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IX.1: The general idea
1. The general definition

1.1. Matrix factorizations we’ve seen so far
1.2. Matrices as data and functions
1.3. Matrix distances and types of matrices

2. Very quick recap of linear algebra
3. Why matrix factorizations
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The general definition
• Given n-by-m matrix X, represent it as a product of 

two (or more) factor matrices A and B
–  
–We are more interested in approximate matrix factorizations

–Matrix A is n-by-k; matrix B is k-by-m (k ≤ min(n, m))
• For more factor matrices, their inner dimension must match

• The distance between X and AB is the representation 
error of (approximate) factorization
–E.g. 
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X = AB

X ⇡ AB

kX-ABk2F =
Pn
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Variations
• We can change the distance measure
– Squared element-wise error
– Absolute element-wise error

• We can restrict the matrices involved
– Types of values
• Non-negative
• Binary

– Types of factor matrices
• Upper triangular
• Diagonal
• Orthogonal

• We can have more factor matrices
• We can change the matrix multiplication
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Matrix factorizations we’ve seen so far
• Clustering: 
–C has to be cluster assignment matrix

• Co-clustering: 
–R and C are cluster assignment matrices

• Linear regression:
– y is vector, as is β 
– ”decomposes” y – but also is X is known

• Singular value decomposition (SVD) and 
eigendecomposition
–Have been mentioned earlier
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Two views of a matrix: data or function
• In IR & DM (and most CS) a matrix is a way to write 

down data
–A two-dimensional flat database
– Items and transactions, documents and terms, …

• In linear algebra, a matrix is a linear function between 
vector spaces
– n-by-m matrix maps m-dimensional vectors to 

n-dimensional ones
– If y = Mx, then yi = ∑j mijxj

• Different views motivate different techniques
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Matrix distances and norms
• Frobenius norm ||X||F = (∑i,j xij2)1/2

–Corresponds to Euclidean norm of vectors
• Sum of absolute values |X| = ∑i,j xij

–Corresponds to L1-norm of vectors
• The above elementwise norms are sometimes 

(imprecisely) called L2 and L1 norms
–Matrix L1 and L2 norms are something different altogether

• Operator norm ||X||p = maxy≠0 ||Xy||p/||y||p
–Largest norm of an image of a unit norm vector
– ||X||2 ≤ ||X||F ≤ √(rank(X)) ||X||2
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Types of matrices
• Diagonal n-by-n matrix
– Identity matrix In is a diagonal 

n-by-n matrix with 1s in diagonal

• Upper triangular matrix
–Lower triangular is the transpose
– If diagonal is full of 0s, matrix is

strictly triangular
• Permutation matrix
–Each row and column has exactly one 1, rest are 0
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Very quick recap of linear algebra
• An n-by-m matrix X can be represented exactly as a 

product of n-by-k and k-by-m matrices A and B if and only 
if rank of X is at most k
– rank(AB) ≤ min(rank(A), rank(B))
– If rank(X) = n ≤ m, we can set A = In and B = X
– In general, if n ≤ m, columns of A are linearly independent basis 

vectors for the subspace spanned by X and columns of B tell the 
linear combinations of these vectors needed to get the original 
columns of X

• If X is rank-k, it can be written as a sum of k rank-1 
matrices, but no fewer
– Another way to define rank
– In general, rank(A + B) ≤ rank(A) + rank(B)
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Spaces
• Let X be an n-by-m (real-valued) matrix
– Set {u ∈ ℝn : Xv = u, v ∈ ℝm} is the column space of X
• Image of X

– Set {v ∈ ℝm : XTu = v, u ∈ ℝn} is the row space of X
• Image of XT

– Set {v ∈ ℝm : Xv = 0} is the null space of X

– Set {u ∈ ℝn : XTu = 0} is the left null space of X
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Orthogonality and orthonormality
• Two vectors x and y are orthogonal if their inner 

product 〈x, y〉 is 0
–Vectors are orthonormal if they have unit norm, ||x||=||y||=1

• A square matrix X is orthogonal if its rows and 
columns are orthonormal
–Equivalently, XT = X–1

–Yet equivalently, XXT = XTX = I
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Why matrix factorizations?
• A general way of writing many problems
–Makes easier to see similarities & differences
–May help finding new approaches and tools

• A method to remove noise
– ”True” matrix A is low-rank
–Observed matrix Ã has some noise A + ε and has full rank
– Finding a low-rank approximation of Ã helps remove the 

noise and leave only the original matrix A
–Here we’re interested in the representation of A  

• Alternatively we can be interested on the factors…
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Factors and dimensionality reduction
• Let X be n-by-m, A be n-by-k, B be k-by-m, and X ≈ AB
–Rows of A are k-dimensional representations of rows of X
–Columns of B are k-dimensional representations of columns of 

X
–We can project rows of X to k-dimensional subspace XBT

• Columns of X are projected with ATX

• Low-dimensional views allow
–Direct study of factors
• By hand, plotting, etc.

–Avoidance of curse of dimensionality (more on this later)
–Better scalability / avoidance of noise
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Example
• 10-dimensional data
• Clustered using k-means in 3 clusters
• Want to visualize the clusters
–Are they ”natural”?

• Project the data to first two principal components:
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IX.2 Matrix factorization methods
1. Eigendecomposition
2. Singular value decomposition (SVD)
3. Principal component analysis (PCA)
4. Non-negative matrix factorization
5. Other matrix factorization methods

5.1. CX matrix factorization
5.2. Boolean matrix factorization
5.3. Regularizers
5.4. Matrix completion

16



IR&DM, WS'11/12 IX.1&2-17 January 2012

Eigendecomposition
• If X is an n-by-n matrix and v is a vector such that 

Xv = λv for some scalar λ, then
– λ is an eigenvalue of X
– v is an eigenvector of X associated to λ

• Matrix X has to diagonalizable
–PXP–1 is a diagonal matrix for some invertible matrix P

• Matrix X has to have n linearly independent 
eigenvectors
• The eigendecomposition of X is X = QΛQ–1

–Columns of Q are the eigenvectors of X
–Λ is a diagonal matrix with eigenvalues in the diagonal
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Some useful facts
• Not all matrices have eigendecomposition
–Not all invertible matrices have eigendecomposition
–Not all matrices that have eigendecomposition are invertible
– If X is invertible and has eigendecomposition, then

X–1 = QΛ–1Q–1

• If X is symmetric and invertible (and real), then X has 
eigendecomposition X = QΛQT
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How to find eigendecomposition, part 1
• Recall the power method for computing the stationary 

distribution of a Markov chain
– vt+1 = vtP
–Computes the dominant eigenvalue and eigenvector
•Can’t be used to find the full eigendecomposition

• Similar iterative idea is usually used:
–Let X0 = X and find orthogonal Qt such that Xt = QtTXt–1Qt 

is ”more diagonal” than Xt–1

–When Xt is diagonal enough, set Λ = Xt and 
Q = QtQt–1Qt–2…Q1
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The Jacobi method for symmetric matrix
• We assume that X is symmetric n-by-n
• The idea is to reduce the quantity 

• The Jacobi rotations are matrices of form

20
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Basic Jacobi step
1. Choose index pair (p,q) s.t. 1 ≤ p < q ≤ n
2. Compute c = cos(θ) and s = sin(θ) s.t.

is diagonal (ypq = yqp = 0)
3. Overwrite X with Y = JTXJ where J = J(p,q,θ).
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How to select c and s
• We want to have c = cos(θ) and s = sin(θ) s.t.

0 = ypq = xpq(c2 – s2) + (xpp – xqq)cs 
• If xpq = 0, set c = 1 and s = 0
• Else set τ = (xqq – xpp)/(2xpq)
• If τ ≥ 0, set t = 1/(τ + √(1 + τ2))
–Else set t = –1/(–τ + √(1 + τ2))

• Set c = 1/√(1 + t2) and s = tc
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How to select p and q
• In Classical Jacobi select (p,q) such that 

|xpq| = maxi≠j |xij|
– Finding this value takes O(n2) time

• In Cyclic Jacobi go thru the off-diagonal elements in 
a fixed order 
–E.g. (p,q) = (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2), …
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Jacobi in nutshell
1. Set V = In; eps = tol×||X||F; Y = X
2. while off(Y) > eps

2.1.Choose (p,q) so |xpq| = maxi≠j |xij| (or use cyclic order)
2.2.Compute cosine–sin pair (c,s)
2.3.Y = J(p,q,θ)TYJ(p,q,θ)
2.4.V = VJ(p,q,θ)

3. end while 
4. return Λ = Y and Q = V (X ≈ QΛQT)
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Some notes
• The quality (and running time) depends on parameter 

tol > 0
• Jacobi method is easy to parallellize
– Split the update in non-conflicting steps

• Other methods exist
– Symmetric QR algorithm
–Tri-diagonal methods
•Bisecting algorithm
•Divide-and-conquer

• Numerical stability is an issue with all these methods

25
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Singular value decomposition (SVD)
• Not every matrix has eigendecomposition, but:

Theorem. If X is n-by-m real matrix, there exists 
n-by-n orthogonal matrix U and m-by-m orthogonal 
matrix V such that UTXV is n-by-m matrix Σ with 
values σ1, σ2, …, σmin(n,m), σ1 ≥ σ2 ≥ … ≥ σmin(n,m) ≥ 0, 
in its diagonal.
– In other words, X = UΣVT

–Values σi are the singular values of X
–Columns of U are the left singular vectors and columns of 

V the right singular vectors of X

26
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Example

27



IR&DM, WS'11/12 IX.1&2-17 January 2012

Properties of SVD, part 1
• rank(X) = r iff X has exactly r non-zero singular 

values (σ1 ≥ σ2 ≥ … ≥ σr > σr+1 = … = σmin(n,m) = 0)
• Vectors u1, u2, …, ur are a basis for the column space 

of X
• Vectors ur+1, ur+2, …, un are a basis for the left null 

space of X
• Vectors v1, v2, …, vr are a basis for the row space of X
• Vectors vr+1, vr+2, …, vm are a basis for the null space 

of X

28
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Properties of SVD, part 2
• If X is rank-r, then 
–X is a sum of r rank-1 matrices scaled with singular values

•   
•   
• Eckart–Young theorem. Let X be of rank-r and let 

UΣVT be its SVD. Denote by Uk the first k columns of 
U, by Vk the first k columns of V and by Σk the upper-
left k-by-k corner of Σ. Then Xk = UkΣkVkT is the best 
rank-k approximation of X in the sense that
                                         and 
for any rank-k matrix Y.
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SVD and pseudo-inverse
• Recall that if X is n-by-m with rank(X) = m ≤ n, the 

pseudo-inverse of X is X† = (XTX)–1XT

• If rank(X) = r and X = UΣVT, then we can define 
X† = VΣ†UT

–Σ† is a diagonal matrix with 1/σi in its ith position
–More general than the above definition

• This gives the least-squares solution to the following 
problem: given A and X, find Y s.t. ||A – XY||F2 is 
minimized
– Setting Y = X†A minimizes the squared Frobenius
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SVD and eigendecomposition
• Let X be n-by-m and X = UΣVT its SVD
• Recall that the Gram matrix of the columns of X is XTX
– For the rows it is XXT

• Now XTX = (UΣVT)T(UΣVT) = VΣTUTUΣVT

= VΣTΣVT = VΣm2VT

–Σm2 is an m-by-m diagonal matrix with σi2 in its ith position
• Similarly XXT = UΣn2UT

• Therefore 
–Columns of U are the eigenvectors of XXT

–Columns of V are the eigenvectors of XTX
– Singular values are square roots of the associated eigenvalues
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Computing the SVD
• Simple idea: Compute the eigendecompositions of 

XXT and XTX
–Bad for numerical stability

• We can adapt the Jacobi method:
–At each step find a Jacobi rotation J(p,q,θ) such that 

columns p and q of XJ(p,q,θ) are orthogonal
•Corresponds to zeroing (p,q) and (q,p) in XTX
•The product of this sequence of Jacobi rotations gives 

orthogonal V
•Rest follows by AV = UΣ

–This is called one-sided Jacobi
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Principal component analysis (PCA)
• Let rows of matrix denote observations and columns 

denote variables
• In principal component analysis (PCA) we want to 

find new variables (dimensions) that capture the 
variance of the data
– First variable has as much variance as possible
– Second variable is orthogonal to the first and captures as 

much as possible of the remaining variance
–Third variable …

33
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Example
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CHAPTER 8. DIMENSIONALITY REDUCTION 173

X1
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(a) Original Basis: 3D

u1

u3

u2

(b) Optimal Basis: 3D

Figure 8.1: Iris Data: Optimal Basis

U matrix is an orthogonal matrix, whose columns, the basis vectors, are orthonormal,
i.e., they are pairwise orthogonal and have unit length

uTi uj =

{
1 if i = j

0 if i != j
(8.5)

Since U is orthogonal, this means that its inverse equals its transpose

U−1 = UT (8.6)

which implies that UTU = I, where I is the d × d identity matrix.
Multiplying (8.3) on both sides by UT yields the expression for computing the

coordinates of x in the new basis

UT x = UTUa

a = UT x (8.7)
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variance uTΣΣΣu. Since we know that u1, the dominant eigenvector of ΣΣΣ maximizes the
projected variance, we have

MSE(u1) = var(D)− uT1 ΣΣΣu1 = var(D)− uT1 λ1u1 = var(D)− λ1

Thus, the principal component u1 which is the direction that maximizes the projected
variance, is also the direction that minimizes the mean squared error.

X1
X2

X3

u1

Figure 8.2: Best 1D or Line Approximation

Example 8.3: Figure 8.2 shows the first principal component, i.e., the best one di-
mensional approximation, for the three dimensional Iris dataset shown in Figure 8.1a.
The covariance matrix for this dataset is given as

ΣΣΣ =




0.681 −0.039 1.265
−0.039 0.187 −0.320
1.265 −0.320 3.092





The largest eigenvalue is λ1 = 3.662, and the corresponding dominant eigenvector
is u1 = (−0.390, 0.089,−0.916)T . The unit vector u1 thus maximizes the projected
variance, which is given as J(u1) = α = λ1 = 3.662. Figure 8.2 plots the principal
component u1. It also shows the error vectors εi , as thin gray line segments.
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(a) Optimal 2D Basis
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(b) Non-Optimal 2D Basis

Figure 8.3: Best 2D Approximation

Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =




−0.390
0.089
−0.916



 u2 =




−0.639
−0.742
0.200





The projection matrix is given as

P2 = U2U
T
2 =




| |
u1 u2
| |





(
— uT1 —
— uT2 —

)

= u1u
T
1 + u2u

T
2

=




0.152 −0.035 0.357
−0.035 0.008 −0.082
0.357 −0.082 0.839



+




0.408 0.474 −0.128
0.474 0.551 −0.148
−0.128 −0.148 0.04





=




0.560 0.439 0.229
0.439 0.558 −0.230
0.229 −0.230 0.879




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Computing the PCA

35

• First, data is centered
–The mean of each column is subtracted from the column

• Then, the m-by-m covariance matrix S is computed
– sij is the covariance between ith and jth column (variable)
– For centered data X, S = 1/n XTX

• The first principal vector is given by the eigenvector of 
S associated with the highest eigenvalue λ1

– λ1 gives the amount of variance explained
• The second principal vector is given by the second 

eigenvector, etc.
• The total variance of the data is λ1 + λ2 + … + λm
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PCA and SVD
• Alternatively, we can just compute the SVD of 

centered data X’
–Now the principal vectors are columns of V
–Therefore, PCA is SVD done with centered data

• We can project the data X’ into its principal space by 
X’V 
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How many principal vectors?
• Rule of thumb: keep 90% of variance
– Select k s.t. (λ1 + λ2 + … + λk)/(λ1 + λ2 + … + λm) ≥ 0.9
– Same as (σ12 + σ22 + … +σk2)/(σ12 + σ22 + … + σm2) ≥ 0.9

• But if you want to do plotting, you need less…
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Nonnegative matrix factorization (NMF)
• Eigenvectors and singular vectors can have negative 

entries even if the data is non-negative
–This can make the factor matrices hard to interpret in the 

context of the data
• In nonnegative matrix factorization we assume the 

data is nonnegative and we require the factor matrices 
to be nonnegative
– Factors have parts-of-whole interpretation
•Data is represented as a sum of non-negative elements

–Models many real-world processes

38
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Definition
• Given a nonnegative n-by-m matrix X (i.e. xij ≥ 0 for 

all i and j) and a positive integer k, find an n-by-k 
nonnegative matrix W and a k-by-m nonnegative 
matrix H s.t. ||X – WH||F2 is minimized.
– If k = min(n,m), we can do W = X and H = Im (or vice versa)
–Otherwise the complexity of the problem is unknown

• If either W or H is fixed, we can find the other factor 
matrix in polynomial time
–Which gives us our first algorithm…
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The alternating least squares (ALS)
• Let’s forget the nonnegativity constraint for a while
• The alternating least squares algorithm is the 

following:
– Intialize W to a random matrix
– repeat 
• Fix W and find H s.t. ||X – WH||F2 is minimized
• Fix H and find W s.t. ||X – WH||F2 is minimized

– until convergence
• For unconstrained least squares we can use H = W†X 

and W = XH†

• ALS will typically converge to local optimum
40
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NMF and ALS
• With the nonnegativity constraint pseudo-inverse 

doesn’t work
–The problem is still convex with either of the factor matrices 

fixed (but not if both are free)
–We can use constrained convex optimization
• In theory, polynomial time
• In practice, often too slow

• Poor man’s nonnegative ALS:
– Solve H using pseudo-inverse
– Set all hij < 0 to 0
–Repeat for W
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