
Chapter VII:

Frequent Itemsets

& Association Rules

Information Retrieval & Data Mining

Universität des Saarlandes, Saarbrücken

Winter Semester 2011/12

Chapter VII:

Frequent Itemsets & Association Rules

VII.1 Definitions

 Transaction data, frequent itemsets, closed and maximal itemsets,

 association rules

VII.2 The Apriori Algorithm

 Monotonicity and candidate pruning, mining closed and maximal

 itemsets

VII.3 Mininig Association Rules

 Apriori, hash-based counting & extensions

VII.4 Other measures for Association Rules

 Properties of measures

December 22, 2011 VI.2 IR&DM, WS'11/12

Following Chapter 6 of

Mohammed J. Zaki, Wagner Meira Jr.: Fundamentals of Data Mining Algorithms.

December 22, 2011 VI.3 IR&DM, WS'11/12

Lattice of items

VII.2 Apriori Algorithm

 for Mining Frequent Itemsets

A Naïve Algorithm For Frequent Itemsets

December 22, 2011 IR&DM, WS'11/12 VI.4

• Generate all possible itemsets (lattice of itemsets):

 Start with 1-itemsets, 2-itemsets, ..., d-itemsets.

• Compute the frequency of each itemset from the data:

 Count in how many transactions each itemset occurs.

• If the support of an itemset is above minsupp

 then report it as a frequent itemset.

Runtime:

- Match every candidate against each transaction.

- For M candidates and N=|D| transactions, the complexity

 is: O(N M) => this is very expensive since M = 2|I|

Speeding Up the Naïve Algorithm

December 22, 2011 IR&DM, WS'11/12 VI.5

• Reduce the number of candidates (M):

– Complete search: M=2|I|

– Use pruning techniques to reduce M.

• Reduce the number of transactions (N):

– Reduce size of N as the size of itemset increases.

– Use vertical-partitioning of the data to apply the mining

 algorithms.

• Reduce the number of comparisons (N*M)

– Use efficient data structures to store the candidates or

 transactions.

– No need to match every candidate against every transaction.

Reducing the Number of Candidates

December 22, 2011 IR&DM, WS'11/12 VI.6

• Apriori principle (main observation):

– If an itemset is frequent, then all of its subsets must

 also be frequent.

• Anti-monotonicity property (of support):

– The support of an itemset never exceeds the support

 of any of its subsets.

Apriori Algorithm: Idea and Outline

Outline:

• Proceed in phases i=1, 2, ..., each making a single pass over D,

 and generate item set X with |X|=i in phase i;

• Use phase i-1 results to limit work in phase i:

 Anti-monotonicity property (downward closedness):

 For i-item-set X to be frequent,

 each subset X’  X with |X’|=i-1 must be frequent, too;

Worst-case time complexity still is exponential in |I| and linear in

|D|*|I|, but usual behavior is linear in N=|D|.
(detailed average-case analysis is strongly data dependent, thus difficult)

December 22, 2011 VI.7 IR&DM, WS'11/12

Apriori Algorithm: Pseudocode
procedure apriori (D, min-support):
 L1 = frequent 1-itemsets(D);
 for (k=2; Lk-1  ; k++) {
 Ck = apriori-gen (Lk-1, min-support);
 for each t  D { // linear scan of D
 Ct = subsets of t that are in Ck;
 for each candidate c  Ct {c.count++} }; //end for
 Lk = {c  Ck | c.count  min-support} }; //end for
 return L = k Lk; // returns all frequent item sets

procedure apriori-gen (Lk-1, min-support):
 Ck = :

 for each itemset x1  Lk-1 {
 for each itemset x2  Lk-1 {
 if x1 and x2 have k-2 items in common and differ in 1 item { // join
 x = x1  x2;
 if there is a subset s  x with s  Lk-1 {disregard x} // infreq. subset
 else {add x to Ck} } } };
 return Ck;

December 22, 2011 VI.8 IR&DM, WS'11/12

Illustration For Pruning Infrequent Itemsets

December 22, 2011 IR&DM, WS'11/12 VI.9

Suppose {AB}, {E}
are infrequent.

Lattice of items

Pruned items

Using Just One Pass over the Data

December 22, 2011 IR&DM, WS'11/12 VI.10

Idea:

Do not use the database for counting support after

the 1st pass anymore!

Instead, use data structure Ck’ for counting support in

every step:

• Ck’ = {<TID, {Xk}> | Xk is a potentially frequent

 k-itemset in transaction with id=TID}

• C1’: corresponds to the original database

• The member Ck’ corresponding to transaction t is

 defined as <t.TID, {c  Ck | c is contained in t}>

AprioriTID Algorithm: PseudoCode

December 22, 2011 IR&DM, WS'11/12 VI.11

procedure apriori (D, min-support):
 L1 = frequent 1-itemsets(D);
 C1’ = D;
 for (k=2; Lk-1  ; k++) {
 Ck = apriori-gen (Lk-1, min-support);
 Ck’ = 
 for each t  Ck-1’ { // linear scan of Ck-1’ instead of D
 Ct = {c  Ck | t[c – c[k]]=1 and t[c – c[k-1]]=1};
 for each candidate c  Ct {c.count++};

 if (Ct ≠ ) {Ck’ = Ck’  Ct};

 }; // end for
 Lk = {c  Ck | c.count  min-support}
 }; // end for
 return L = k Lk; // returns all frequent item sets

procedure apriori-gen (Lk-1, min-support):
 … // as before

Mining Maximal and Closed Frequent

Itemsets with Apriori

December 22, 2011 IR&DM, WS'11/12 VI.12

Naïve Algorithm: (Bottum-Up Approach)

1) Compute all frequent itemsets using Apriori.

2) Compute all closed itemsets by checking all

subsets of frequent itemsets found in 1).

3) Compute all maximal itemsets

 by checking all subsets of closed and frequent

itemsets found in 2).

CHARM Algorithm (I)
for Mining Closed Frequent Itemsets
[Zaki, Hsiao: SIAM’02]

December 22, 2011 IR&DM, WS'11/12 VI.13

Basic Properties of Itemset-TID-Pairs:

Let t(X) denote the transaction ids associated with X.

Let X1 ≤ X2 (for under any suitable order function, e.g., lexical order).

1) If t(X1) = t(X2), then t(X1  X2) = t(X1)  t(X2) = t(X1) = t(X2).

 → Replace X1 with X1  X2, remove X2 from further consideration.

2) If t(X1)  t(X2), then t(X1  X2) = t(X1)  t(X2) = t(X1) ≠ t(X2).

 → Replace X1 with X1  X2. Keep X2, as it leads to a different closure.

3) If t(X1)  t(X2), then t(X1  X2) = t(X1)  t(X2) = t(X2) ≠ t(X1).

 → Replace X2 with X1  X2. Keep X1, as it leads to a different closure.

4) Else if t(X1) ≠ t(X2), then t(X1  X2) = t(X1)  t(X2) ≠ t(X2) ≠ t(X1).

 → Do not replace any itemsets. Both X1 and X2 lead to different closures.

December 22, 2011 IR&DM, WS'11/12 VI.14

Items: A C D T W

Transactions

1 ACTW

2 CDW

3 ACTW

4 ACDW

5 ACDTW

6 CDT

Support Frequent Itemsets

100% C

84% W, CW

67% A, D, T, AC, AW,

 CD, CT, ACW

50% AT, DW, TW, ACT, ATW,

 CDW, CTW, ACTW

{}

A x 1345 C x 123456 D x 2456 T x 1356 W x 12345

AC x 1345

ACW x 1345

ACD x 45 ACT x 135

ACTW x 135

CD x 2456 CT x 1356 CW x 12345

CDT x 56 CDW x 245 CTW x 245

CHARM Algorithm (II)
for Mining Closed Frequent Itemsets
[Zaki, Hsiao: SIAM’02]

Done in 10 steps, found 7 closed & frequent itemsets!

Given:

• A set of items I = {x1, ..., xm}

• A set (bag) D={t1, ..., tn}

 of itemsets (transactions) ti = {xi1, ..., xik}  I

Wanted:

Association rules of the form X  Y with X  I and Y I such that

• X is sufficiently often a subset of the itemsets ti, and

• when X  ti then most frequently Y ti holds as well.

support (X  Y) = absolute frequency of itemsets that contain X and Y

frequency (X  Y) = support(X  Y) / |D| = P[XY] relative frequency

 frequency of itemsets that contain X and Y

confidence (X  Y) = P[Y|X] = relative frequency of itemsets

 that contain Y provided they contain X

Support is usually chosen to be low (in the range of 0.1% to 1% frequency),

confidence (aka. strength) in the range of 90% or higher.

VII.3 Mining Association Rules

December 22, 2011 VI.15 IR&DM, WS'11/12

Association Rules: Example
Market basket data (“sales transactions”):
t1 = {Bread, Coffee, Wine}

t2 = {Coffee, Milk}

t3 = {Coffee, Jelly}

t4 = {Bread, Coffee, Milk}

t5 = {Bread, Jelly}

t6 = {Coffee, Jelly}

t7 = {Bread, Jelly}

t8 = {Bread, Coffee, Jelly, Wine}

t9 = {Bread, Coffee, Jelly}

frequency (Bread  Jelly) = 4/9

frequency (Coffee  Milk) = 2/9

frequency (Bread, Coffee  Jelly) = 2/9

confidence (Bread  Jelly) = 4/6

confidence (Coffee  Milk) = 2/7

confidence (Bread, Coffee  Jelly) = 2/4

Other applications:

• book/CD/DVD purchases or rentals

• Web-page clicks and other online usage

 etc. etc.

December 22, 2011 VI.16 IR&DM, WS'11/12

Mining Association Rules with Apriori

December 22, 2011 IR&DM, WS'11/12 VI.17

Given a frequent itemset X, find all non-empty subsets

Y  X such that Y → X – Y satisfies the minimum

confidence requirement.

• If {A,B,C,D} is a frequent itemset, candidate rules are:

 ABC → D, ABD → C, ACD → B, BCD → A, A → BCD,

 B → ACD, C → ABD, D → ABC, AB → CD, AC → BD,

 AD → BC, BC → AD, BD → AC, CD → AB

• If |X| = k, then there are 2k–2 candidate association rules

 (ignoring L →  and  → L).

Mining Association Rules with Apriori

December 22, 2011 IR&DM, WS'11/12 VI.18

How to efficiently generate rules from frequent itemsets?

• In general, confidence does not have an anti-monotone property.

 conf(ABC → D) can be larger or smaller than conf(AB → D)

• But confidence of rules generated from the same itemset has an

 anti-monotone property!

• Example:

 X = {A,B,C,D}:

 conf(ABC → D) ≥ conf(AB → CD) ≥ conf(A → BCD)

Why?

→ Confidence is anti-monotone w.r.t. number of items on

 the RHS of the rule!

Apriori Algorithm For Association Rules

Outline:

• Proceed in phases i=1, 2, ..., each making a single pass over D,

 and generate rules X  Y with

 frequent item set X (sufficient support) and |X|=i in phase i;

• Use phase i-1 results to limit work in phase i:

 Anti-monotonicity property (downward closedness):

 For i-item-set X to be frequent,

 each subset X’  X with |X’|=i-1 must be frequent, too;

• Generate rules from frequent item sets;

• Test confidence of rules in final pass over D;

December 22, 2011 VI.19 IR&DM, WS'11/12

Illustration for Association Rule Mining

December 22, 2011 IR&DM, WS'11/12 VI.20

Algorithmic Extensions and Improvements
• Hash-based counting (computed during very first pass):

 map k-itemset candidates (e.g., for k=2) into hash table and

 maintain one count per cell; drop candidates with low count early.

• Remove transactions that don’t contain frequent k-itemset

 for phases k+1, ...

• Partition transactions D:

 An itemset is frequent only if it is frequent in at least one partition.

• Exploit parallelism for scanning D.

• Randomized (approximative) algorithms:

 Find all frequent itemsets with high probability (using hashing, etc.).

• Sampling on a randomly chosen subset of D, then correct sample.

...

Mostly concerned about reducing disk I/O cost

(for TByte databases of large wholesalers or phone companies).

December 22, 2011 VI.21 IR&DM, WS'11/12

Hash-based Counting of Itemsets

December 22, 2011 IR&DM, WS'11/12 VI.22

• During the main loop of Apriori, the support of candidate itemsets is calculated

 by matching each candidate against each transaction.

• This step can be accelerated by matching a candidate only against transactions that

 are relevant for this candidate (i.e., the ones that are contained in the same bucket).

Hash-Tree Index for Itemsets

December 22, 2011 IR&DM, WS'11/12 VI.23

1 4 5

1 2 4

4 5 7

1 2 5

4 5 8

1 5 9

1 3 6

2 3 4

5 6 7

3 4 5
3 5 6

3 5 7

6 8 9

3 6 7

3 6 8

H

H

H

H

Hash-tree for 3-itemsets:
• Inner nodes denote same hash-function

 H(p) = p mod 3

• Leaf nodes contain all candidate 3-itemsets

1,4,7

2,5,8

3,6,9 1 2 3 5 6

Transaction

• Build hash-tree index by splitting

 candidate itemsets according to H

• Stop splitting into subsets if current

 split contains only one element

1,4,7

2,5,8

3,6,9
1,4,7

2,5,8

3,6,9

1,4,7
2,5,8

3,6,9

• Lookup a transaction by iteratively

 matching its items against H

• Check for containment if a leaf is reached

Extensions and Generalizations of Association Rules

• Quantified rules: consider quantitative attributes of item in transactions

 (e.g., wine between $20 and $50  cigars, or

 age between 30 and 50  married, etc.)

• Constrained rules: consider constraints other than count thresholds,

 (e.g., count itemsets only if average or variance of price exceeds ...)

• Generalized aggregation rules: rules referring to aggr. functions other

 than count (e.g., sum(X.price)  avg(Y.age))

• Multilevel association rules: considering item classes

 (e.g., chips, peanuts, bretzels, etc., belonging to class “snacks”)

• Sequential patterns (e.g., customers who purchase books in some order):

 combine frequent sequences x1 x2 … xn and x2 … xn xn+1

 into frequent-sequence candidate x1 x2 … xn xn+1

• From strong rules to interesting rules:

 consider also lift (aka. interest) of rule X Y: P[XY] / P[X]P[Y]

• Correlation rules (see next slides)

December 22, 2011 VI.24 IR&DM, WS'11/12

VII.4 Other Measures For Association Rule Mining

December 22, 2011 VI.25 IR&DM, WS'11/12

Limitations of support and confidence:

(a) Many interesting items might fall below minsupp threshold!
(b) Confidence ignores the support of the itemset in the consequent!

Consider the rule: tea  coffee
 → support(tea  coffee) = 20
 → confidence(tea  coffee) = 0.8

Consider contingency table (assume n=100 transactions):

But support of coffee alone is 90, and of tea alone it is 25. That is,
drinking coffee makes you less likely to drink tea, and drinking tea
makes you less likely to drink coffee!
 Tea and coffee have negative correlation!

C

T T

C

20 70 90

10 5 5

25 75 100

Correlation Rules
Example for strong, but misleading association rule:
 tea  coffee with confidence 80% and support 20
But support of coffee alone is 90, and of tea alone it is 25
  tea and coffee have negative correlation!

Consider contingency table (assume n=100 transactions):

Correlation rules are monotone (upward closed):
If the set X is correlated then every superset X’  X is correlated, too.

 {T, C} is a frequent and correlated item set

 
 




},{ },{

2
2

/)()(

)/)()()((
),(

CCX TTY nYsuppXsupp

nYsuppXsuppYXsupp
TC

December 22, 2011 VI.26 IR&DM, WS'11/12

C

T T

C

20 70 90

10 5 5

25 75 100

Correlation Rules

E[C]=0.9

E[T]=0.25

E[(T-E[T])2]=1/4 * 9/16 +3/4 * 1/16= 3/16=Var(T)

E[(C-E[C])2]=9/10 * 1/100 +1/10 * 1/100 = 9/100=Var(C)

E[(T-E[T])(C-E[C])]=

 2/10 * 3/4 * 1/10

 – 7/10 * 1/4 * 1/10

 – 5/100 * 3/4 * 9/10

 + 5/100 * 1/4 * 9/10 =

 60/4000 – 70/4000 – 135/4000 + 45/4000 = – 1/40 = Cov(C,T)

(C,T) = – 1/40 * 4/sqrt(3) * 10/3  -1/(3*sqrt(3))  – 0.2

Example for strong, but misleading association rule:
 tea  coffee with confidence 80% and support 20
But support of coffee alone is 90, and of tea alone it is 25
  tea and coffee have negative correlation!

Consider contingency table (assume n=100 transactions):

December 22, 2011 VI.27 IR&DM, WS'11/12

C

T T

C

20 70 90

10 5 5

25 75 100

Correlated Item Set Algorithm
procedure corrset (D, min-support, support-fraction, significance-level):
 for each x  I compute count O(x);
 initialize candidates := ; significant := ;
 for each item pair x, y  I with O(x) > min-support and O(y) > min-support {
 add (x,y) to candidates};
 while (candidates  ) {
 notsignificant := ;
 for each itemset x  candidates {
 construct contingency table T;
 if (percentage of cells in T with count > min-support
 is at least support-fraction) { // otherwise too few data for chi-square
 if (chi-square value for T  significance-level)
 {add X to significant} else {add X to notsignificant} } }; // if/for

 candidates := itemsets with cardinality k such that
 every subset of cardinality k-1 is in notsignificant;
 // only interested in correlated itemsets of min. cardinality
 }; //while
 return significant;

December 22, 2011 VI.28 IR&DM, WS'11/12

Examples of Contingency Tables

December 22, 2011 IR&DM, WS'11/12 VI.29

 A

B B

A

f11 f10 f1+

f0+ f00 f01

f+1 f+0

General form:

(for pair of variables A, B)

N

Examples for binary cont. tables:

Symmetric Measures for Itemset {A,B}

December 22, 2011 IR&DM, WS'11/12 VI.30

Asymmetric Measures For Rule A  B

December 22, 2011 IR&DM, WS'11/12 VI.31

Consistency of Measures

December 22, 2011 IR&DM, WS'11/12 VI.32

Ranking of tables according to symmetric measures

Ranking of tables according to asymmetric measures

• Rankings may

 vary substantially!

• Many measures

 provide conflicting

 information about

 quality of a pattern.

• Want to define

 generic properties of

 measures.

Properties of Measures

December 22, 2011 VI.33 IR&DM, WS'11/12

Definition (Inversion Property):

An objective measure M is invariant under the inversion operation

if its value remains the same when exchanging the frequency counts

f11 with f00 and f10 with f01.

Definition (Null Addition Property):

An objective measure M is invariant under the null addition operation

if it is not affected by increasing f00, while all other frequency counts

stay the same.

Definition (Scaling Invariance Property):

An objective measure M is invariant under the row/column scaling

operation if M(T) = M(T’), where T is a contingency table with

frequency counts [f11, f10, f01, f00], T’ is a contingency table with

frequency counts [k1k3f11, k2k3f10, k1k4f01, k2k4f00], and k1, k2, k3, k4

Are positive constants.

Example: Confidence and the Inversion Property

December 22, 2011 IR&DM, WS'11/12 VI.34

confidence(A  B) := P[B|A]

 = f11/f1+ = f11 / f11+ f10

 f00 / f00 + f10 = f00/f+0

 (Inversion)

 A

B B

A

f11 f10 f1+

f0+ f00 f01

f+1 f+0 N

Counter example:

C

T T

C

20 70 90

10 5 5

25 75

Recall the general form:

confidence(T  C)

 = 20/25 = 0.8 ≠ 5/90 = 0.055

≠

100

Simpson’s Paradox (I)

December 22, 2011 IR&DM, WS'11/12 VI.35

 H

E E

H

99 81 180

120 66 54

153 147 300

Consider the following correlation between people buying an

HTDV (H) and an exercise machine (E):

confidence(H  E) = 99/180 = 0.55

confidence( H  E) = 54/120 = 0.45

→ Customers who buy an HDTV are more likely to buy an exercise

machine than those who do not buy an HDTV.

Simpson’s Paradox (II)

December 22, 2011 IR&DM, WS'11/12 VI.36

Consider stratified data by including additional variables

(data split two groups: college students and working employees):

confidence(H  E) = 1/10 = 0.10 =: a/b

confidence(H  E) = 4/34 = 0.12 =: c/d

confidence(H  E) = 98/170 = 0.57 =: p/q

confidence(H  E) = 50/86 = 0.58 =: r/s

 H

E E

H

1 9 10

34 30 4

 H

H

98 72 170

86 36 50

Total

 Students

 (44)

Employees

 (256)

H and E are positively correlated in the combined data but negatively

correlated in each of the strata!

When pooled together, the confidences of H  E and H  E are

(a+p)/(b+q) and (c+r)/(d+s), respectively.

Simpson’s paradox occurs when: (a+p)/(b+q) > (c+r)/(d+s)

Summary of Section VII

December 22, 2011 IR&DM, WS'11/12 VI.37

Mining frequent itemset and association rules is a versatile tool for many

applications (e-commerce, user recommendations, etc.).

One of the most basic building blocks in data mining for identifying interesting

correlations among items/objects based on co-occurrence statistics.

Complexity issues mostly due to the huge amount of possible combinations of

candidate itemsets (and rules), also expensive when amount of transactions is huge

and needs to be read from disk.

Apriori builds on anti-monotonicity property of support, whereas confidence

does not generally have this property (however pruning is possible to some extent

within a given itemset).

Many quality measures considered in the literature, each with different properties.

Additional Literature:

M. J. Zaki and C. Hsiao: CHARM: An efficient algorithm for closed itemset mining.

SIAM’02.

