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Chapter II.3
1. Hypothesis testing
2. Linear regression

2.1. Regularizers
2.2. Model selection

3. Logistic regression
4. Summary
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Hypothesis testing
• Suppose we throw a coin n times and we want to 

estimate if the coin is fair, i.e. if Pr(heads) = Pr(tails).
• Let X1, X2, …, Xn ~ Bernoulli(p) be the i.i.d. coin flips
–Coin is fair ⇔ p = 1/2

• Let the null hypothesis H0 be “coin is fair”.
• The alternative hypothesis H1 is then “coin is not 

fair”
• Intuitively, if |n-1∑i Xi - 1/2| is large, we should reject 

the null hypothesis
• But can we formalize this?
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Hypothesis testing terminology
• θ = θ0 is called simple hypothesis
• θ > θ0 or θ < θ0 is called composite hypothesis
• H0: θ = θ0 vs. H1: θ ≠ θ0 is called two-sided test
• H0: θ ≤ θ0 vs. H1: θ > θ0 and H0: θ ≥ θ0 vs. H1: θ < θ0 

are called one-sided tests
• Rejection region R: if X ∈ R, reject H0 o/w retain H0 
–Typically R = {x : T(x) > c} where T is a test statistic and c 

is a critical value 
• Error types:
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Statistical Hypothesis Testing
A hypothesis test determines a probability 1-
(test level , significance level) that a sample X1, ..., Xn
from some unknown probability distribution has a certain property.
Examples:
1) The sample originates from a normal distribution.
2) Under the assumption of a normal distribution

the sample originates from a N( , 2) distribution.
3) Two random variables are independent.
4) Two random variables are identically distributed.
5) Parameter of a Poisson distribution from which the sample stems has value 5.
6) Parameter p of a Bernoulli distribution from which the sample stems has value 0.5.

General form:
null hypothesis H0 vs. alternative hypothesis H1

needs test variable X (derived from X1, ..., Xn, H0, H1) and
test region R with
X R for rejecting H0 and 
X R for retaining H0

Retain H0 Reject H0
H0 true type I error
H1 true type II error
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The p-values
• The p-value is the probability that if H0 holds, we 

observe values at least as extreme as the test statistic
– It is not the probability that H0 holds
– If p-value is small enough, we can reject H0 
–How small is small enough depends on application

• Typical p-value scale:
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p-­‐value evidence

<	
  0.01 very	
  strong	
  evidence	
  against	
  H0

0.01–0.05 strong	
  evidence	
  against	
  H0

0.05–0.1 weak	
  evidence	
  against	
  H0

>	
  0.1 li9le	
  or	
  no	
  evidence	
  against	
  H0
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The Wald test
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For two-sided test H0: θ = θ0 vs. H1: θ ≠ θ0 

W =
θ̂− θ0
ŝe

θ̂

ŝe = se(θ̂) =
�

Var[θ̂]

Test statistic , where is the sample estimate and

is the standard error.

W converges in probability to N(0,1).

If w is the observed value of Wald statistic, the p-value is 2Φ(-|w|).
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The coin-tossing example revisited
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Using Wald test we can test if our coin is fair. Suppose the 
observed average is 0.6 with estimated standard error 0.049. The 
observed Wald statistic w is now w = (0.6 - 0.5)/0.049 ≈ 2.04. 
Therefore the p-value is 2Φ(-2.04) ≈ 0.041, and we have strong 
evidence to reject the null hypothesis.
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Normal Distribution Table



f(x) =
x(n/2)−1e−x/2

2n/2Γ(n/2)
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The χ2 distribution
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Let X1, X2, …, Xn be i.i.d. N(0,1) distributed random variables.

χ2
n =

�n
i=1 X

2
iThe random variable

is χ2-distributed with n degrees of freedom.

for x > 0

E[x] = n
Var[x] = 2n



T =
k�

j=1

(Xj − np0j)2

np0j
=

k�

j=1

(Xj − Ej)2

Ej
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Pearson’s χ2 test for multinomial data
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If X = (X1, X2, ..., Xk) has Multinomial(n, p) distribution, then MLE 
of p is (X1/n, X2/n, ..., Xk/n). Let p0 = (p01, p02, ..., p0k) and we want 
to test H0: p = p0 vs. H1: p ≠ p0 .

Pearson’s χ2 statistic is

where Ej = E[Xj] = np0j is the expected value of Xj under H0.

Pr(χ2
k−1 > t)The p-value is where t is the observed value of T.



•Pearson’s χ2 can be used to test the fitness of sample to any 
distribution (goodness-of-fit test)

•Let X1, X2, ..., Xn be the sample and f(x; θ) some probability 
distribution with parameters θ

•Divide the possible values of Xis (under the null hypothesis) into k 
disjoint intervals and let Oj be the number of times we see value in 
interval Ij

•Compute the theoretical interval frequencies
•Obtain estimates     by maximizing

•Now the multinomial χ2 test applies with k–1–s degrees of 
freedom, where s is the number of parameters in θ

pj(θ) =

�

Ij

f(x;θ)dx

Q(θ) =
�

k

j=1 pi(θ)Oj
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Extending Pearson to non-multinomial
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θ̃



•Pearson’s χ2 can also be used to test the independence of two 
variables

•Let X1, X2, ..., Xn and Y1, Y2, ..., Yn be two samples 
•Divide the outcomes into r (for Xis) and c disjoint intervals and 

compute the frequencies 
•Populate r-by-c table O with the frequencies (Olk tells how many 

(Xi, Yi) pairs have values from rth and cth interval, respectively)
•Assuming independency, the expected value for Olk is

•The value of the test statistic is

•There are (r–1)(c–1) degrees of freedom

Elk =

�c
j=1 Olj

�r
j=1 Ojk�r

i=1

�c
j=1 Oij

χ
2 =

r�

i=1

c�

j=1

(Oij − Eij)2

Eij
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Extending Pearson to test of independence
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χ2 distribution table
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Chi-Square Distribution Table
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Testing with implicit distribution

12

• Suppose we have found association rule 
“diapers” ⇒ “beer” with confidence 0.9
– I.e. E[“x buys beer” | “x buys diapers”] = 0.9 in the sample

• Possible explanation: everybody buys beer
–Result is not interesting 
• also “vegetables” ⇒ “beer” has high confidence, etc.

–Null hypothesis: “Result is due to the fact that (almost) 
everybody buys beer”

• How can we test that? 
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Testing “diapers” ⇒ “beer”, part 1
• The idea: generate data sets that have similar 

properties to the real data, but are random
– See how good your result is in these random data sets
–Let N be the number of data sets and M the number of times 

the result is at least as good in random data than it is in the 
real data
–The empirical p-value is then (M + 1)/(N +1)

• Independent random data:
–Data is n-by-m (m items) binary matrix
–Let c be m-dimensional vector of column margins
–Make random matrix (aij) by sampling aij ~ Bernoulli(cj)

13
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Testing “diapers” ⇒ “beer”, part 2
• Independent random samples have estimated column 

margins c
• They do not take into account that some people buy 

many different things while others buy only few
–Compute also row margins r

• Let M(r, c) be a family of 0/1 matrices with row 
margin r and column margin c
– Sample u.a.r. from this family and test in that sample

• Problem: how to sample efficiently
– In this case solution is known (so-called swap randomization)

14
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Linear Regression

15

• Fit a line to a set of observation points
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Intermission: basic linear algebra

16

A set of vectors V = {v1, v2, …, vn} is linearly independent if no 
vector v ∈ V can be written as a linear combination of vectors 
of V\{v}. Otherwise V is linearly dependent.

w =
�n

i=1 αiviA linear combination of n vectors vi is 

�v,w� =
�n

i=1 viwiThe vector inner product of two vectors is

The vector outer product of n- and m-dimensional (row) vectors v 
and w is n-by-m matrix vTw = (aij) where aij = viwj.
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Intermission: basic linear algebra

17

The column rank of matrix M is the number of linearly independent 
columns of M. The row rank is the number of linearly independent 
rows. 

Fact. The row and column rank of n-by-m real matrix M are the 
same and called the rank of M. Hence rank(M) ≤ min(n, m).

The inverse of an n-by-n square matrix A, if exists, is the unique 
n-by-n matrix B for which AB = I, where I is the n-by-n identity 
matrix. The inverse of A is denoted by A-1.

The product of n-by-k matrix A and k-by-m matrix B is the n-by-m 
matrix (cij) with cij =

�k
l=1 ailblj.

An n-by-n matrix A is invertible (i.e. has inverse) iff rank(A) = n.
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Single-variable case
• A simple case with one variable
– vector y is called the response variables (or regressands)
– vector x is called the predictor variables (or regressors)
– constant β is called the parameter
– random variable ε is called the error

18

y = βx+ ε
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Multi-dimensional case
• The regressors are multi-dimensional 
• Each regressor is a row of design matrix X
• Parameters form a vector β, and errors form a vector ε
– n respond variables and errors, k parameters, X is n-by-k

19

y = Xβ+ ε

yi =
k�

j=1

xijβj + εi
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Important assumptions
• The design matrix must have full column rank
– rank(X) ≥ k
– n ≥ k is a necessary but not sufficient condition
– “There has to be enough data per parameter”

• The i.i.d. errors εi are N(0,σ2) distributed
–With this assumption ordinary least squares matches 

maximum likelihood estimation
• The assumptions on errors can weakened
–Uncorrelated only conditional to regressors
–Mean and variance only conditional to regressors 

20



�y− Xβ�2 =
n�

i=1

�
yi −

k�

j=1

xijβj

�2

β̂ = (XTX)−1XTy

ŷ = Xβ̂
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Ordinary least squares linear regression

21

Problem. Find β that minimize

Solution. Estimate β with

The fitted values of y are
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Some comments on OLS

22

• The matrix X† = (XTX)-1XT is the Moore–Penrose 
pseudo-inverse of X
–The full column rank of X is required for (XTX) to be 

invertible (HW)
–Alternatively, the full column rank guarantees unique 

solutions
• Fact: The Moore–Penrose pseudo-inverse is the least-

squares solution to linear program y = Xβ
– I.e. setting β = X†y minimizes the squared error, as supposed
– If X is invertible, X† = X-1, as supposed (HW)



yi =
k�

j=0

xijβj + εi
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The intercept

23

yi =
k�

j=1

xijβj + β0 + εi

• So far we have considered through-the-origin 
regression
–The fitted line crosses the origin

• Usually we add an intercept β0 

• To simplify notation, this is done by adding an 
extra column full of 1s to X 

where xi0 = 1 for all i
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Non-linear regressors
• The all-linear model is very restrictive
• The regressors x can be non-linear
–But the response variables y must be linear combination of 

regressors 
–An example: polynomial of degree M

24

yi =
M�

d=0

xdi βd + εi
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Example: fitting sin(2πx)

25

Example and images by Bishop (Chapter 1)

x

t
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−1
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N=10 data points and sin(2πx)
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Example: fitting sin(2πx)
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Example and images by Bishop (Chapter 1)
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Example: fitting sin(2πx)
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Example and images by Bishop (Chapter 1)
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Example: fitting sin(2πx)

25

Example and images by Bishop (Chapter 1)
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Example: fitting sin(2πx)

25

Example and images by Bishop (Chapter 1)
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Non-linear regressors (cont’d)

26

• In general we have k+1 basis functions ϕj(x)
–ϕ0 is constant (ϕ0(x) = 1) for the intercept
– In the previous example, ϕj(x) = xj

–Other basis functions are possible
• The design matrix X is replaced with Φ:

Φ =





ϕ0(x1) ϕ1(x1) · · · ϕk(x1)
ϕ0(x2) ϕ1(x2) · · · ϕk(x2)

...
...

. . .
...

ϕ0(xn) ϕ1(xn) · · · ϕk(xn)




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Regularization
• Which of the two models fit the data better?
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Regularization
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Regularization
• Which of the two models fit the data better?
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• Can we formalize why we think left is better?
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Two roles of regression
• We can approach regression either as
– descriptive method explaining the data
– predictive method allowing us to make predictions of future 

data
• For predicting, we need to combat against under-

fitting and over-fitting 
–Under-fit model gives poor predictions because it doesn’t 

model the process well
–Over-fit model gives poor predictions because it models 

also the error

28
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Example of under- and over-fitting
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More data allows complex models

30

Polynomial of degree 9 fitted to N = 100 data points



�y−Φβ�2 + λ
��(βj)

k
j=1

��2

=
n�

i=1

�
yi −

k�

j=0

ϕj(xi)βj

�2
+ λ

k�

j=1

β2
j
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Regularizers 

31

• Selecting the model based on data size does not sound 
good
• A regularizer penalizes on too complex models

• Variable λ is called regularization parameter
• Intercept is not included in regularization
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An example

32

λ = 0 λ = e-18 λ = 1
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More on regularizers
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• In statistics, regularizers are called shrinkage methods
• Regression with quadratic regularizer is also known 

as ridge regression
• Quadratic (L2) regularizer keeps the loss function 

quadratic
• The sum-of-absolute-values regularizer λ∑|βi| is 

known as lasso or L1 regularizer
–With sufficiently large λ this forces some βis to 0
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Model selection
• How do we select λ?
• The goal is prediction, so test which λ predicts best
–Divide data to training data and test data
•E.g. yi and xi for i = 1..n-1 are training data and yn and xn are test 

data
–Learn βs with training data
–Measure the error with training and test data
–Repeat with other values of λ and select the one with least 

over-all error 

34
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S-fold cross validation

35

• Divide data to S subsets
• Use S-1 of these subsets as training data and the last 

subset as test data
• Repeat S times with different subset being the test 

data
• Average errors over different runs and select the best
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Logistic Regression

36

• Actually classification
• Response variables yi ∈ {0,1}
• Name comes from the logistic function

–The logistic function maps values from (–∞,∞) to (0,1)

f(x) =
ex

1+ ex
=

1

1+ e−x

-5 -2,5 0 2,5 5

-2,5

2,5



logit(ŷi) = β0 +
k�

j=1

βjxij

logit(x) = ln

�
x

1− x

�

ŷi =
eβ0+

�k
j=1 βjxij

1+ eβ0+
�k

j=1 βjxij
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Logistic regression
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Given k-dimensional regressors Xi, we estimate yi as

or, equivalently

where



27 October 2011IR&DM, WS'11/12 II.3-

Notes on logistic regression
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• No analytic solution to β
• Finding β needs to use numerical methods
– Fast method called Iterative Re-Weighted Least Squares is 

often used
• Logistic function is also known as sigmoid function
• Similar to linear regression, we can apply fixed non-

linear basis functions ϕ to X
• Other classification methods will be discussed later in 

the course
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Summary of Chapter 2.3
• Hypothesis testing can be used to test if sample has 

certain properties
– same mean, same parameters, goodness-of-fit, etc.

• Linear regression fits linear function of regressors to 
response variables
• We can combat over-fitting using regularizers
–Regularizer parameter needs to be selected

• Logistic regression takes the logistic function of 
linear combination of regressors to classify response 
variables
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