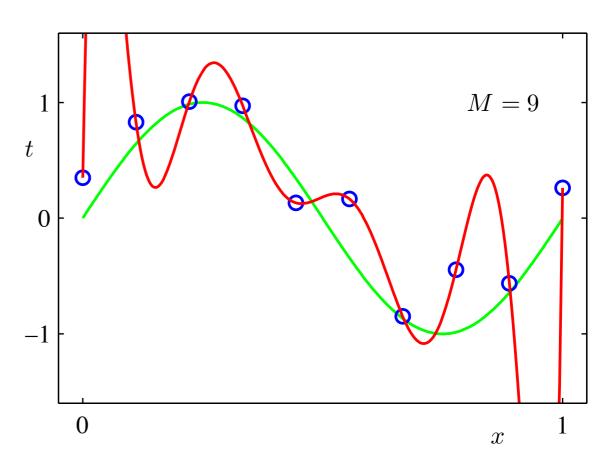
Non-linear regressors (cont'd)

- In general we have k+1 basis functions $\varphi_j(x)$
 - $-\varphi_0$ is constant $(\varphi_0(x) = 1)$ for the intercept
 - In the previous example, $\varphi_j(x) = x^j$
 - -Other basis functions are possible
- The design matrix X is replaced with Φ :

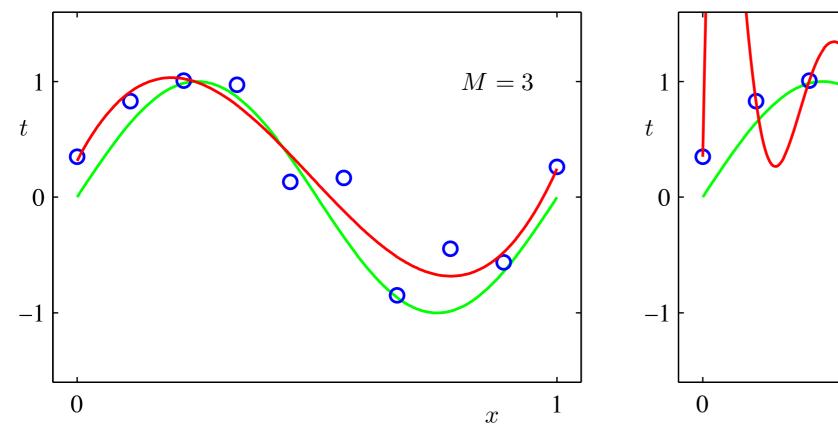
$$\mathbf{\Phi} = \begin{pmatrix} \varphi_0(\mathbf{x}_1) & \varphi_1(\mathbf{x}_1) & \cdots & \varphi_k(\mathbf{x}_1) \\ \varphi_0(\mathbf{x}_2) & \varphi_1(\mathbf{x}_2) & \cdots & \varphi_k(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_0(\mathbf{x}_n) & \varphi_1(\mathbf{x}_n) & \cdots & \varphi_k(\mathbf{x}_n) \end{pmatrix}$$

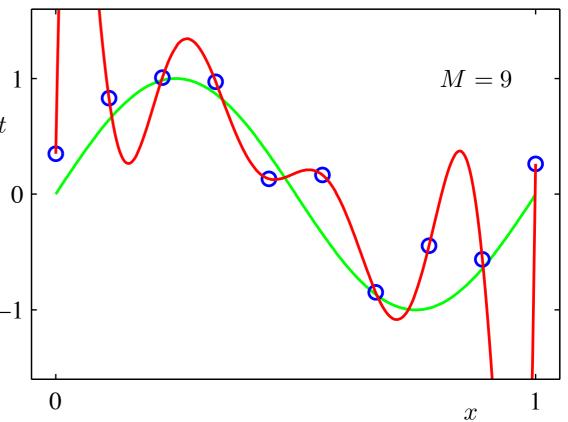
• Which of the two models fit the data better?





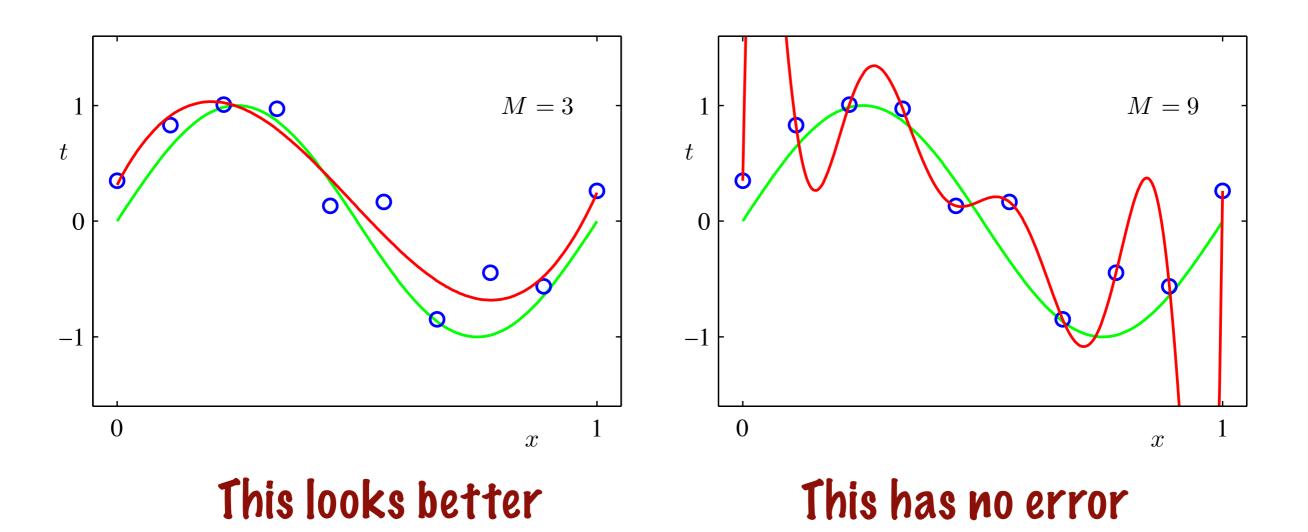
• Which of the two models fit the data better?





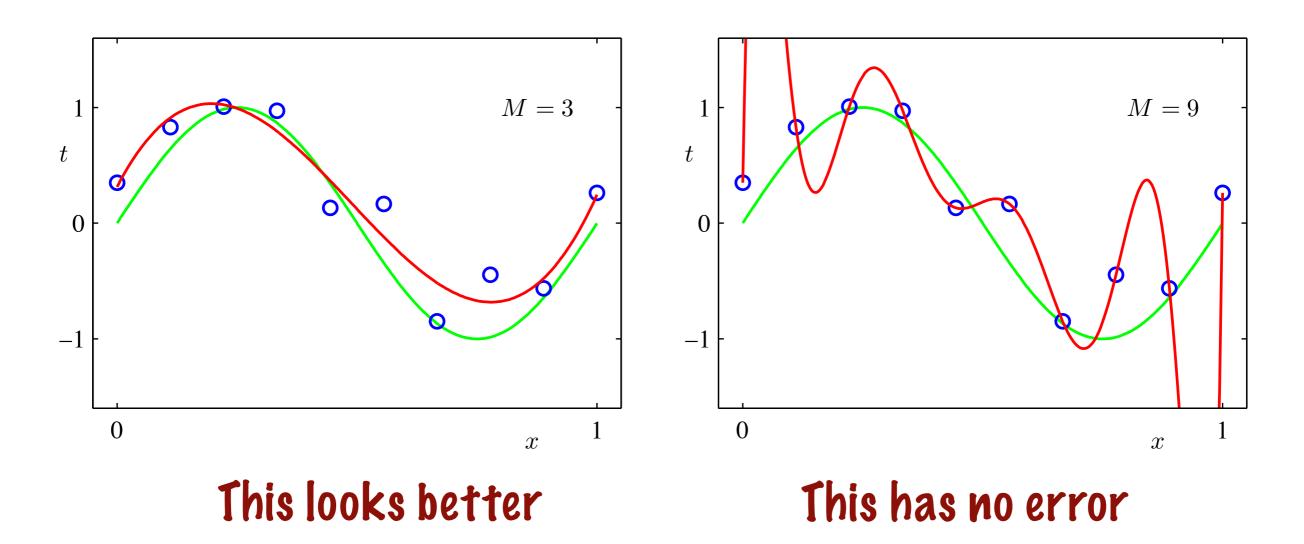
This looks better

• Which of the two models fit the data better?



IR&DM, WS'11/12 27 October 2011

• Which of the two models fit the data better?

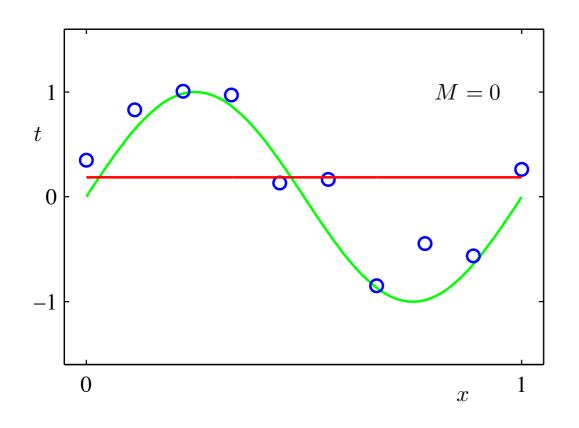


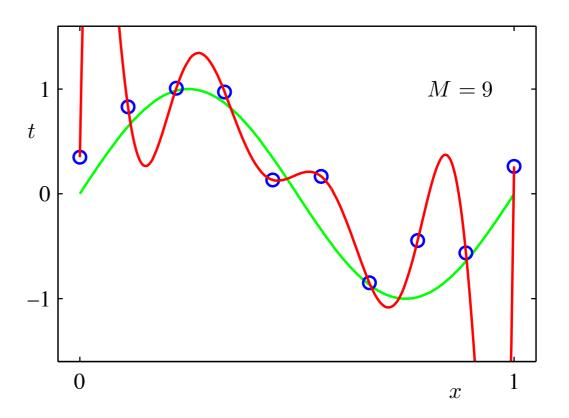
• Can we formalize why we think left is better?

Two roles of regression

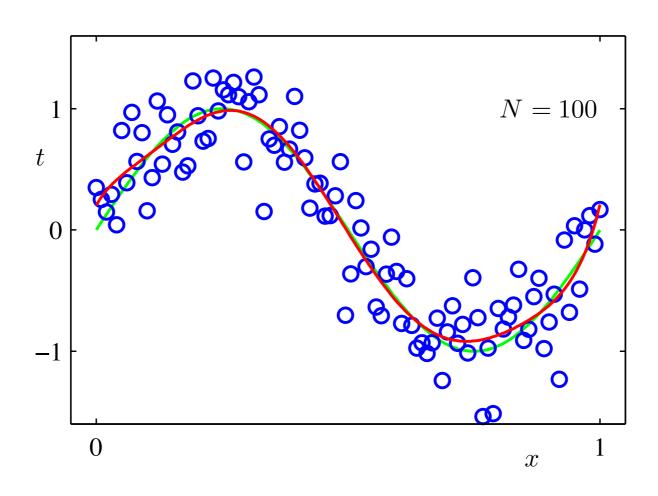
- We can approach regression either as
 - descriptive method explaining the data
 - predictive method allowing us to make predictions of future data
- For predicting, we need to combat against underfitting and over-fitting
 - Under-fit model gives poor predictions because it doesn't model the process well
 - Over-fit model gives poor predictions because it models also the error

Example of under- and over-fitting





More data allows complex models



Polynomial of degree 9 fitted to N = 100 data points

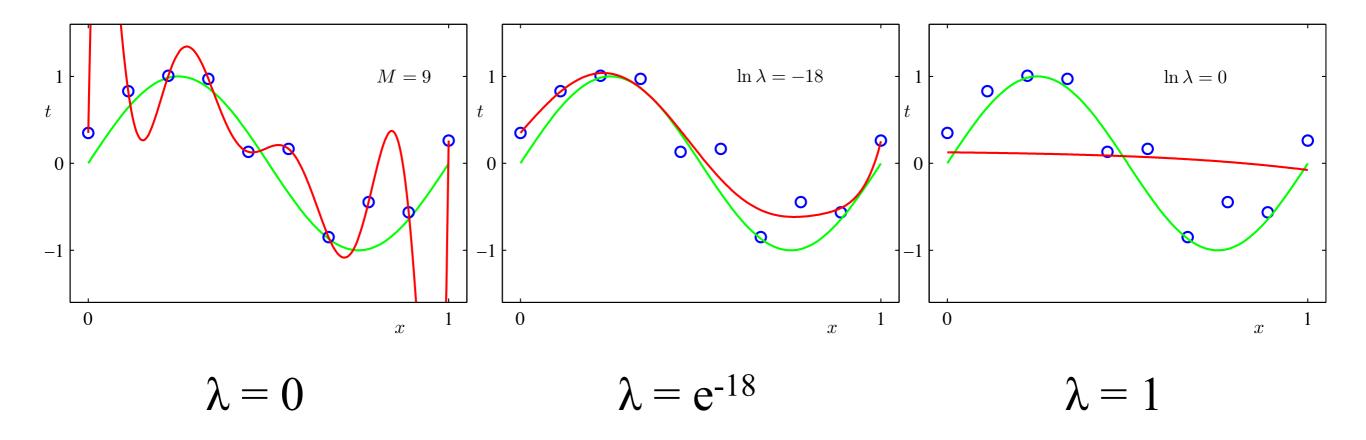
Regularizers

- Selecting the model based on data size does not sound good
- A regularizer penalizes on too complex models

$$\begin{aligned} & \|\mathbf{y} - \mathbf{\Phi}\mathbf{\beta}\|^{2} + \lambda \|(\beta_{j})_{j=1}^{k}\|^{2} \\ &= \sum_{i=1}^{n} \left(y_{i} - \sum_{j=0}^{k} \varphi_{j}(x_{i})\beta_{j} \right)^{2} + \lambda \sum_{j=1}^{k} \beta_{j}^{2} \end{aligned}$$

- Variable λ is called regularization parameter
- Intercept is not included in regularization

An example



More on regularizers

- In statistics, regularizers are called shrinkage methods
- Regression with quadratic regularizer is also known as *ridge regression*
- Quadratic (L^2) regularizer keeps the loss function quadratic
- The sum-of-absolute-values regularizer $\lambda \sum |\beta_i|$ is known as *lasso* or L^1 regularizer
 - With sufficiently large λ this forces some β_i s to 0

Model selection

- How do we select λ ?
- The goal is prediction, so test which λ predicts best
 - -Divide data to training data and test data
 - E.g. y_i and x_i for i = 1..n-1 are training data and y_n and x_n are test data
 - Learn βs with training data
 - Measure the error with training and test data
 - Repeat with other values of λ and select the one with least over-all error

S-fold cross validation

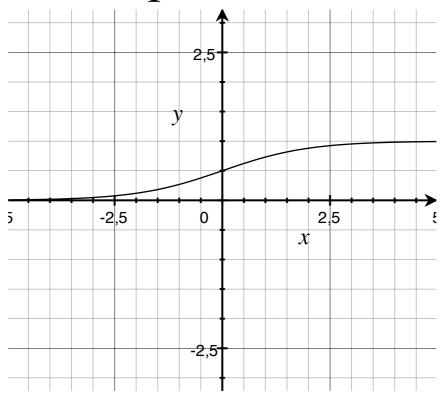
- Divide data to S subsets
- Use S-1 of these subsets as training data and the last subset as test data
- Repeat S times with different subset being the test data
- Average errors over different runs and select the best

Logistic Regression

- Actually classification
- Response variables $y_i \in \{0,1\}$
- Name comes from the logistic function

$$f(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

– The logistic function maps values from $(-\infty,\infty)$ to (0,1)



Logistic regression

Given k-dimensional regressors X_i , we estimate y_i as

$$\hat{y}_{i} = \frac{e^{\beta_{0} + \sum_{j=1}^{k} \beta_{j} x_{ij}}}{1 + e^{\beta_{0} + \sum_{j=1}^{k} \beta_{j} x_{ij}}}$$

or, equivalently

$$logit(\hat{y}_i) = \beta_0 + \sum_{j=1}^k \beta_j x_{ij}$$

where

$$logit(x) = ln\left(\frac{x}{1-x}\right)$$

Notes on logistic regression

- No analytic solution to β
- Finding β needs to use numerical methods
 - Fast method called Iterative Re-Weighted Least Squares is often used
- Logistic function is also known as sigmoid function
- Similar to linear regression, we can apply fixed non-linear basis functions ϕ to X
- Other classification methods will be discussed later in the course

Summary of Chapter 2.3

- Hypothesis testing can be used to test if sample has certain properties
 - same mean, same parameters, goodness-of-fit, etc.
- Linear regression fits linear function of regressors to response variables
- We can combat over-fitting using regularizers
 - -Regularizer parameter needs to be selected
- Logistic regression takes the logistic function of linear combination of regressors to classify response variables