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IV.1 Background and PageRank
IV.2 HITS
IV.3 Comparison and Extensions
IV.4 Topic-Specific & Personalized PageRank
IV.5 Link-Spam Resilience 
IV.6 Online & Distributed Link Analysis

*Mostly following Manning/Raghavan/Schütze, with additions from other sources 
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Chapter IV.1: Background 
and PageRank
1. World Wide Web as a web

1.1. Ranking by links
2. Interlude: Markov chains

2.1. Idea & definitions
2.2. The stationary distribution

3. The PageRank
3.1. Random surfer
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Based on Manning/Raghavan/Schütze, Chapter 21
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World Wide Web as a web
• WWW pages are interlinked via hyperlinks
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Image: Google Searchology 2007 <http://www.shareholder.com/Visitors/event/build2/mediapresentation.cfm?MediaID=25550&Player=1#>

http://www.shareholder.com/Visitors/event/build2/mediapresentation.cfm?MediaID=25550&Player=1#
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Power-law distribution (Zipf’s law)
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Probability mass function f(k; s, N):

k = rank; s = parameter; N = total number of elements

Zipf’s law models the frequency of kth most frequent element in
• word frequencies in corpora
• populations of cities in different countries
• income rankings
• ...



IR&DM, WS'11/12 IV.1-17 November 2011

Link numbers follow power law
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IRDM  WS 2007 5-6

Web Structure: Power-Law Degrees
(Scale-Free Network)

• power-law distributed degrees: P[degree=k] ~ (1/k)
with 2.1 for indegrees and 2.7 for outdegrees

Study of Web Graph (Broder et al. 2000)

Broder et al. Graph structure in the web. WWW’00

s = 2.09 s = 2.72

In-degree Out-degree
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Using links to rank
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• Linking to a page can be considered as an 
endorsement
–This idea obviously pre-dates Facebook...

• This information could be used to find authoritative 
web pages
–Rough idea: on two pages about the same topic if the first 

links to the second, the second is more authoritative
• Analogies in scientific citations
–High citation count = prestigious article
–But what if the citations/links say ”This work is rubbish”
•Apparently not a big problem
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The random surfer
• The model:
– A random surfer goes to a 

random web page
– Clicks a random link to move 

to other web page
– Repeats ad infinitum 

• Intuition: most visited pages 
will be the ones with most 
in-links from pages with 
most in-links etc.
– I.e. the ones that should have 

the highest rank
• Can this be formalized?
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Image: Wikipedia
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Interlude: Markov chains
• A stochastic process is a family of random variables 

{Xt : t ∈ T}
–Henceforth T = {0, 1, 2, ...} and t is called time 
•This is discrete stochastic process

• Stochastic process {Xt} is Markov chain if always
    Pr[Xt = x | Xt–1 = a, Xt–2 = b, ..., X0 = z] 
 = Pr[Xt = x | Xt–1 = a]
–Memory-less property

• A Markov chain is time-homogenous if for all t
 Pr[Xt+1 = x | Xt = y ] = Pr[Xt = x | Xt-1 = y]
–We only consider time-homogenous Markov chains
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Transition matrix
• The state space of a Markov chain {Xt}t ∈T is the 

countable set S of all values Xt can assume
–Xt: Ω → S for all t ∈ T
–Markov chain is in state s at time t if Xt = s
–A Markov chain {Xt}t ∈T is finite if it has finite state space

• If Markov chain {Xt} is finite and time-homogenous, 
its transition probabilities can be expressed with a 
matrix P = (pij), pij = Pr[X1 = j | X0 = i]
–Matrix P is n-by-n if Markov chain has n states and it is 

right stochastic, i.e. ∑j pij = 1 for all i (rows sum to 1)

10
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Example Markov chain
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Classifying the states
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• State i can be reached from state j if there exists n ≥ 0 
such that (Pn)ij > 0
– Pn is the nth exponent of P, Pn = P×P×…×P

• If i can be reached from j and vice versa, i and j 
communicate
– If all states i, j ∈ S communicate, Markov chain is irreducible

• If the probability that the process visits a state i 
infinitely many times is 1, then state i is recurrent
– State is positive recurrent if the estimated return time to it is 

finite
–Markov chain is recurrent if all of its states are
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More classifying of the states
• State i has period k if any return to i must occur in 

time that is multiple of k:
 k = gcd{n : Pr[Xn = i | X0 = i] > 0}
– State i is aperiodic if it has period k = 1; otherwise it is 

periodic with period k 
–Markov chain is aperiodic if all of its states are

• State i is ergodic if it is aperiodic and positive 
recurrent
–Markov chain is ergodic if all of its states are

13



IR&DM, WS'11/12 IV.1-17 November 2011

Two important results for finite MCs
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Lemma IV.1: Every finite Markov chain has at least one 
recurrent state and all of its recurrent states are positive 

recurrent. 

Corollary IV.2: Finite, irreducible, and aperiodic Markov 
chain is ergodic.
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Stationary distributions
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• If π is such that πi ≥ 0 for all i, ∑i πi = 1, and
   πP = π
then π is the stationary distribution of the Markov 
chain
• Let hii = ∑t≥1 tPr[Xt = i and Xn ≠ i for n < t | X0 =i] be 

the estimated return time to state i

Theorem IV.3: If Markov chain is finite, irreducible, and 
ergodic, then
1. it has an unique stationary distribution π
2. for all i and j, limt→∞ (Pt)ji exists and is the same for all j
3. πi = limt→∞ (Pt)ji = 1/hii



IR&DM, WS'11/12 IV.1-17 November 2011

More on stationary distributions
• If Markov chain has a stationary distribution, then the 

probability that the chain is in state i after long-
enough time is independent of the starting time but 
depends only on the stationary distribution
• Aperiodicity is not necessary condition for stationary 

distribution to exist, but then the stationary 
distribution will not be the limit of transition 
probabilities
–Two-state chain that always switches the state has stationary 

distribution (1/2, 1/2), but the transitions look either (1, 2, 1, 
2, ...) or (2, 1, 2, 1, ...) depending on the starting state 

16
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Example of stationary distribution
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Example of stationary distribution

17

1 2
1/2

3/4
1/4 1/2

Pr
[X

t =
 i]

State i
1 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 1



IR&DM, WS'11/12 IV.1-17 November 2011

Example of stationary distribution
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Example of stationary distribution
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Example of stationary distribution
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Example of stationary distribution
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Three ways to find π, part 1
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• Stationary distribution is the limit probability
• We can find π by computing the probabilities over 

time until they converge
• The converged distribution is the stationary 

distribution
• This is called the power method
– Start with arbitrary initial state v
–Compute vP1, vP2, vP3, ..., until it converges
– If convergence happens at step t, π = vPt

• We can define how accurately we want to compute π
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Three ways to find π, part 2
• π is stationary distribution if πP = π
• This defines a system of linear equations, which can 

be solved to find π
–Add ∑πi = 1 to get proper distribution

• Example:

19
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Three ways to find π, part 3
• Given a square matrix A, vector v is its left 

eigenvector if vA = λv for some scalar λ
– Scalar λ is the eigenvalue associated to v

• Therefore stationary distribution π of a Markov chain 
with transition matrix P is the normalized left 
eigenvector of P that has eigenvalue λ = 1
–Very similar to solving the linear equation group, but more 

specialized

20
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Three ways to find π, bonus part
• If ∑i πi = 1 and πipij = πjpji for all i and j, then π is a 

stationary distribution 
– Sufficient but not necessary condition
– If this holds, the Markov chain is (time) reversible

• In general, to check that some distribution π is a 
stationary distribution, just check that it satisfies 
   πP = π

21
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PageRank algorithm

22

• The random surfer:
–A random surfer goes to a 

random web page
–Clicks a random link to 

move to other web page
–Repeats ad infinitum 
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PageRank algorithm
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• The random surfer:
–A random surfer goes to a 

random web page
–Clicks a random link to 

move to other web page
–Repeats ad infinitum 

• This corresponds to a 
Markov chain with pages 
as states
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PageRank algorithm

22

• The random surfer:
–A random surfer goes to a 

random web page
–Clicks a random link to 

move to other web page
–Repeats ad infinitum 

• This corresponds to a 
Markov chain with pages 
as states
• But we have a problem
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Dead ends

23

Images: Wikipedia  
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Dead ends

24

• Surfer can end in pages that have no out-links
• Surfer can end in a part of we where he cannot return 

to the other parts of the web
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Dead ends

24

• Surfer can end in pages that have no out-links
• Surfer can end in a part of we where he cannot return 

to the other parts of the web

No out-links

No return to 
other parts
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Answer: Teleportation

25

Images: Wikipedia  
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Teleportation
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• At each step, if page has out-links, random surfer
–with probability α selects new page uniformly at random 

among all web pages
–with probability 1 – α, selects new page uniformly at 

random among the pages this page links to
• Otherwise random surfer selects new page u.a.r. 

among all pages
• Parameter α, 0 < α < 1, is fixed (e.g. α = 0.1)
• Teleportation corresponds to the user typing new 

address in the address bar of the browser
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Computing the PageRank
• Given a directed graph of N hyperlinked documents
– Form the N-by-N adjacency matrix A = (aij), where aij = 1 if 

page i links to page j 
– For rows of A that have no 1s 
•Replace each element with 1/N

– For other rows
• If row has k 1s, multiply every entry with (1 – α)/k
•Add α/N to every entry

–The resulting matrix P is a transition matrix of N-state, 
irreducible, and ergodic Markov chain that has stationary 
distribution π
–The PageRank of page i is πi 

27
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PageRank and queries
• PageRank does not depend on the query
–Establishes a static ordering between web pages

• To rank the query results, search engines need to 
combine query-dependent rankings with static 
ranking such as PageRank

28


