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Chapter IV: Link Analysis "l

IV.1 Background and PageRank

IV.2 HITS

IV.3 Comparison and Extensions

IV.4 Topic-Specific & Personalized PageRank
IV.5 Link-Spam Resilience

IV.6 Online & Distributed Link Analysis

“Mostly following Manning/Raghavan/Schiitze, with additions from other sources
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3. The PageRank
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Based on Manning/Raghavan/Schiitze, Chapter 21
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World Wide Web as a web
* WWW pages are interlinked via hyperlinks

Image: Google Searchology 2007 <http://www.shareholder.com/Visitors/event/build2/mediapresentation.cfm?Medial D=25550&Player=1#>
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Power-law distribution (Zipf’s law)

Probability mass function f(k, s, N):
1/k3

N
anl 1/ns

f(k;s,N) =

k = rank; s = parameter; N = total number of elements

Z1pt’s law models the frequency of kth most frequent element 1n

e word frequencies in corpora

e populations of cities in different countries
* iIncome rankings



Link numbers follow power law

humber of pages
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Using links to rank

* Linking to a page can be considered as an
endorsement

— This 1dea obviously pre-dates Facebook...
* This information could be used to find authoritative
web pages

—Rough 1dea: on two pages about the same topic 1f the first
links to the second, the second 1s more authoritative

* Analogies 1n scientific citations
— High citation count = prestigious article

— But what 1f the citations/links say ”This work 1s rubbish”
* Apparently not a big problem



The random surfer

® The mOdel: _F?,'.’:'-"‘;"" v : o A Image: Wikipedia
— A random surfer goes to a R L |
random web page

— Clicks a random link to move
to other web page

— Repeats ad infinitum
Y e )
...“’ ’_' .

* Intuition: most visited pages £
will be the ones with most =~
in-links from pages with | .
most 1n-links etc.

— I.e. the ones that should have
the highest rank

e Can this be formalized?
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Interlude: Markov chains

* A stochastic process 1s a family of random variables
(X teT)

—Henceforth 7= {0, 1, 2, ...} and ¢ 1s called time

* This 1s discrete stochastic process

» Stochastic process {X;} i1s Markov chain if always
PriXe=x|Xe1=a Xe2=0b, ..., Xo = z]
= Pr[X; = x| X1 = a]

— Memory-less property

* A Markov chain 1s time-homogenous 1f for all ¢
Pr[ X1 =x| Xe =y | =Pr[Xi =x | Xe1 =]

— We only consider time-homogenous Markov chains



Transition matrix

 The state space of a Markov chain {X;};er1s the
countable set S of all values X; can assume
— X Q—>SforallreT

—Markov chain 1s 1n state s at time 7 1f X; = s
— A Markov chain {X;}/eris finite if it has finite state space

 [f Markov chain {X;} 1s finite and time-homogenous,
its transition probabilities can be expressed with a
matrix P = (p;j), pi; = Pr|X; = | Xo =i}

— Matrix P 1s n-by-n 1f Markov chain has » states and it 1s
right stochastic, 1.e. ) ; p; = 1 tor all i (rows sum to 1)



Example Markov chain

0 9/10 1/10
pP= ( 3/10 1/10 6/10 )
1/2  1/2 0

0,5



Classifying the states

* State i can be reached from state j 1f there exists n > 0
such that (P");; > 0
— P” 1s the nth exponent of P, P" = PxPx---xP

* It i can be reached from j and vice versa, i and j
communicate

— If all states i, j € § communicate, Markov chain 1s irreducible

» [f the probability that the process visits a state i
infinitely many times 1s 1, then state i 1s recurrent

— State 1s positive recurrent 1f the estimated return time to 1t 1s
finite

— Markov chain 1s recurrent if all of its states are



More classifying of the states

* State 7 has period k£ 1f any return to i must occur in
time that 1s multiple of £:

k=gcdi{n:Pr|X,=1i| Xo=1]>0}
— State i 1s aperiodic 1if 1t has period £ = 1; otherwise 1t 1s
periodic with period £
—Markov chain 1s aperiodic 1f all of its states are
* State i 1s ergodic 1f 1t 1s aperiodic and positive
recurrent
— Markov chain 1s ergodic 1f all of its states are



Two important results for finite MCs
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Stationary distributions

* [f wissuch thatm; >0 foralli, ; m; =1, and
nP=mn
then 7 1s the stationary distribution of the Markov
chain

e Let hii = > =1 (Pr[X; =iand X, #i for n <t | Xo=i] be
the estimated return time to state i

Theorem IV.3: If Markov chain 1s finite, irreducible, and
ergodic, then
1. 1t has an unique stationary distribution 7

2. for all 7 and j, lim;—« (P?);; exists and 1s the same for all ;
3. = limi—w (Pt)ji = 1/h;i




More on stationary distributions

* If Markov chain has a stationary distribution, then the
probability that the chain 1s 1n state i after long-
enough time 1s independent of the starting time but
depends only on the stationary distribution

* Aperiodicity 1s not necessary condition for stationary
distribution to exist, but then the stationary
distribution will not be the limit of transition
probabilities
— Two-state chain that always switches the state has stationary

distribution (1/2, 1/2), but the transitions look either (1, 2, 1,
2,..0)o0r(2,1,2,1,..)depending on the starting state



Example of stationary distribution

3/4
om0}
N 12

=0

PI’[Xz — l]

State i
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Example of stationary distribution

State i

[R&DM, WS'11/12 17 November 2011 IV.1-17



Three ways to find 7, part 1

 Stationary distribution is the limit probability

* We can find m by computing the probabilities over
time until they converge

* The converged distribution 1s the stationary
distribution

* This 1s called the power method
— Start with arbitrary initial state v
— Compute vP!, vPZ, vP3, ..., until it converges
—If convergence happens at step ¢, m = vP!

* We can define how accurately we want to compute 7



Three ways to find &, part 2

* 7t 1s stationary distribution if P = &

* This defines a system of linear equations, which can
be solved to find &

—Add ) ;= 1 to get proper distribution
* Example:

3/4 4t
1/4C@ @ 1/2 2 1
4 —T11 + =Ty = TIo
72




Three ways to find &, part 3

* G1ven a square matrix A, vector v 1s its left
eigenvector 1f vA = Ay for some scalar A

— Scalar A 1s the eigenvalue associated to v
* Therefore stationary distribution  of a Markov chain

with transition matrix P 1s the normalized left
eigenvector of P that has eigenvalue A = 1

— Very similar to solving the linear equation group, but more
specialized



Three ways to find &, bonus part

o If Y ,m; =1 and mp;; = mjp;; for all i and j, then @ 1s a
stationary distribution

— Sufficient |

out not necessary condition

— If this holc

s, the Markov chain 1s (time) reversible

* In general, to check that some distribution & 1s a
stationary distribution, just check that 1t satisfies

nP=m



PageRank algorithm

 The random surter:

— A random surfer goes to a
random web page

— Clicks a random link to
move to other web page

— Repeats ad infinitum
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PageRank algorithm

 The random surfer: S —
— A random surfer goes toa o
random web page

— Clicks a random link to
move to other web page

— Repeats ad infinitum

* This correspondstoa =

Markov chain with pages |

3
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PageRank algorithm

 The random surter:

— A random surfer goes to a
random web page

— Clicks a random link to
move to other web page

— Repeats ad infinitum

* This correspondstoa &
Markov chain with pages |

e 370

as states
* But we have a problem
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Images: Wikipedia
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Dead ends

* Surfer can end 1n pages that have no out-links

* Surfer can end 1n a part of we where he cannot return
to the other parts of the web

Q .

Ve




Dead ends

* Surfer can end 1n pages that have no out-links

* Surfer can end 1n a part of we where he cannot return
to the other parts of the web

No out-links



Dead ends

* Surfer can end 1n pages that have no out-links

* Surfer can end 1n a part of we where he cannot return

to the other parts of the web

No return to
~—._ other parts

No out-links



Answer: Teleportation

Images: Wikipedia
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Teleportation

* At each step, 1f page has out-links, random surfer

— with probability a selects new page uniformly at random
among all web pages

—with probability 1 — a, selects new page uniformly at
random among the pages this page links to

* Otherwise random surfer selects new page u.a.r.
among all pages

* Parameter a, 0 <o <1, 1s fixed (e.g. a = 0.1)

* Teleportation corresponds to the user typing new
address 1n the address bar of the browser



Computing the PageRank

* Given a directed graph of N hyperlinked documents
—Form the N-by-N adjacency matrix A = (a;;), where a; = 1 1f
page i links to page j
—For rows of A that have no 1s
* Replace each element with 1/N

— For other rows
* [f row has k£ 1s, multiply every entry with (1 — a)/k
* Add o/N to every entry

— The resulting matrix P 1s a transition matrix of N-state,
irreducible, and ergodic Markov chain that has stationary
distribution 7

—The PageRank of page i 1s m;



PageRank and queries
* PageRank does not depend on the query

— Establishes a static ordering between web pages
* To rank the query results, search engines need to

combine query-dependent rankings with static
ranking such as PageRank



