Chapter III.2: Basic ranking & evaluation measures

1. TF-IDF and vector space model

- **1.1. Term frequency counting with TF-IDF**
- **1.2. Documents and queries as vectors**
- 2. Evaluating IR results
 - **2.1. Evaluation methods**
 - 2.2. Unranked evaluation measures

Based on Manning/Raghavan/Schütze, Chapters 6 and 8

TF-IDF and vector-space model

- In Boolean case we considered each document as a set of words
 - A query matches all documents where terms appear at least once
- But if a term appears more than once is it not more important?
- Instead of Boolean queries, use free text queries
 - -E.g. normal Google queries
 - -Query seen as a set of words
 - Document is a better match if it has the query words more often

TF and IDF

- **Term frequency** of term *t* in document *d*, tf_{*t*,*d*}, is just the number of times *t* appears in *d*
 - -Naïve scoring: score of document *d* for query *q* is the sum of $tf_{t,d}s$ for terms *t* in query *q*
 - -But some terms appear overall more often than others
- **Document frequency** of term *t*, df_{*t*}, is the number of documents in which *t* appears
- Inverse document frequency of term t, idft, is $\mathrm{idf}_t = \log \frac{N}{\mathrm{df}_t}$
 - where N is the total number of documents

TF-IDF

- **The TF-IDF** of term *t* in document *d* is $tf-idf_{t,d} = tf_{t,d} \times idf_t$
- tf-idf_{*t*,*d*} is high when *t* occurs often in *d* but rarely in other documents
- tf-idf_{*t*,*d*} is smaller if either
 - -t occurs fewer times in d or
 - -*t* occurs more often in other documents
- Slightly less naïve scoring

Score(q, d) =
$$\sum_{t \in q} tf - idf_{t,d}$$

Variations to TF-IDF

• *Sublinear tf scaling* addresses the problem that 20 occurrences of a word is probably not 20 times more important than 1 occurrence

$$\mathrm{wf}_{t,d} = \begin{cases} 1 + \log \mathrm{tf}_{t,d} & \text{if } \mathrm{tf}_{t,d} > 0\\ 0 & \text{otherwise} \end{cases}$$

• Maximum tf normalization tries to overcome the problem that longer documents yield higher tf-idf scores $ntf_{t,d} = a + (1-a) \frac{tf_{t,d}}{tf_{max}(d)}$

 $-tf_{max}(d)$ is the largest term frequency in document d

-a is a smoothing parameter, 0 < a < 1 (typically a = 0.4)

Documents as vectors

- Documents can be represented as *M*-dimensional vectors
 - -M is the number of term in vocabulary
 - -Vector values are the tf-idf (or similar) values
 - Does not store the order of the terms in documents
- Document collection can be represented as *M*-by-*N* matrix
 - -Each document is a column vector
- Queries can also be considered as vectors
 –Each query is just a short document

The vector space model

• The similarity between two vectors can be computed using **cosine similarity**

 $sim(\mathbf{d}_1, \mathbf{d}_2) = \langle \mathbf{v}(\mathbf{d}_1), \mathbf{v}(\mathbf{d}_2) \rangle$

- -v(d) is the normalized vector representation of document d
- A normalized version of vector v is v/||v||
- Thus cosine similarity is equivalently

$$\operatorname{sim}(\mathbf{d}_1, \mathbf{d}_2) = \frac{\langle \mathbf{V}(\mathbf{d}_1), \mathbf{V}(\mathbf{d}_2) \rangle}{\|\mathbf{V}(\mathbf{d}_1)\| \|\mathbf{V}(\mathbf{d}_2)\|}$$

- Cosine similarity is the cosine of the angle between $v(d_1)$ and $v(d_2)$

Finding the best documents

Using cosine similarity and vector space model, we can obtain the best document d^* with respect to query q from document collection D as $d^* = \arg \max_{d \in D} \langle v(q), v(d) \rangle$. This can be easily extended to top-k documents.

Evaluating IR results

- We need a way to evaluate different IR systems
 - -What pre-processing should I do?
 - Should I use tf-idf or wf-idf or ntf-idf?
 - Is cosine similarity good similarity measure, or should I use something else?

-etc.

• For this we need evaluation data and evaluation metrics

IR evaluation data

- Document collections with documents labeled *relevant* or *irrelevant* for different information needs
 - -Information need is not a query; it is turned into a query
 - E.g. "What plays of Shakespeare have characters Caesar and Brutus, but not character Calpurnia?"
- For tuning parameters, document collections are divided to *development* (or *training*) and *test sets*
- Some real-world data sets exist that are commonly used to evaluate IR methods

Classifying the results

- The retrieved documents can be either relevant or irrelevant and same for not retrieved documents
 - We would like to retrieve relevant documents and not retrieve irrelevant ones
 - -We can classify all documents into four classes

	relevant	irrelevant
retrieved	true positives (tp)	false positives (fp)
not retrieved	false negatives (fn)	true negatives (tn)

Unranked evaluation measures

Precision, *P*, is the fraction of retrieved documents that are relevant tp

$$P = \frac{\mathbf{r}}{\mathbf{t}\mathbf{p} + \mathbf{f}\mathbf{p}}$$

Recall, *R*, is the fraction of relevant documents that are retrieved

$$R = \frac{\mathrm{tp}}{\mathrm{tp} + \mathrm{fn}}$$

Accuracy, acc, is the fraction of correctly classified documents

$$acc = \frac{tp + tn}{tp + fp + tn + fn}$$

Unranked evaluation measures

Precision, P, is the fraction of retrieved documents that are relevant t_{n}

$$P = \frac{\mathrm{tp}}{\mathrm{tp} + \mathrm{fp}}$$

Recall, R, is the fraction of relevant documents that are retrieved

The F measure

- Different tasks may emphasize precision or recall
 Web search, library search, ...
- But usually some type of balance is sought
 - -Maximizing either one is usually easy if other can be arbitrarily low
- The **F** measure is a trade-off between precision and recall $F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$
 - The β is a trade-off parameter: $\beta = 1$ is *balanced F*, $\beta < 1$ emphasize precision, and $\beta > 1$ emphasize recall

F measure example

Ranked evaluation measures

- Precision as a function of retrieval P(r)
 - -What is the precision after we have obtained 10% of relevant documents in ranked results?
 - -*Interpolated precision* at recall level *r* is $\max_{r' \ge r} P(r')$
 - Precision–recall curves
- Precision at k (P@k)
 - The precision after we have obtained top-*k* documents (relevant or not)
 - Typically *k*=5, 10, 20
 - -E.g. web search
- $F_{\beta}(a)k = ((\beta^2 + 1)P(a)k \times R(a)k)/(\beta^2 P(a)k + R(a)k)$

Mean Average Precision

- Precision, recall, and F measure are unordered measures
- Mean average precision (MAP) averages over different information needs and ranked results
 - -Let $\{d_1, ..., d_{m_j}\}$ be the set of relevant documents for $q_j \in Q$
 - Let R_{jk} be the set of ranked retrieval results of q_j from top result until you get to document d_k
 - -MAP is $MAP(Q) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} Precision(R_{jk})$

Mean Average Precision

- Precision, recall, and F measure are unordered measures
- Mean average precision (MAP) averages over different information needs and ranked results
 - -Let $\{d_1, ..., d_{m_j}\}$ be the set of relevant documents for $q_j \in Q$
 - Let R_{jk} be the set of ranked retrieval results of q_j from top result until you get to document d_k

Measures for weighted relevance

- Non-binary relevance
 - -0 = not relevant, 1 = slightly relevant, 2 = more relevant, ...
- **Discounted cumulative gain** (DCG) for information need *q*:
 - $-R(q,d) \in \{0, 1, 2,\} \text{ is the relevance of document } d \text{ for}$ query q $DCG(q,k) = \sum_{m=1}^{k} \frac{2^{R(q,m)} 1}{\log(1+m)}$
- Normalized discounted cumulative gain (NDCG): $NDCG(q,k) = \frac{DCG(q,k)}{IDCG(q,k)}$

Ideal discounted cumulative gain (IDCG)

- Let rank levels be {0, 1, 2, 3}
- Order rankings in descending order $I_q = (3, 3, ..., 3, 2, 2, ..., 2, 1, 1, ..., 1, 0, 0, ..., 0)$

IDCG(q, k) =
$$\sum_{m=1}^{k} \frac{2^{I_q(m)} - 1}{\log(1+m)}$$

- IDCG(q, k) is the maximum value that DCG(q, k) can attain - Therefore, NDCG(q, k) ≤ 1