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Hypothesis testing

* Suppose we throw a coin z times and we want to
estimate 1f the coin 1s fair, 1.e. 1f Pr(heads) = Pr(tails).

e Let X1, Xo, ..., Xu ~ Bernoulli(p) be the 1.1.d. coin flips
—Comisfarr < p=1/2
* Let the null hypothesis Hy be “coin 1s fair”.

* The alternative hypothesis H; 1s then *“coin 1s not
fair”

o Intuitively, if |n /> Xi - 1/2| is large, we should reject
the null hypothesis

* But can we formalize this?



Hypothesis testing terminology

* 0 = 0o is called simple hypothesis
* 0> 00 or 0 <0 1s called composite hypothesis
e Ho: 0 =00 vs. Hi: 0 # 0o 1s called two-sided test

e Ho: 0<0ovs. Hi: 0>00and Hy: 0>0¢ vs. Hi: 9 <0
are called one-sided tests

e Rejection region R: 1if X € R, reject Ho o/w retain Ho

—Typically R = {x : T(x) > ¢} where T 1s a test statistic and c
1s a critical value

Retain H, Reject H,
H,true| v type I error
H, true| type II error v

* Error types:




The p-values

* The p-value 1s the probability that if Ho holds, we
observe values at least as extreme as the test statistic
— It 1s not the probability that Ho holds
—If p-value 1s small enough, we can reject Ho
—How small 1s small enough depends on application

* Typical p-value scale:

<0.01 very strong evidence against Ho
0.01-0.05 strong evidence against Ho
0.05-0.1 weak evidence against Ho

>0.1 little or no evidence against Ho
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The Wald test

For two-sided test Ho: 6 = 0¢ vs. Hi: 6 # 09
0— 0,

Test statistic W = , where 0 is the sample estimate and

se
se = se(é) = \/ Var[0] is the standard error.

W converges 1n probability to N(0,1).

If w 1s the observed value of Wald statistic, the p-value 1s 2D(-|w)).



The coin-tossing example revisited

Using Wald test we can test 1f our coin 1s fair. Suppose the
observed average 1s 0.6 with estimated standard error 0.049. The
observed Wald statistic w 1s now w = (0.6 - 0.5)/0.049 = 2.04.
Therefore the p-value 1s 20(-2.04) = 0.041, and we have strong
evidence to reject the null hypothesis.

/A, _
fﬁf// i/




The y? distribution

Let X1, X0, ..., X» be 1.1.d. N(0,1) distributed random variables.

The random variable X5 =2 i1 X}
is y>-distributed with n degrees of freedom.

y (M/2)—=1,—x/2

f(x) = for x > 0
(%) /2 (1 /2) Oor X

E[lx]=n
Var[x] = 2n



Pearson’s ¥ test for multinomial data

It X = (X1, X5, ..., Xi) has Multinomial(n, p) distribution, then MLE
of p 1s (Xi/n, Xo/n, ..., Xi/n). Let po = (po1, po, ..., por) and we want
to test Ho: p=po vs. Hi: p # po.

Pearson’s y* statistic is

np()) K (X
T = Zl =)
j—

Tlp()) j—1

where E; = E[X;] = npy; 1s the expected value of X; under Ho.

The p-value is Pr(xi_, > t) where ¢ is the observed value of T.



Extending Pearson to non-multinomaal

e Pearson’s y* can be used to test the fitness of sample to any

distribution (goodness-of-fit test)

e Let X1, X0, ..., X be the sample and f(x; 8) some probability

distribution with parameters 6

* Divide the possible values of Xis (under the null hypothesis) into &
disjoint intervals and let Oj be the number of times we see value 1n

interval /;
e Compute the theoretical interval frequencies P; (0) =
e Obtain estimates © by maximizing

Q(0) =[5, pi(0)©;

r\

f(x; 0)dx

J

15

e Now the multinomial y? test applies with k—/—s degrees of

freedom, where s 1s the number of parameters 1n 6



Extending Pearson to test of independence

e Pearson’s y? can also be used to test the independence of two
variables

eletX;, Xo ..., Xpand Yy, 1>, ..., Vi be two samples

e Divide the outcomes into » (for X;s) and ¢ disjoint intervals and
compute the frequencies

e Populate r-by-c table O with the frequencies (O tells how many
(X; Y)) pairs have values from rth and cth interval, respectively)

e Assuming independency, the expected value for O 1s

Zc_1 Oy Z; 1 Ojk
Zl 1 Z) 1 OU

 The value of the test statistic is x* = L L
1=1 j)=1
e There are (—1)(c—1) degrees of freedom

Eix =

Elj )2
El]




v* distribution table
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Testing with implicit distribution

* Suppose we have found association rule
“diapers” = “beer” with confidence 0.9

—I.e. E[*x buys beer” | “x buys diapers”] = 0.9 in the sample

* Possible explanation: everybody buys beer

— Result 1s not interesting
e also “vegetables” = “beer” has high confidence, etc.

— Null hypothesis: “Result 1s due to the fact that (almost)
everybody buys beer”

* How can we test that?



Testing “diapers” = “beer”, part 1

* The 1dea: generate data sets that have similar
properties to the real data, but are random
— See how good your result 1s 1n these random data sets

—Let N be the number of data sets and M the number of times
the result 1s at least as good 1n random data than it is 1n the
real data

— The empirical p-value 1s then (M + 1)AN +1)
* Independent random data:

— Data 1s n-by-m (m 1tems) binary matrix
— Let ¢ be m-dimensional vector of column margins
— Make random matrix (a;;) by sampling a;; ~ Bernoulli(c))



Testing “diapers” = “beer”, part 2

* Independent random samples have estimated column
margins ¢

* They do not take 1nto account that some people buy
many different things while others buy only few

— Compute also row margins r

» Let ‘M(7, ¢) be a family of 0/1 matrices with row
margin r and column margin ¢

— Sample u.a.r. from this family and test in that sample

* Problem: how to sample efficiently

— In this case solution 1s known (so-called swap randomization)



Linear Regression

* F1t a line to a set of observation points

o
&
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Intermission: basic linear algebra

A linear combination of n vectors viis w = > i | oy

A set of vectors V= {vi1, vo, ..., vu} 18 linearly independent 11 no
vector v € V can be written as a linear combination of vectors

of V'\{v}. Otherwise V is linearly dependent.

The vector inner product of two vectors is (v, w) = > " viw;

The vector outer product of n- and m-dimensional (row) vectors v
and w 1s n-by-m matrix v'w = (a;;) where a;; = viw;.



Intermission: basic linear algebra

The product of n-by-k matrlx A and k-by-m matrix B 1s the n-by-m
matrix (c;) with ci; = Zl | ai1byj.

The column rank of matrix M is the number of linearly independent
columns of M. The row rank 1s the number of linearly independent
TOWS.

Fact. The row and column rank of n-by-m real matrix M are the
same and called the rank of M. Hence rank(M) < min(n, m).

The inverse of an n-by-n square matrix A, 1f exists, 1s the unique
n-by-n matrix B for which AB = I, where I 1s the n-by-n 1dentity
matrix. The inverse of A is denoted by 4-!.

An n-by-n matrix A4 1s invertible (1.e. has inverse) 1ff rank(A4) = n.



Single-variable case

* A simple case with one variable
—vector y 1s called the response variables (or regressands)
—vector x 1s called the predictor variables (or regressors)
—constant f 1s called the parameter
—random variable ¢ 1s called the error

Yy=px+¢




Multi-dimensional case

* The regressors are multi-dimensional
* Each regressor 1s a row of design matrix X
* Parameters form a vector f, and errors form a vector &

—n respond variables and errors, k parameters, X 1s n-by-k

y=Xp+e¢




Multi-dimensional case

* The regressors are multi-dimensional
* Each regressor 1s a row of design matrix X
* Parameters form a vector f, and errors form a vector &

—n respond variables and errors, k parameters, X 1s n-by-k

y=Xp+¢
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Important assumptions

* The design matrix must have full column rank
—rank(X) > k
—n > k 1s a necessary but not sufficient condition
— “There has to be enough data per parameter”

 The i.i.d. errors ¢g; are N(0,0?) distributed

— With this assumption ordinary least squares matches
maximum likelithood estimation

* The assumptions on errors can weakened
— Uncorrelated only conditional to regressors

—Mean and variance only conditional to regressors



Ordinary least squares linear regression

Problem. Find f# that minimize

ly—XB12 =3 (v Zw)

1=1

Solution. Estimate £ with

A

B =(X"X)"'X"y

The fitted values of y are



Some comments on OLS

* The matrix X' = (X'X) ' X" is the Moore—Penrose
pseudo-inverse of X

— The full column rank of X is required for (X'X) to be
invertible (HW)

— Alternatively, the full column rank guarantees unique
solutions

* Fact: The Moore—Penrose pseudo-inverse 1s the least-

squares solution to linear program y = Xf
—L.e. setting # = X'y minimizes the squared error, as supposed

—If X is invertible, X7 = X!, as supposed (HW)



The intercept

* So far we have considered through-the-origin
regression

— The fitted line crosses the origin

* Usually we add an intercept Bo
k
yi = ) xijBj + Bo + &
j=1

* To simplify notation, this 1s done by adding an

extra column full of Isto X
Kk

Yi = inj ﬁj + €i where x;0=1 forall i
j=0



Non-linear regressors

* The all-linear model 1s very restrictive
* The regressors x can be non-linear

— But the response variables y must be linear combination of
regressors

— An example: polynomial of degree M

M
yi= ) x{Pa+ &
d=0



Example: fitting sin(27mx)

Example and images by Bishop (Chapter 1)

0 1

N=10 data points and sin(2mx)



Example: fitting sin(27mx)

Example and images by Bishop (Chapter 1)




Example: fitting sin(27mx)

Example and images by Bishop (Chapter 1)




Example: fitting sin(27mx)

Example and images by Bishop (Chapter 1)




Example: fitting sin(27mx)

Example and images by Bishop (Chapter 1)

|




Non-linear regressors (cont’d)

 In general we have £+1 basis functions @;(x)
— o 1s constant (go(x) = 1) for the intercept
—In the previous example, @i(x) =¥
— Other basis functions are possible

* The design matrix X 1s replaced with ®:



Regularization
 Which of the two models fit the data better?




Regularization
 Which of the two models fit the data better?

j
I 1 M =9
t t
d) Q
0f ol
(),
-1 -1 i
. L |
0 1 0 1

This looks better



Regularization
 Which of the two models fit the data better?

_1
It 1 M =9
t t
o Q
0t 0t
o,
-1 -1 -
1 1 1 L—
0 1 0 1

i T

This looks better This has no error



Regularization
 Which of the two models fit the data better?

-
1r 1 M =9
t t
d) Q
Or Or
o
1 _1 ]
| . . -
0 . 1 0 . 1
This looks better This has no error

e Can we formalize why we think left 1s better?



Two roles of regression

* We can approach regression either as
—descriptive method explaining the data

—predictive method allowing us to make predictions of future
data

* For predicting, we need to combat against under-
fitting and over-fitting

— Under-fit model gives poor predictions because 1t doesn’t
model the process well

— Over-fit model gives poor predictions because 1t models
also the error



Example of under- and over-fitting
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More data allows complex models

Polynomial of degree 9 fitted to N = 100 data points



Regularizers

* Selecting the model based on data size does not sound
good

* A regularizer penalizes on too complex models

ly — @B +A[[(B)E,]

n

k k
= Z(Ui - (Pj(Xi)ﬁj>2 +A) B3
j=0 =1

1=1

* Variable A 1s called regularization parameter
* Intercept 1s not included 1n regularization



An example

1+ 1F InA\=0
(@)
t t
(@)
(@)
o\._O
Or O_/
o
=y =y
0 1
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More on regularizers

* In statistics, regularizers are called shrinkage methods

* Regression with quadratic regularizer 1s also known
as ridge regression

 Quadratic (L?) regularizer keeps the loss function
quadratic

* The sum-of-absolute-values regularizer A |Bi| 1S
known as lasso or L' regularizer

— With sufficiently large A this forces some P;s to 0



Model selection

e How do we select A.?

* The goal 1s prediction, so test which A predicts best

— D1vide data to training data and test data

*E.g. yiand x; for i = 1..n-1 are training data and y, and x, are test
data

— Learn s with training data
— Measure the error with training and test data

— Repeat with other values of A and select the one with least
over-all error



S-told cross validation
 Divide data to S subsets

* Use S-1 of these subsets as training data and the last
subset as test data

* Repeat S times with different subset being the test
data

* Average errors over different runs and select the best



Logistic Regression

* Actually classification
» Response variables y; € {0,1}

* Name comes from the logistic function
e” 1

T 14eX 14eX

fx)

— The logistic function maps values from (—co,0) to (0,1)

y




Logistic regression

Given k-dimensional regressors X;, we estimate y; as

k
ePot2 51 Bjxi;

or, equivalently

where




Notes on logistic regression

* No analytic solution to 3

* Finding P needs to use numerical methods

—Fast method called Iterative Re-Weighted Least Squares 1s
often used

* Logistic function 1s also known as sigmoid function

* Similar to linear regression, we can apply fixed non-
linear basis functions ¢ to X

e Other classification methods will be discussed later 1n
the course



Summary of Chapter 2.3

* Hypothesis testing can be used to test if sample has
certain properties

—same mean, same parameters, goodness-of-fit, etc.

* Linear regression fits linear function of regressors to
response variables

* We can combat over-fitting using regularizers
— Regularizer parameter needs to be selected
* Logistic regression takes the logistic function of

linear combination of regressors to classify response
variables



