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Chapter V: Indexing & Searching* 

V.1 Indexing & Query processing 

       Inverted indexes, B+-trees, merging vs. hashing, 

        Map-Reduce & distribution, index caching 

V.2 Compression 

       Dictionary-based vs. variable-length encoding, 

       Gamma encoding, S16, P-for-Delta 

V.3 Top-k Query Processing 

       Heuristic top-k approaches, Fagin’s family of threshold-algorithms,  

        IO-Top-k, Top-k with incremental merging, and others 

V.4 Efficient Similarity Search 

       High-dimensional similarity search, SpotSigs algorithm, 

       Min-Hashing & Locality Sensitive Hashing (LSH)  

*mostly following Chapters 4 & 5 from Manning/Raghavan/Schütze 

  and Chapter 9 from Baeza-Yates/Ribeiro-Neto with additions from recent research papers 
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V.1 Indexing 
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crawl 
extract 
& clean 

index search rank present 

strategies for 
crawl schedule and 
priority queue for  
crawl frontier 

handle  
dynamic pages, 
detect duplicates, 
detect spam  

build and analyze 
Web graph, 
index all tokens 
or word stems 

Server farms with 10 000‘s (2002) – 100,000’s (2010) computers, 
distributed/replicated data in high-performance file system (GFS,HDFS,…), 
massive parallelism for query processing (MapReduce, Hadoop,…) 

fast top-k queries, 
query logging, 
auto-completion 

scoring function 
over many data 
and context criteria 

GUI, user guidance, 
personalization 

- Web, intranet, digital libraries, desktop search 

- Unstructured/semistructured data 
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Content Gathering and Indexing 
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Ranking by 
descending 
relevance 

Search engine 

Query  
(set of weighted 
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Similarity metric: 

(e.g., Cosine measure) 

Documents are feature vectors 

(bags of words) 

Vector Space Model for Relevance Ranking 
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Combined Ranking with Content & Links Structure 

Search engine 

Ranking by  
descending 
relevance & authority 

Ranking functions: 

• Low-dimensional queries (ad-hoc ranking, Web search): 

     BM25(F), authority scores, recency, document structure, etc. 

• High-dimensional queries (similarity search): 

     Cosine, Jaccard, Hamming on bitwise signatures, etc. 

  + Dozens of more features employed by various search engines 

Query  
(set of weighted 
features) 

||]1,0[ Fq
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Digression: Basic Hardware Considerations 
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300 MB/s 
(SATA-300) 

16 GB/s  
(64bit@2GHz) 

6,400 MB/s –  
12,800 MB/s 
(DDR2, dual channel, 
800MHz) 

3,200 MB/s  
(DDR-SDRAM 
@200MHz) 



Moore’s Law 

Gordon Moore (Intel) 
anno 1965:  

 

“The density of integrated  

circuits (transistors) will  

double every 18 months!” 

 

→ Has often been 
generalized to clock 
rates of CPUs, disk & 
memory sizes, etc. 

 

 → Still holds today for    

      integrated circuits! 
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Source: http://en.wikipedia.org/wiki/Moore%27s_law 



More Modern View on Hardware 

• CPU-cache 
becomes primary 
storage! 

• Main-memory 
becomes secondary 
storage! 
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CPU-to-L1-Cache: 
 3-5 cycles initial latency,  
    then “burst” mode 

CPU-to-Main-Memory: 
 ~200 cycles latency 

CPU-to-L2-Cache: 
 15-20 cycles latency 



Data Centers 

Google Data Center anno 2004 

Source: J. Dean: WSDM 2009 Keynote 
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Different Query Types 
Conjunctive queries:  

all words in q = q1 … qk required 

Disjunctive (“andish”) queries: 

subset of q words qualifies,  

more of q yields higher score  

Mixed-mode queries and negations: 

q = q1 q2 q3 +q4 +q5 –q6 

Phrase queries and proximity queries: 

q = “q1 q2 q3” q4 q5 … 

Vague-match (approximate) queries  

with tolerance to spelling variants 

Find relevant docs 

by list processing 

on inverted indexes 

see Chapter III.5 

Including variant: 
• scan & merge 
  only subset of qi lists  
• lookup long  
  or negated qi lists 
  only for best result 
  candidates 

Structured queries and XML-IR 
//article[about(.//title, “Harry Potter”)]//sec 
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Indexing with Inverted Lists 

index lists  
with postings 
(docId, score) 
sorted by docId 

Google: 
> 10 Mio. terms 
> 20 Bio. docs 
> 10 TB index 

professor 

B+ tree on terms 

17: 0.3 
44: 0.4 

..
. 

research ... xml ... 

52: 0.1 
53: 0.8 
55: 0.6 

12: 0.5 
14: 0.4 

..
. 

28: 0.1 
44: 0.2 
51: 0.6 
52: 0.3 

17: 0.1 
28: 0.7 

..
. 

17: 0.3 
17: 0.1 44: 0.4 

44: 0.2 

11: 0.6 

q: {professor 
    research  
    xml} 

Vector space model suggests term-document matrix, 
but data is sparse and queries are even very sparse. 

  Better use inverted index lists with terms as keys for B+ tree. 

terms can be full words, word stems, word pairs, substrings, N-grams, etc. 
(whatever “dictionary terms” we prefer for the application) 

• Index-list entries in docId order for fast Boolean operations 

• Many techniques for excellent compression of index lists  

• Additional position index needed for phrases, proximity, etc. 
  (or other pre-computed data structures) 
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B+-Tree Index for Term Dictionary  

• B-tree: balanced tree with internal nodes of ≤m fan-out 

• B+-tree: leaf nodes additionally linked via pointers for efficient range scans 

• For term dictionary: Leaf entries point to inverted list entries on local disk 

and/or node in compute cluster 
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Inverted Index for Posting Lists 
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Index-list entries usually stored 

in ascending order of docId 

(for efficient merge joins) 
 

or 
 

in descending order of 

per-term score  

(impact-ordered lists  

 for top-k style pruning). 

 

Usually compressed and divided 

into block sizes which are  

convenient for disk operations. 
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Query Processing on Inverted Lists  

Join-then-sort algorithm: 
      

Given: query q = t1 t2 ... tz with z (conjunctive) keywords 
            similarity scoring function score(q,d) for docs d D, e.g.:  
            with precomputed scores (index weights) si(d) for which qi≠0 

Find:   top-k results for score(q,d) =aggr{si(d)} (e.g.: i q si(d)) 
 

q d

top-k  (  
     [term=t1] (index) DocId 

     [term=t2] (index) DocId 

            ...                  DocId 
     [term=tz] (index)                      order by s desc) 

index lists  
with postings 
(docId, score) 
sorted by docId 

professor 

B+ tree on terms 

17: 0.3 
44: 0.4 

..
. 

research ... xml ... 

52: 0.1 
53: 0.8 
55: 0.6 

12: 0.5 
14: 0.4 

..
. 

28: 0.1 
44: 0.2 
51: 0.6 
52: 0.3 

17: 0.1 
28: 0.7 

..
. 

17: 0.3 
17: 0.1 44: 0.4 

44: 0.2 

11: 0.6 

q: {professor 
    research  
    xml} 
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Index List Processing by Merge Join 
Keep L(i) in ascending order of doc ids. 

Delta encoding: compress Li by actually storing the gaps between  

successive doc ids (or using some more sophisticated prefix-free code). 

QP may start with those Li lists that are short and have high idf. 

→ Candidates need to be looked up in other lists Lj. 
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Li 

Lj 

2     4      9    16    59       66   128  135 291  311     315  591 672  899 

1     2      3     5      8        17     21   35   39    46        52   66    75   88 

… 

… 

  

  

skip! 

To avoid having to uncompress the entire list Lj, Lj is encoded into groups 

(i.e., blocks) of compressed entries with a skip pointer at the start of each 

block  sqrt(n) evenly spaced skip pointers for list of length n. 



Index List Processing by Hash Join 
Keep Li in ascending order of scores (e.g., TF*IDF). 

Delta Encoding: compress Li by storing the gaps between  

  successive scores (often combined with variable-length encoding). 

QP may start with those Li lists that are short and have high scores, 

  schedule may vary adaptively to scores. 

 

→ Candidates can immediately be looked up in other lists Lj. 

→ Can aggregate candidate scores on-the-fly. 

 

      

Li 

Lj 

66     2    672   4    899    128  135    1    591  16      315   59   291 311 

75    1     17     2    52       66    88     3   672     5         8     21   35   39 

… 

… 

  

  

November 29, 2011 V.17 IR&DM, WS'11/12 

? 



Index Construction and Updates 

Index construction: 

• extract (docId, termId, score) triples from docs 

• can be partitioned & parallelized 

• scores need idf (estimates) 

• sort entries termId (primary) and docId (secondary) 

• disk-based merge sort (build runs, write to temp, merge runs)  

• can be partitioned & parallelized 

• load index from sorted file(s), using large batches for disk I/O,  

• compress sorted entries (delta-encoding, etc.) 

• create dictionary entries for fast access during query processing 

Index updating: 

• collect large batches of updates in separate file(s) 

• periodically sort these files and merge them with index lists  
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Map-Reduce Parallelism for Index Building 
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Map-Reduce Parallelism 
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Programming paradigm and infrastructure 

for scalable, highly parallel data analytics. 

• can run on 1000’s of computers 

• with built-in load balancing & fault-tolerance 

  (automatic scheduling & restart of worker processes) 

Easy programming with key-value pairs: 

Map function:  K V   (L W)*  

     (k1, v1)           |    (l1,w1), (l2,w2), … 

Reduce function:  L W*  W*  

     l1, (x1, x2, …)  |    y1, y2, … 

Examples: 

• Index building: K=docIds, V=contents, L=termIds, W=docIds 

• Click log analysis: K=logs, V=clicks, L=URLs, W=counts 

• Web graph reversal: K=docIds, V=(s,t) outlinks, L=t, W=(t,s) inlinks 



Map-Reduce Example  

for Inverted Index Construction 

class Mapper 

   procedure MAP(docId n, doc d) 

   H ← new Map<term, int> 

       For term t  doc d do // local tf aggregation 

           H(t) ← H(t) + 1 

       For term t  H d do // emit reducer job, e.g., using hash of term t 

           EMIT(term t, new posting <docId n, H(t)>) 
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class Reducer 

    procedure REDUCE(term t, postings [<n1,f1>, <n2,f2>, …]) 

   P ← new List<posting> 

       For posting <n, f>  postings [<n1,f1>, <n2,f2>, …] do // global idf aggregation 

           P.APPEND(<n,f>) 

       SORT(P) // sort all postings hashed to this reducer by <term, docId || score> 

       EMIT(term t, postings P) // emit sorted inverted lists for each term 

Source: Lin & Dyer (Maryland U): Data Intensive Text Processing with MapReduce  



Challenge: Petabyte-Sort 

Jim Gray benchmark: 

• Sort large amounts of 100-byte records (10 first bytes are keys) 

• Minute-Sort: sort as many records as possible in under a minute 

• Gray-Sort: must sort at least 100 TB, must run at least 1 hour 

 

May 2011: Yahoo sorts 1 TB in 62 seconds and 1 PB in 16:15 hours 

on Hadoop  

(http://developer.yahoo.com/blogs/hadoop/posts/2009/05/hadoop_sorts_a_petabyte_in_162/) 

 

Nov. 2008: Google sorts 1 TB in 68 seconds and 1 PB in 6:02 hours 

on MapReduce (using 4,000 computers with 48,000 hard drives) 

 (http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html) 
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Index Caching 
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Caching Strategies 
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What is cached? 

•  index lists for individual terms 

•  entire query results 

•  postings for multi-term intersections 

Where is an item cached? 

• in RAM of responsible server-farm node 

• in front-end accelerators or proxy servers 

• as replicas in RAM of all (many) server-farm 

When are cached items dropped? 

• estimate for each item: temperature = access-rate / size 

• when space is needed, drop item with lowest temperature 
   Landlord algorithm [Cao/Irani 1997, Young 1998], generalizes LRU-k [O‘Neil 1993] 

• prefetch item if its predicted temperature is higher than 

  the temperature of the corresponding replacement victims 



… 
Index-list entries are 
hashed onto nodes by docId. 

Each complete query 
is run on each node; 
results are merged. 

 Perfect load balance,  
     embarrasingly scalable, 
     easy maintenance. 

Distributed Indexing: Doc Partitioning 
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Data, Workload & Cost Parameters 

• 20 Bio. Web pages, 100 terms each  2 x 1012 index entries  

• 10 Mio. distinct terms  2 x 105 entries per index list 

• 5 Bytes (amortized) per entry  1 MB per index list, 10 TB total 
 

• Query throughput: typical 1,000 q/s; peak: 10,000 q/s 

• Response time: all queries in  100 ms 

• Reliability & availability: 10-fold redundancy 

 

• Execution cost per query:  

– 1 ms initial latency + 1 ms per 1,000 index entries  

– 2 terms per query 

 

• Cost per PC (4 GB RAM): $ 1,000 

• Cost per disk (1 TB): $ 500 with 5 ms per RA, 20 MB/s for SA’s 
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Back-of-the-Envelope Cost Model 

for Document-Partitioned Index (in RAM)            

• 3,000 computers for  

    one copy of index = 1 cluster 

–    3,000 x 4 GB RAM = 12 TB  

    (10 TB total index size + workspace RAM) 
 

• Query Processing: 

– Each query executed by all 3,000 computers in parallel: 
1 ms + (2 x 200 ms / 3000)  1 ms 

     each cluster can sustain ~1,000 queries / s 
 

• 10 clusters = 30,000 computers 

 to sustain peak load and guarantee reliability/availability  

      $ 30 Mio = 30,000 x $1,000  (no “big” disks) 
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Distributed Indexing: Term Partitioning 
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… 
Entire index lists are 
hashed onto nodes by termId. 

Queries are routed  
to nodes with  
relevant terms. 

 Lower resource consumption,  
     susceptible to imbalance  
     (because of data or load skew), 
     index maintenance non-trivial. 



Back-of-the-Envelope Cost Model  

for Term-Partitioned Index (on Disk)          

• 10 nodes, each with 1 TB disk, hold entire index 

•  Execution time:  

     max (1 MB / 20 MB/s, 1 ms + 200 ms) 
–    but limited throughput:  

–    5 q/s per node for 1-term queries 
 

• Need 200 nodes = 1 cluster  

    to sustain 1,000 q/s with 1-term queries  

    or 500 q/s with 2-term queries 
 

• Need 20 clusters for peak load and reliability/availability        
4,000 computers  $ 6 Mio = 4,000 x ($1,000 + $500) 
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saves money & energy 

but faces challenge of update costs & load balance 


