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Chapter VII:  

Frequent Itemsets & Association Rules 

VII.1 Definitions 

  Transaction data, frequent itemsets, closed and maximal itemsets,  

  association rules 
 

VII.2 The Apriori Algorithm 

   Monotonicity and candidate pruning, mining closed and maximal  

  itemsets 
 

VII.3 Mininig Association Rules 

  Apriori, hash-based counting & extensions 
 

VII.4 Other measures for Association Rules 

  Properties of measures 
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Following Chapter 6 of 

Mohammed J. Zaki, Wagner Meira Jr.: Fundamentals of Data Mining Algorithms. 
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Lattice of items 

VII.2 Apriori Algorithm  

         for Mining Frequent Itemsets 



A Naïve Algorithm For Frequent Itemsets 
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• Generate all possible itemsets (lattice of itemsets): 

   Start with 1-itemsets, 2-itemsets, ..., d-itemsets. 
 

• Compute the frequency of each itemset from the data: 

   Count in how many transactions each itemset occurs. 
 

• If the support of an itemset is above minsupp 

   then report it as a frequent itemset. 
 

Runtime: 

- Match every candidate against each transaction. 

- For M candidates and N=|D| transactions, the complexity  

  is: O(N M) => this is very expensive since M = 2|I| 



Speeding Up the Naïve Algorithm 
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• Reduce the number of candidates (M): 

– Complete search: M=2|I| 

– Use pruning techniques to reduce M. 

 

• Reduce the number of transactions (N): 

– Reduce size of N as the size of itemset increases. 

– Use vertical-partitioning of the data to apply the mining 

   algorithms. 

 

• Reduce the number of comparisons (N*M) 

– Use efficient data structures to store the candidates or  

   transactions. 

– No need to match every candidate against every transaction. 



Reducing the Number of Candidates 
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• Apriori principle (main observation): 
 

– If an itemset is frequent, then all of its subsets must  

   also be frequent. 
 

• Anti-monotonicity property (of support): 
 

– The support of an itemset never exceeds the support  

   of any of its subsets. 



Apriori Algorithm: Idea and Outline 

Outline: 

• Proceed in phases i=1, 2, ..., each making a single pass over D, 

   and generate item set X with |X|=i in phase i; 

•  Use phase i-1 results to limit work in phase i: 

        Anti-monotonicity property (downward closedness): 

             For i-item-set X to be frequent, 

             each subset X’  X with |X’|=i-1 must be frequent, too; 

Worst-case time complexity still is exponential in |I| and linear in 

|D|*|I|, but usual behavior is linear in N=|D|. 
(detailed average-case analysis is strongly data dependent, thus difficult) 
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Apriori Algorithm: Pseudocode 
procedure apriori (D, min-support):  
   L1 = frequent 1-itemsets(D); 
   for (k=2; Lk-1  ; k++) { 
       Ck = apriori-gen (Lk-1, min-support); 
       for each t  D {   // linear scan of D 
            Ct = subsets of t that are in Ck; 
            for each candidate c  Ct  {c.count++} }; //end for 
       Lk = {c  Ck | c.count  min-support} }; //end for 
   return L = k Lk;    // returns all frequent item sets 

procedure apriori-gen (Lk-1, min-support):  
   Ck = : 

   for each itemset x1  Lk-1 { 
      for each itemset x2  Lk-1 { 
         if x1 and x2 have k-2 items in common and differ in 1 item {   // join 
             x = x1  x2; 
             if there is a subset s  x with s  Lk-1 {disregard x}    // infreq. subset 
             else {add x to Ck} } } }; 
   return Ck; 
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Illustration For Pruning Infrequent Itemsets 
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Suppose {AB}, {E} 
are infrequent. 

Lattice of items 

Pruned items 



Using Just One Pass over the Data 
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Idea:  

Do not use the database for counting support after  

the 1st pass anymore! 

 

Instead, use data structure Ck’ for counting support in 

every step: 

• Ck’ = {<TID, {Xk}> | Xk is a potentially frequent  

              k-itemset in transaction with id=TID} 

• C1’: corresponds to the original database  

• The member Ck’ corresponding to transaction t is  

   defined as <t.TID,  {c  Ck | c is contained in t}>  



AprioriTID Algorithm: PseudoCode 
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procedure apriori (D, min-support):  
   L1 = frequent 1-itemsets(D);  
   C1’ = D; 
   for (k=2; Lk-1  ; k++) { 
       Ck = apriori-gen (Lk-1, min-support); 
       Ck’ =  
       for each t  Ck-1’ {   // linear scan of Ck-1’  instead of D 
            Ct = {c  Ck | t[c – c[k]]=1 and t[c – c[k-1]]=1}; 
            for each candidate c  Ct  {c.count++}; 

            if (Ct ≠ )  {Ck’ = Ck’  Ct}; 

       }; // end for  
       Lk = {c  Ck | c.count  min-support}  
   }; // end for  
   return L = k Lk;    // returns all frequent item sets 

procedure apriori-gen (Lk-1, min-support):  
   … // as before 



Mining Maximal and Closed Frequent  

Itemsets with Apriori  
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Naïve Algorithm: (Bottum-Up Approach) 

 

1) Compute all frequent itemsets using Apriori. 

 

2) Compute all closed itemsets by checking all 

subsets of frequent itemsets found in 1). 

 

3) Compute all maximal itemsets 

 by checking all subsets of closed and frequent 

itemsets found in 2). 

 



CHARM Algorithm (I) 
for Mining Closed Frequent Itemsets 
[Zaki, Hsiao: SIAM’02] 
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Basic Properties of Itemset-TID-Pairs: 
 

Let t(X) denote the transaction ids associated with X. 

Let X1 ≤ X2 (for under any suitable order function, e.g., lexical order). 
 

1) If t(X1) = t(X2), then t(X1  X2) = t(X1)  t(X2) = t(X1) = t(X2). 

   → Replace X1 with X1  X2, remove X2 from further consideration. 
 

2) If t(X1)  t(X2), then t(X1  X2) = t(X1)  t(X2) = t(X1) ≠ t(X2). 

  → Replace X1 with X1  X2. Keep X2, as it leads to a different closure. 
 

3) If t(X1)  t(X2), then t(X1  X2) = t(X1)  t(X2) = t(X2) ≠ t(X1). 

  → Replace X2 with X1  X2. Keep X1, as it leads to a different closure. 
 

4) Else if t(X1) ≠ t(X2), then t(X1  X2) = t(X1)  t(X2) ≠ t(X2) ≠ t(X1). 

  → Do not replace any itemsets. Both X1 and X2 lead to different closures. 
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Items: A C D T W 

Transactions 

1 ACTW 

2 CDW 

3 ACTW 

4 ACDW 

5 ACDTW 

6 CDT 

Support Frequent Itemsets 

100%  C 

84% W, CW 

67%  A, D, T,  AC, AW, 

                   CD, CT, ACW 

50%  AT, DW, TW, ACT, ATW, 

                     CDW, CTW, ACTW 

{} 

A x 1345 C x 123456 D x 2456 T x 1356 W x 12345 

AC x 1345 

ACW x 1345 

ACD x 45 ACT x 135 

ACTW x 135 

CD x 2456 CT x 1356 CW x 12345 

CDT x 56 CDW x 245 CTW x 245 

CHARM Algorithm (II) 
for Mining Closed Frequent Itemsets 
[Zaki, Hsiao: SIAM’02] 

Done in 10 steps, found 7 closed & frequent itemsets! 



Given:  

• A set of items I = {x1, ..., xm} 

• A set (bag) D={t1, ..., tn}   

  of itemsets (transactions) ti = {xi1, ..., xik}  I 

Wanted:  

Association rules of the form X  Y with X  I and Y I such that  

• X is sufficiently often a subset of the itemsets ti, and 

• when X  ti then most frequently Y ti holds as well. 

support (X  Y)  =  absolute frequency of itemsets that contain X and Y 

frequency (X  Y) = support(X  Y) / |D| = P[XY] relative frequency 

         frequency of itemsets that contain X and Y 

confidence (X  Y) = P[Y|X] = relative frequency of itemsets  

                                                   that contain Y provided they contain X 

Support is usually chosen to be low (in the range of 0.1% to 1% frequency), 

confidence (aka. strength) in the range of 90% or higher. 

VII.3 Mining Association Rules 
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Association Rules: Example 
Market basket data (“sales transactions”): 
t1 = {Bread, Coffee, Wine} 

t2 = {Coffee, Milk} 

t3 = {Coffee, Jelly} 

t4 = {Bread, Coffee, Milk} 

t5 = {Bread, Jelly} 

t6 = {Coffee, Jelly} 

t7 = {Bread, Jelly} 

t8 = {Bread, Coffee, Jelly, Wine} 

t9 = {Bread, Coffee, Jelly} 

frequency (Bread  Jelly) = 4/9 

frequency (Coffee  Milk) = 2/9 

frequency (Bread, Coffee  Jelly) = 2/9 

confidence (Bread  Jelly) = 4/6 

confidence (Coffee  Milk) = 2/7 

confidence (Bread, Coffee  Jelly) = 2/4 

Other applications: 

• book/CD/DVD purchases or rentals 

• Web-page clicks and other online usage 

  etc. etc. 
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Mining Association Rules with Apriori 
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Given a frequent itemset X, find all non-empty subsets  

Y  X such that Y → X – Y satisfies the minimum 

confidence requirement. 
 

• If {A,B,C,D} is a frequent itemset, candidate rules are: 

  ABC → D, ABD → C, ACD → B, BCD → A, A → BCD, 

  B →   ACD, C → ABD, D → ABC, AB → CD, AC → BD,  

  AD → BC, BC → AD, BD → AC, CD → AB 

 

• If |X| = k, then there are 2k–2 candidate association rules  

  (ignoring L →  and  → L). 



Mining Association Rules with Apriori 
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How to efficiently generate rules from frequent itemsets? 
 

• In general, confidence does not have an anti-monotone property. 

   conf(ABC → D) can be larger or smaller than conf(AB → D) 
 

• But confidence of rules generated from the same itemset has an   

   anti-monotone property! 
 

• Example:  

  X = {A,B,C,D}: 

    conf(ABC → D) ≥ conf(AB → CD) ≥ conf(A →  BCD) 
 

Why?  

→ Confidence is anti-monotone w.r.t. number of items on  

     the RHS of the rule! 



 

 

Apriori Algorithm For Association Rules 

Outline: 

• Proceed in phases i=1, 2, ..., each making a single pass over D, 

   and generate rules X  Y with  

   frequent item set X  (sufficient support) and |X|=i in phase i; 

•  Use phase i-1 results to limit work in phase i: 

        Anti-monotonicity property (downward closedness): 

             For i-item-set X to be frequent, 

             each subset X’  X with |X’|=i-1 must be frequent, too; 

• Generate rules from frequent item sets; 

• Test confidence of rules in final pass over D; 
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Illustration for Association Rule Mining 
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Algorithmic Extensions and Improvements 
• Hash-based counting (computed during very first pass): 

   map k-itemset candidates (e.g., for k=2) into hash table and 

   maintain one count per cell; drop candidates with low count early. 

• Remove transactions that don’t contain frequent k-itemset  

   for phases k+1, ... 

• Partition transactions D: 

   An itemset is frequent only if it is frequent in at least one partition. 

• Exploit parallelism for scanning D. 

• Randomized (approximative) algorithms: 

   Find all frequent itemsets with high probability (using hashing, etc.). 

• Sampling on a randomly chosen subset of D, then correct sample. 

... 

 

Mostly concerned about reducing disk I/O cost 

(for TByte databases of large wholesalers or phone companies). 
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Hash-based Counting of Itemsets 
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• During the main loop of Apriori, the support of candidate itemsets is calculated  

  by matching each candidate against each transaction. 

• This step can be accelerated by matching a candidate only against transactions that 

  are relevant for this candidate (i.e., the ones that are contained in the same bucket). 



Hash-Tree Index for Itemsets 
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1 4 5 

1 2 4 

4 5 7 

1 2 5 

4 5 8 

1 5 9 

1 3 6 

2 3 4 

5 6 7 

3 4 5 
3 5 6 

3 5 7 

6 8 9 

3 6 7 

3 6 8 

H 

H 

H 

H 

Hash-tree for 3-itemsets: 
• Inner nodes denote same hash-function  

   H(p) = p mod 3 

• Leaf nodes contain all candidate 3-itemsets 

1,4,7 

2,5,8 

3,6,9 1 2 3 5 6 

Transaction 

• Build hash-tree index by splitting 

  candidate itemsets according to H  

• Stop splitting into subsets if current  

  split contains only one element 

1,4,7 

2,5,8 

3,6,9 
1,4,7 

2,5,8 

3,6,9 

1,4,7 
2,5,8 

3,6,9 

 

 

 

 
 

 

 
 

 
• Lookup a transaction by iteratively 

   matching its items against H 

• Check for containment if a leaf is reached 



Extensions and Generalizations of Association Rules 

• Quantified rules: consider quantitative attributes of item in transactions 

   (e.g., wine between $20 and $50  cigars, or 

    age between 30 and 50  married, etc.) 
 

• Constrained rules: consider constraints other than count thresholds, 

   (e.g., count itemsets only if average or variance of price exceeds ...) 
 

• Generalized aggregation rules: rules referring to aggr. functions other 

   than count (e.g., sum(X.price)  avg(Y.age)) 
 

• Multilevel association rules: considering item classes 

   (e.g., chips, peanuts, bretzels, etc., belonging to class “snacks”) 
 

• Sequential patterns (e.g., customers who purchase books in some order): 

   combine frequent sequences x1 x2 … xn and x2 … xn xn+1  

   into frequent-sequence candidate x1 x2 … xn xn+1 
 

• From strong rules to interesting rules: 

  consider also lift (aka. interest) of rule X Y: P[XY] / P[X]P[Y] 
 

• Correlation rules (see next slides) 
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VII.4 Other Measures For Association Rule Mining 
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Limitations of support and confidence: 
 

(a) Many interesting items might fall below minsupp threshold! 
(b) Confidence ignores the support of the itemset in the consequent! 

Consider the rule: tea  coffee  
 → support(tea  coffee) = 20 
 → confidence(tea  coffee) = 0.8 
 
 

Consider contingency table (assume n=100 transactions): 

But support of coffee alone is 90, and of tea alone it is 25. That is, 
drinking coffee makes you less likely to drink tea, and drinking tea 
makes you less likely to drink coffee! 
 Tea and coffee have negative correlation! 

C 

T T 

C 

20 70 90 

10 5 5 

25 75 100 



Correlation Rules 
Example for strong, but misleading association rule: 
     tea  coffee with confidence 80% and support 20 
But support of coffee alone is 90, and of tea alone it is 25 
      tea and coffee have negative correlation! 

Consider contingency table (assume n=100 transactions): 

Correlation rules are monotone (upward closed): 
If the set X is correlated then every superset X’  X is correlated, too. 

 {T, C} is a frequent and correlated item set 

 
 




},{ },{

2
2

/)()(

)/)()()((
),(

CCX TTY nYsuppXsupp

nYsuppXsuppYXsupp
TC
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C 

T T 

C 

20 70 90 

10 5 5 

25 75 100 



Correlation Rules 

E[C]=0.9 

E[T]=0.25 

E[(T-E[T])2]=1/4 * 9/16 +3/4 * 1/16= 3/16=Var(T) 

E[(C-E[C])2]=9/10 * 1/100 +1/10 * 1/100 = 9/100=Var(C) 

E[(T-E[T])(C-E[C])]= 

      2/10 * 3/4 * 1/10      

  –  7/10 * 1/4 * 1/10 

  – 5/100 * 3/4 * 9/10 

  +  5/100 * 1/4 * 9/10    =  

 60/4000 – 70/4000 – 135/4000 + 45/4000 = – 1/40 = Cov(C,T) 

(C,T) = – 1/40 * 4/sqrt(3) * 10/3  -1/(3*sqrt(3))  – 0.2 

Example for strong, but misleading association rule: 
     tea  coffee with confidence 80% and support 20 
But support of coffee alone is 90, and of tea alone it is 25 
      tea and coffee have negative correlation! 

Consider contingency table (assume n=100 transactions): 
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C 

T T 

C 

20 70 90 

10 5 5 

25 75 100 



Correlated Item Set Algorithm 
procedure corrset (D, min-support, support-fraction, significance-level):  
   for each x  I compute count O(x); 
   initialize candidates := ; significant := ;  
   for each item pair x, y  I with O(x) > min-support and O(y) > min-support { 
        add (x,y) to candidates}; 
   while (candidates   ) { 
        notsignificant := ; 
        for each itemset x  candidates { 
             construct contingency table T; 
             if (percentage of cells in T with count > min-support 
               is at least support-fraction) {  // otherwise too few data for chi-square 
                  if  (chi-square value for T  significance-level)  
                  {add X to significant} else {add X to notsignificant} } };  // if/for 
 
        candidates := itemsets with cardinality k such that 
                              every subset of cardinality k-1 is in notsignificant; 
                              // only interested in correlated itemsets of min. cardinality 
   }; //while 
   return significant; 
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Examples of Contingency Tables 
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  A 

B B 

A 

f11 f10 f1+ 

f0+ f00 f01 

f+1 f+0 

General form:  

(for pair of variables A, B) 

N 

Examples for binary cont. tables: 



Symmetric Measures for Itemset {A,B} 
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Asymmetric Measures For Rule A  B 
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Consistency of Measures 
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Ranking of tables according to symmetric measures 

Ranking of tables according to asymmetric measures 

• Rankings may  

  vary substantially! 

• Many measures  

   provide conflicting 

   information about  

   quality of a pattern. 

• Want to define  

   generic properties of  

   measures. 



Properties of Measures 
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Definition (Inversion Property): 

An objective measure M is invariant under the inversion operation 

if its value remains the same when exchanging the frequency counts  

f11 with f00 and f10 with f01. 

Definition (Null Addition Property): 

An objective measure M is invariant under the null addition operation 

if it is not affected by increasing f00, while all other frequency counts 

stay the same. 

Definition (Scaling Invariance Property): 

An objective measure M is invariant under the row/column scaling 

operation if M(T) = M(T’), where T is a contingency table with  

frequency counts [f11, f10, f01, f00], T’ is a contingency table with  

frequency counts [k1k3f11, k2k3f10, k1k4f01, k2k4f00], and k1, k2, k3, k4 

Are positive constants. 

 



Example: Confidence and the Inversion Property 
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confidence(A  B) := P[B|A]  

 

  =  f11/f1+ =  f11  / f11+ f10 

 

          f00 / f00 + f10 =  f00/f+0 

     (Inversion) 

 

   

 

 

 

  

  A 

B B 

A 

f11 f10 f1+ 

f0+ f00 f01 

f+1 f+0 N 

Counter example: 

C 

T T 

C 

20 70 90 

10 5 5 

25 75 

Recall the general form:  

confidence(T  C)  

 

  =  20/25 = 0.8    ≠   5/90 = 0.055 

≠ 

100 



Simpson’s Paradox (I) 
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  H 

E E 

H 

99 81 180 

120 66 54 

153 147 300 

Consider the following correlation between people buying an 

HTDV (H) and an exercise machine (E): 

confidence(H  E)     = 99/180 = 0.55 

confidence( H  E) = 54/120 = 0.45 

 

→ Customers who buy an HDTV are more likely to buy an exercise  

machine than those who do not buy an HDTV. 



Simpson’s Paradox (II) 

December 22, 2011 IR&DM, WS'11/12 VI.36 

Consider stratified data by including additional variables 

(data split two groups: college students and working employees): 

confidence(H  E)    = 1/10 = 0.10    =: a/b 
 

confidence(H  E) = 4/34 = 0.12    =: c/d 
 

confidence(H  E)   = 98/170 = 0.57 =: p/q 
 

confidence(H  E) = 50/86  = 0.58  =: r/s 

 

  H 

E E 

H 

1 9 10 

34 30 4 

  H 

H 

98 72 170 

86 36 50 

Total 

  Students 

         (44) 

Employees 

        (256) 

H and E are positively correlated in the combined data but negatively 

correlated in each of the strata! 

When pooled together, the confidences of H  E and H  E are  

(a+p)/(b+q) and (c+r)/(d+s), respectively. 

Simpson’s paradox occurs when: (a+p)/(b+q) > (c+r)/(d+s) 



Summary of Section VII 
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Mining frequent itemset and association rules is a versatile tool for many 

applications (e-commerce, user recommendations, etc.). 
 

One of the most basic building blocks in data mining for identifying interesting 

correlations among items/objects based on co-occurrence statistics. 
 

Complexity issues mostly due to the huge amount of possible combinations of 

candidate itemsets (and rules), also expensive when amount of transactions is huge 

and needs to be read from disk. 
 

Apriori builds on anti-monotonicity property of support, whereas confidence 

does not generally have this property (however pruning is possible to some extent 

within a given itemset). 
 

Many quality measures considered in the literature, each with different properties. 
 

 

Additional Literature: 

M. J. Zaki and C. Hsiao: CHARM: An efficient algorithm for closed itemset mining. 

SIAM’02. 


