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Basic 1dea

* Create clustering for each number of clusters
k=1,2,...,n
* The clusterings must be hierarchical

— Every cluster of a k-clustering 1s a union of some clusters in
an /-clustering for all / < k

—1I.e. for all /, and for all £ > [, every cluster in an /-clustering
1s a subset of some cluster 1n k-clustering

» Example:
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Dendrograms
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The height of the subtree tree shows the distance between
the two branches
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Dendrograms and clusters
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Dendrograms

* Dendrograms show the hierarchy of the clustering

 The number of clusters can be deduced from
dendrogram

— Higher branches

* Outliers can be detected from dendrograms
— Single points that are far from others
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Agglomerative and divisive

* Agglomerative: bottom-up
— Start with #n clusters
— Combine two closest points into a cluster of two elements
* Combine two closest clusters into one bigger cluster
* Divisive: top-down
— Start with 1 cluster

— D1vide the cluster into two
* Divide the largest (per diameter) cluster into two smaller



Cluster distances

* The distance between two points x and y 1s d(x,y)
* But what 1s the distance between two clusters?
* Many intuitive definitions — no universal truth

— Different cluster distances yield different clusterings
— The selection of cluster distance depends on application

* Some distances between clusters B and C:
—minimum distance d(B,C) = min{d(x,y) : x € B and y € C}
—maximum distance d(B,C) = max{d(x,y) :x € B and y € C}
— average distance d(B,C) = avgld(x,y) . x&€ Band y € C}

— distance of centroids d(B,C) = d(us, uc),
where up1s the centroid of B and uc1s the centroid of C



Single link

* The distance between two clusters 1s the distance
between the closest points

—d(B,C) =min{d(x,y) . x€ Bandy € C}
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Strengths of single-link

Original Points Two Clusters

Can handle non-spherical clusters of unequal size



Weaknesses of single-link
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Complete link

 The distance between the clusters 1s the distance
between the furthest points

—d(B,C) = max{d(x,y) . x&€ Bandy € C}
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Strengths of complete link
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Weaknesses of complete link
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* Breaks largest clusters
* Biased towards spherical clusters



Group average and Mean distance

* Group average 1s the average of pairwise distances
—d(B,C) =avgi{d(x,y) :x&€ Band y € C}
= 2_xeB.yec d(x,y)/(IB]|C])

e Mean distance 1s the distance of the cluster centroids
—d(B,C) = d(us, uc)

Group average



Properties of group average

* A compromise between single and complete link

* Less susceptible to noise and outliers
— Similar to complete link

* Biased towards spherical clusters

— Similar to complete link



Ward’s method

* Ward’s distance between clusters 4 and B 1s the
increase 1 sum of squared errors (SSE) when the two
clusters are merged

— SSE for cluster A is SSE4 =Y x4 ||x — w4 |?

— Difference on merging clusters A and B to cluster C is then
d(A, B) = ASSEc = SSEc— SSE4 — SSE3

—Equivalently, d(4,B) = |A||B|/|A|+|B|)|lua — ps||*

* Weighted mean distance




Discussion on Ward’s method

* Less susceptible to noise and outliers
* Biased towards spherical clusters
» Hierarchical analogue of A~~-means

— Hence many shared pros and cons
— Can be used to 1nitialize k-means



Comparison

Group
average




Comparison

Group Ward’s
average method

[R&DM, WS'11/12 12 January 2012 VIIL.3-5-18



Comparison

Group Ward’s
average method

[R&DM, WS'11/12 12 January 2012 VIIL.3-5-18



Comparison

‘Group Ward’s
average method

[R&DM, WS'11/12 12 January 2012 VIIL.3-5-18



Comparison

Group
average




[Lance—Williams formula

» After merging clusters 4 and B 1nto cluster C, we
need to compute C’s distance to other clusters Z

* Lance—Williams formula provides a general equation
for this

d(C,Z) = aad(A,Z) + apd(B, Z) + Bd(A,B) +vId(A, Z) —d(B, Z)]

e a By
1/2 1/2

0 -1/2

Complete link 1/2 1/2 0 1/2
Group average |A/(]A] + |B]) IB|/(|A] + |B]) 0 0

Mean distance |A|/(|A] + |B]) IB|/(|A] + |B|) —=|A||B|/(]A|+]|B])? 0

WELCE B EEE ([A+Z])/(TAT+IBI+[Z]) (IBI+][Z[)/(IAl+IB]+]Z]) —[zZ[/(IAl+|B]+]Z]) O
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Computational complexity

» Takes O(n?) time in most cases
—n steps

—In each step, n? distance matrix must be updated and
searched

* O(n? log(n)) time for some approaches using
appropriate data structures

—Keep distances 1n a heap
— Each step takes O(n log n) time
» O(n?) space complexity
— Have to store the distance matrix



Chapter VIIL4: Co-clustering "l

1. Clustering written with matrices
2. Co-clustering definition
3. Algorithms
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Clustering written with matrices

* Letxy, X2, ..., Xu be the m-dimensional vectors (data
points) we want to cluster

* Write these as an n-by-m matrix X
— Each data point 1s one row of X

* The exclusive representative clustering can be re-written
using two matrices
— Matrix C (cluster assignment matrix) has » rows and & columns

— Each row of C has exactly one element 1 while others are 0

— Matrix M (mean matrix) has k£ rows and m columns

— Each row of M corresponds to a centroid of a cluster
» Loss function (SSE) is now |X — CM|;



Example

A NN W N -
w = B N W
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Example

A NN W N -
w = B N W

Ci = {x1, x2, x4}
C> = {x3, x5/
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Example
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3 4 X=13 4
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Example

B~ NN W NN
w = B N W
<
|

Ci = {x1, x2, x4}
C> = {x3, x5/

ul = (1.66, 2)
u2 =(3.5,3.5)
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Example

> NN WO NN
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P
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Example

1 3 1 3
2 2 2 2
3 4 X=13 4
2 1 2 1
4 3 4 3
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Example

> NN WO NN
w L BB N W
P
|
_N N =
o N W

Cr = {x1, x2, x4/

|
SO = O = =
—_ O = O O

C> = {x3, x5/
ul =(1.66,2) 1 _ (1.66 2 ) —0.66 1
u2 =(3.5,3.5) 3.5 3.9 0.33 0
X—CM=| —05 0.5
0.33 —1

0.o —0.9
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Co-clustering definition

* The same way we clustered X, we can also cluster X7
— This clusters the dimensions, not the data points

* An (k,[)-co-clustering of X 1s partitioning of rows of X
into k clusters and columns of X into / clusters

— Row cluster 7 and column cluster J define a (combinatorial)
sub-matrix Xy

e Element x;; belongs to this sub-matrix ifi € /andj € J
— Each sub-matrix X}, 1s represented by single value u;
* Let R be the n-by-k row cluster assignment matrix and C
the m-by-/ column cluster assignment matrix and
M = (u;) the k-by-/ mean matrix
— The loss function 1s HX —RMC' H;



Example (3,2)-co-clustering
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Example (3,2)-co-clustering

1 3 2
2 2 1
X=10 1 0
4 3 5
1 0 0

|1 0 0 -

R=10 1 o0 C =
0 0 1



Example (3,2)-co-clustering

1 3 2
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X = O 1 O
4 3 5
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0O 0 1 '



Example (3,2)-co-clustering
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Example (3,2)-co-clustering
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Example (3,2)-co-clustering
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Example (3,2)-co-clustering
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Example (3,2)-co-clustering

1 3 2 1.5 2.5 1.5
]2 21 r |15 25 15
X = O 1 O RMC" = 0 1 0
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Example (3,2)-co-clustering
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Co-clustering and bipartite graphs

* A graph G=(V,E) 1s bipartite 1f 1its set of vertices can
be partitioned 1nto two sets, L and R, such that all
edges 1n E have one end 1in L and other in R

* Any n-by-m matrix can be considered as a weighted
bipartite graph
—Rows correspond to vertices 1n L
— Columns correspond to vertices in R
—Edge (i,j) has weight x;;
* A co-clustering now clusters vertices in L and vertices

in R and replaces edges in £ with edges between the
clusters having weights wu



Example




Example

1 3 2
2 2 1
=10 1 o
4 3 5
1.5 25 1.5
r |15 25 15
RMCT = % 77

4.5 3 4.5




Algorithm

1. input data matrix X and two integers k£ and /

2. Cluster the rows of X to R (using e¢.g. k~-means)
3. Cluster the columns of Xto C

4. Let M = (u), iy =(T1IH Z Xij

S5.return R, C, and M el



Chap
cluste

1. Local and global patterns
2. Kleinberg’s impossibility theorem
3. Example clustering applications
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Local and global patterns

* The quality of an association rule depends only on the
rule itself

* The quality of a cluster depends on all the clusters in
the clustering

— Singleton clusters have the least SSE, but having A1
singletons and one big cluster typically gives high total SSE

* Association rules are local patterns
—Their goodness depends only on the local part of the data
* Clusters are global patterns

—The overall quality depends also on points not in the cluster



Kleimnberg’s impossibility theorem

* A clustering function 1s a function f that takes a
distance matrix D and returns a partition I'
— We expect nothing on the type of points
— Distance 1s given using an implicit distance matrix

— The number of clusters 1s defined somehow by the
clustering function (build-in constant or something else)

— For example, an algorithm returning a A-means clustering to
k=10 clusters could be one clustering function

* Idea: list some properties any clustering function
should satisty and show that none can satisfy them all



Three properties

* Scale-invariance
— Clustering does not change 1f we multiply the distances
— (D) = f(aD) for any o > 0
* Richness
— For any partition I, there 1s a distance matrix D such that
/(D) =T
* Consistency

— The clustering does not change if we move points 1n the
same cluster closer to each other and points 1n different
clusters further away from each other



Impossibility result

e Sing.
sat1s:

i Theorem |
{any clustering function fthat satisfies all three |
| properties. {

D I A I I B S

Kicimbers 02

e-link hierarchical clustering that stops at £ < n clusters
1es scale-invariance and consistency

e Sing.

e-link clustering that stops when the link length 1s some

predefined fraction of maximum pairwise distance satisfies
scale-invariance and richness

e Single-link that stops when the link length 1s longer than some
predefined length satisfies richness and consistency



Some clustering applications
* Biology

— Creation of phylogenies (relations between organisms)

— Inferring population structures from clusterings of DNA
data

— Analysis of genes and cellular processes (co-clustering)

* Business

— Grouping of consumers into market segments

* Computer science

— Pre-processing step to reduce computation (representative-
based methods)

— Automatic discovery of similar items



More clustering applications

Females, cluster | Males, cluster |

TCI-HAL TCI-HAL
TCI-HAZ TCI-RD4 TCI-HAZ TCI-RiD4

TCI-RD3 TCI-HAS TCI-RD3

S
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LS

TCI-RD1

TCI-KEL TCI-KMEZ TCI-MEd
TCI-MNS3
Females, cluster 1V Males, cluster IV
TCI-HAL TCI-HAL

TCI-HAZ TCI-RD4 TCI-HAZ TCI-RD4

Wessman: Clustering methods in the analysis of complex diseases



Even more clustering applic
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