Chapter IX: Matrix factorizations

Information Retrieval & Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2011/12

Chapter IX: Matrix factorizations*

- 1. The general idea
- 2. Matrix factorization methods
 - 2.1. Eigendecompositions
 - 2.2. SVD
 - **2.3. PCA**
 - 2.4. Nonnegative matrix factorization
 - **2.5. Some other matrix factorizations**
- 3. Latent topic models
- 4. Dimensionality reduction

*Zaki & Meira, Ch. 8; Tan, Steinbach & Kumar, App. B; Manning, Raghavan & Schütze, Ch. 18 Extra reading: Golub & Van Loan: *Matrix computations*. 3rd ed., JHU press, 1996

IX.1: The general idea

1. The general definition

- 1.1. Matrix factorizations we've seen so far
- **1.2. Matrices as data and functions**
- **1.3. Matrix distances and types of matrices**
- 2. Very quick recap of linear algebra
- **3. Why matrix factorizations**

The general definition

- Given *n*-by-*m* matrix *X*, represent it as a product of two (or more) factor matrices *A* and *B*
 - -X = AB
 - We are more interested in *approximate* matrix factorizations $X \approx AB$
 - -Matrix *A* is *n*-by-*k*; matrix *B* is *k*-by-*m* ($k \le \min(n, m)$)
 - For more factor matrices, their *inner dimension* must match
- The distance between *X* and *AB* is the *representation error* of (approximate) factorization $-E.g. \|X - AB\|_{F}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_{ij} - (AB)_{ij})^{2}$

Variations

- We can change the distance measure
 - Squared element-wise error
 - Absolute element-wise error
- We can restrict the matrices involved
 - Types of values
 - Non-negative
 - Binary
 - Types of factor matrices
 - Upper triangular
 - Diagonal
 - Orthogonal
- We can have more factor matrices
- We can change the matrix multiplication

Matrix factorizations we've seen so far

• Clustering: $\|\mathbf{X} - \mathbf{C}\mathbf{M}\|_2^2$

-C has to be cluster assignment matrix

• Co-clustering: $\|\mathbf{X} - \mathbf{R}\mathbf{M}\mathbf{C}^{\mathsf{T}}\|_{2}^{2}$

-R and C are cluster assignment matrices

- Linear regression: $\|\mathbf{y} \mathbf{X}\mathbf{\beta}\|_2$
 - -y is vector, as is β
 - -"decomposes" y but also is X is known
- Singular value decomposition (SVD) and eigendecomposition
 - -Have been mentioned earlier

Two views of a matrix: data or function

- In IR & DM (and most CS) a matrix is a way to write down data
 - -A two-dimensional flat database
 - Items and transactions, documents and terms, ...
- In linear algebra, a matrix is a linear function between vector spaces
 - *n*-by-*m* matrix maps *m*-dimensional vectors to
 n-dimensional ones
 - If y = Mx, then $y_i = \sum_j m_{ij} x_j$
- Different views motivate different techniques

Matrix distances and norms

• Frobenius norm $||X||_F = (\sum_{i,j} x_{ij}^2)^{1/2}$

-Corresponds to Euclidean norm of vectors

- Sum of absolute values $|X| = \sum_{i,j} x_{ij}$ - Corresponds to L_1 -norm of vectors
- The above elementwise norms are sometimes (imprecisely) called L_2 and L_1 norms

– Matrix L_1 and L_2 norms are something different altogether

- Operator norm $||X||_p = \max_{y \neq 0} ||Xy||_p / ||y||_p$
 - Largest norm of an image of a unit norm vector $||\mathbf{Y}||_{\mathbf{V}} \leq \sqrt{(\operatorname{rank}(\mathbf{Y}))} ||\mathbf{Y}||_{\mathbf{V}}$
 - $-||X||_{2} \le ||X||_{F} \le \sqrt{(\operatorname{rank}(X))} ||X||_{2}$

Types of matrices

- Diagonal *n*-by-*n* matrix
 Identity matrix *I_n* is a diagonal *n*-by-*n* matrix with 1s in diagonal
- Upper triangular matrix
 - -Lower triangular is the transpose
 - -If diagonal is full of 0s, matrix is *strictly triangular*
- Permutation matrix
 - -Each row and column has exactly one 1, rest are 0

Very quick recap of linear algebra

- An *n*-by-*m* matrix *X* can be represented exactly as a product of *n*-by-*k* and *k*-by-*m* matrices *A* and *B* if and only if rank of *X* is at most *k*
 - $-\operatorname{rank}(AB) \le \min(\operatorname{rank}(A), \operatorname{rank}(B))$
 - If rank(X) = $n \le m$, we can set $A = I_n$ and B = X
 - In general, if $n \le m$, columns of A are linearly independent *basis vectors* for the subspace spanned by X and columns of B tell the linear combinations of these vectors needed to get the original columns of X
- If *X* is rank-*k*, it can be written as a sum of *k* rank-1 matrices, but no fewer
 - Another way to define rank
 - In general, $rank(A + B) \le rank(A) + rank(B)$

Spaces

- Let X be an n-by-m (real-valued) matrix
 - -Set $\{u \in \mathbb{R}^n : Xv = u, v \in \mathbb{R}^m\}$ is the *column space* of X •Image of X
 - -Set { $v \in \mathbb{R}^m : X^T u = v, u \in \mathbb{R}^n$ } is the *row space* of X•Image of X^T
 - -Set { $v \in \mathbb{R}^m : Xv = 0$ } is the *null space* of *X*
 - -Set { $u \in \mathbb{R}^n : X^T u = 0$ } is the *left null space* of X

Orthogonality and orthonormality

- Two vectors x and y are **orthogonal** if their inner product $\langle x, y \rangle$ is 0
 - -Vectors are orthonormal if they have unit norm, ||x|| = ||y|| = 1
- A square matrix *X* is *orthogonal* if its rows and columns are orthonormal
 - -Equivalently, $X^T = X^{-1}$
 - -Yet equivalently, $XX^T = X^TX = I$

Why matrix factorizations?

- A general way of writing many problems
 - Makes easier to see similarities & differences
 - -May help finding new approaches and tools
- A method to remove noise
 - -"True" matrix A is low-rank
 - -Observed matrix \tilde{A} has some noise $A + \varepsilon$ and has full rank
 - -Finding a low-rank approximation of \tilde{A} helps remove the noise and leave only the original matrix A
 - -Here we're interested in the representation of A
- Alternatively we can be interested on the factors...

Factors and dimensionality reduction

- Let X be *n*-by-*m*, A be *n*-by-*k*, B be *k*-by-*m*, and $X \approx AB$
 - -Rows of A are k-dimensional representations of rows of X
 - -Columns of B are k-dimensional representations of columns of X
 - We can project rows of X to k-dimensional subspace XB^T
 - Columns of X are projected with $A^{T}X$
- Low-dimensional views allow
 - -Direct study of factors
 - By hand, plotting, etc.
 - Avoidance of *curse of dimensionality* (more on this later)
 - -Better scalability / avoidance of noise

- 10-dimensional data
- Clustered using *k*-means in 3 clusters
- Want to visualize the clusters
 - Are they "natural"?
- Project the data to first two principal components:

17 January 2012

IX.2 Matrix factorization methods

- 1. Eigendecomposition
- 2. Singular value decomposition (SVD)
- 3. Principal component analysis (PCA)
- 4. Non-negative matrix factorization
- **5.** Other matrix factorization methods
 - **5.1. CX matrix factorization**
 - 5.2. Boolean matrix factorization
 - 5.3. Regularizers
 - **5.4. Matrix completion**

Eigendecomposition

- If X is an *n*-by-*n* matrix and *v* is a vector such that $Xv = \lambda v$ for some scalar λ , then
 - $-\lambda$ is an **eigenvalue** of *X*
 - -v is an **eigenvector** of *X* associated to λ
- Matrix X has to *diagonalizable*-PXP⁻¹ is a diagonal matrix for some invertible matrix P
- Matrix X has to have n linearly independent eigenvectors
- The eigendecomposition of X is $X = QAQ^{-1}$

-Columns of Q are the eigenvectors of X

 $-\Lambda$ is a diagonal matrix with eigenvalues in the diagonal

Some useful facts

- Not all matrices have eigendecomposition
 - -Not all invertible matrices have eigendecomposition
 - -Not all matrices that have eigendecomposition are invertible
 - If X is invertible and has eigendecomposition, then $X^{-1} = QA^{-1}Q^{-1}$
- If X is symmetric and invertible (and real), then X has eigendecomposition $X = QAQ^T$

How to find eigendecomposition, part 1

- Recall the *power method* for computing the stationary distribution of a Markov chain
 - $-\boldsymbol{v}_{t+1} = \boldsymbol{v}_t \boldsymbol{P}$
 - -Computes the *dominant* eigenvalue and eigenvector
 - Can't be used to find the full eigendecomposition
- Similar iterative idea is usually used:
 - -Let $X_0 = X$ and find orthogonal Q_t such that $X_t = Q_t^T X_{t-1} Q_t$ is "more diagonal" than X_{t-1}
 - -When X_t is diagonal enough, set $\Lambda = X_t$ and $Q = Q_t Q_{t-1} Q_{t-2} \cdots Q_1$

The Jacobi method for symmetric matrix

- We assume that X is symmetric *n*-by-*n*
- The idea is to reduce the quantity off(X) = $\sqrt{\sum_{i,j:i \neq j} x_{ij}^2}$
- The Jacobi rotations are matrices of form

$$J(p,q,\theta) = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & c & \cdots & s & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & & \vdots \\ 0 & \cdots & -s & \cdots & c & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix} q \qquad s = \sin(\theta)$$

D

q

Basic Jacobi step

- 1. Choose index pair (p,q) s.t. $1 \le p \le q \le n$
- 2. Compute $c = cos(\theta)$ and $s = sin(\theta) s.t.$

 $\begin{pmatrix} y_{pp} & y_{pq} \\ y_{qp} & y_{qq} \end{pmatrix} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} x_{pp} & x_{pq} \\ x_{qp} & x_{qq} \end{pmatrix} \begin{pmatrix} c & s \\ -s & c \end{pmatrix}$ is diagonal $(y_{pq} = y_{qp} = 0)$

3. Overwrite X with $Y = J^T X J$ where $J = J(p,q,\theta)$.

Each Jacobi step reduces off-diagonal values of the 2-by-2 matrix by $off(\mathbf{Y})^2 = off(\mathbf{X})^2 - 2x_{pq}^2$

Basic Jacobi step

- 1. Choose index pair (p,q) s.t. 1 \leq
- 2. Compute $c = cos(\theta)$ and $s = sin(\theta) s.t.$

$$\begin{pmatrix} y_{pp} & y_{pq} \\ y_{qp} & y_{qq} \end{pmatrix} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} x_{pp} & x_{pq} \\ x_{qp} & x_{qq} \end{pmatrix} \begin{pmatrix} c & s \\ -s & c \end{pmatrix}$$

is diagonal $(y_{pq} = y_{qp} = 0)$

3. Overwrite X with $Y = J^T X J$ where $J = J(p,q,\theta)$.

Each Jacobi step reduces off-diagonal values of the 2-by-2 matrix by $off(\mathbf{Y})^2 = off(\mathbf{X})^2 - 2x_{pq}^2$

Symmetric 2-by-2

eigendecomposition

Basic Jacobi step

- 1. Choose index pair (p,q) s.t. $1 \le p \le q \le n$
- 2. Compute $c = cos(\theta)$ and $s = sin(\theta) s.t.$

 $\begin{pmatrix} y_{pp} & y_{pq} \\ y_{qp} & y_{qq} \end{pmatrix} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} x_{pp} & x_{pq} \\ x_{qp} & x_{qq} \end{pmatrix} \begin{pmatrix} c & s \\ -s & c \end{pmatrix}$ is diagonal $(y_{pq} = y_{qp} = 0)$

3. Overwrite X with $Y = J^T X J$ where $J = J(p,q,\theta)$.

Each Jacobi step reduces off-diagonal values of the 2-by-2 matrix by $off(\mathbf{Y})^2 = off(\mathbf{X})^2 - 2x_{pq}^2$

How to select c and s

- We want to have $c = \cos(\theta)$ and $s = \sin(\theta)$ s.t. $0 = y_{pq} = x_{pq}(c^2 - s^2) + (x_{pp} - x_{qq})cs$
- If $x_{pq} = 0$, set c = 1 and s = 0
- Else set $\tau = (x_{qq} x_{pp})/(2x_{pq})$
- If $\tau \ge 0$, set $t = 1/(\tau + \sqrt{(1 + \tau^2)})$ - Else set $t = -1/(-\tau + \sqrt{(1 + \tau^2)})$
- Set $c = 1/\sqrt{(1 + t^2)}$ and s = tc

How to select *p* and *q*

- In *Classical Jacobi* select (*p*,*q*) such that |*x_{pq}*| = max_{*i≠j*} |*x_{ij}*|
 -Finding this value takes O(*n*²) time
- In *Cyclic Jacobi* go thru the off-diagonal elements in a fixed order
 - $-E.g.(p,q) = (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2), \dots$

Jacobi in nutshell

- 1. Set $V = I_n$; $eps = tol \times ||X||_F$; Y = X
- 2. while off(*Y*) > *eps*
 - 2.1.Choose (p,q) so $|x_{pq}| = \max_{i \neq j} |x_{ij}|$ (or use cyclic order) 2.2.Compute cosine—sin pair (c,s)2.3. $Y = J(p,q,\theta)^T Y J(p,q,\theta)$ 2.4. $V = V J(p,q,\theta)$
- 3. end while
- 4. return $\Lambda = Y$ and $Q = V(X \approx Q\Lambda Q^T)$

Some notes

- The quality (and running time) depends on parameter tol > 0
- Jacobi method is easy to parallellize
 Split the update in non-conflicting steps
- Other methods exist
 - -Symmetric QR algorithm
 - -Tri-diagonal methods
 - Bisecting algorithm
 - Divide-and-conquer
- Numerical stability is an issue with all these methods

Singular value decomposition (SVD)

- Not every matrix has eigendecomposition, but: **Theorem.** If *X* is *n*-by-*m* real matrix, there exists *n*-by-*n* orthogonal matrix *U* and *m*-by-*m* orthogonal matrix *V* such that U^TXV is *n*-by-*m* matrix Σ with values $\sigma_1, \sigma_2, ..., \sigma_{\min(n,m)}, \sigma_1 \ge \sigma_2 \ge ... \ge \sigma_{\min(n,m)} \ge 0$, in its diagonal.
 - In other words, $X = U\Sigma V^T$
 - -Values σ_i are the **singular values** of *X*
 - -Columns of *U* are the left singular vectors and columns of *V* the right singular vectors of *X*

Properties of SVD, part 1

- rank(X) = r iff X has exactly r non-zero singular values ($\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > \sigma_{r+1} = ... = \sigma_{\min(n,m)} = 0$)
- Vectors $u_1, u_2, ..., u_r$ are a basis for the column space of X
- Vectors u_{r+1} , u_{r+2} , ..., u_n are a basis for the left null space of X
- Vectors $v_1, v_2, ..., v_r$ are a basis for the row space of X
- Vectors v_{r+1} , v_{r+2} , ..., v_m are a basis for the null space of X

Properties of SVD, part 2

• If X is rank-r, then $X = \sum_{i=1}^{r} \sigma_i u_i v_i^T$

-X is a sum of r rank-1 matrices scaled with singular values

- $\|\mathbf{X}\|_{\mathrm{F}}^2 = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_{\min(n,m)}^2$
- $\bullet \|\mathbf{X}\|_2 = \sigma_1$
- Eckart–Young theorem. Let *X* be of rank-*r* and let $U\Sigma V^T$ be its SVD. Denote by U_k the first *k* columns of *U*, by V_k the first *k* columns of *V* and by Σ_k the upperleft *k*-by-*k* corner of Σ . Then $X_k = U_k \Sigma_k V_k^T$ is the best rank-*k* approximation of *X* in the sense that $\|X X_k\|_F \leq \|X Y\|_F$ and $\|X X_k\|_2 \leq \|X Y\|_2$ for any rank-*k* matrix *Y*.

SVD and pseudo-inverse

- Recall that if X is *n*-by-*m* with rank(X) = $m \le n$, the *pseudo-inverse* of X is $X^{\dagger} = (X^T X)^{-1} X^T$
- If rank(X) = r and $X = U\Sigma V^T$, then we can define $X^{\dagger} = V\Sigma^{\dagger}U^T$
 - $-\Sigma^{\dagger}$ is a diagonal matrix with $1/\sigma_i$ in its *i*th position -More general than the above definition
- This gives the least-squares solution to the following problem: given A and X, find Y s.t. $||A XY||_F^2$ is minimized

-Setting $Y = X^{\dagger}A$ minimizes the squared Frobenius

SVD and eigendecomposition

- Let X be *n*-by-*m* and $X = U\Sigma V^T$ its SVD
- Recall that the *Gram matrix* of the columns of X is $X^T X$ -For the rows it is XX^T
- Now $X^T X = (U \Sigma V^T)^T (U \Sigma V^T) = V \Sigma^T U^T U \Sigma V^T$ = $V \Sigma^T \Sigma V^T = V \Sigma_m^2 V^T$
 - $-\Sigma_m^2$ is an *m*-by-*m* diagonal matrix with σ_i^2 in its *i*th position
- Similarly $XX^T = U\Sigma_n^2 U^T$
- Therefore
 - -Columns of U are the eigenvectors of XX^T
 - -Columns of V are the eigenvectors of $X^T X$
 - Singular values are square roots of the associated eigenvalues

Computing the SVD

- Simple idea: Compute the eigendecompositions of XX^T and X^TX
 - -Bad for numerical stability
- We can adapt the Jacobi method:
 - At each step find a Jacobi rotation $J(p,q,\theta)$ such that columns p and q of $XJ(p,q,\theta)$ are orthogonal
 - Corresponds to zeroing (p,q) and (q,p) in $X^T X$
 - The product of this sequence of Jacobi rotations gives orthogonal V
 - Rest follows by $AV = U\Sigma$
 - -This is called one-sided Jacobi

Principal component analysis (PCA)

- Let rows of matrix denote observations and columns denote variables
- In **principal component analysis** (PCA) we want to find new variables (dimensions) that capture the variance of the data
 - -First variable has as much variance as possible
 - Second variable is orthogonal to the first and captures as much as possible of the remaining variance
 - -Third variable ...

Computing the PCA

• First, data is centered

– The mean of each column is subtracted from the column

- Then, the *m*-by-*m* covariance matrix **S** is computed $-s_{ij}$ is the covariance between *i*th and *j*th column (variable) - For centered data $X, S = 1/n X^T X$
- The first principal vector is given by the eigenvector of S associated with the highest eigenvalue λ_1

 $-\lambda 1$ gives the amount of variance explained

- The second principal vector is given by the second eigenvector, etc.
- The total variance of the data is $\lambda_1 + \lambda_2 + \ldots + \lambda_m$

PCA and SVD

- Alternatively, we can just compute the SVD of centered data X'
 - -Now the principal vectors are columns of *V* -Therefore, PCA is *SVD done with centered data*
- We can project the data X' into its principal space by X'V

How many principal vectors?

- Rule of thumb: keep 90% of variance - Select *k* s.t. $(\lambda_1 + \lambda_2 + ... + \lambda_k)/(\lambda_1 + \lambda_2 + ... + \lambda_m) \ge 0.9$ - Same as $(\sigma_1^2 + \sigma_2^2 + ... + \sigma_k^2)/(\sigma_1^2 + \sigma_2^2 + ... + \sigma_m^2) \ge 0.9$
- But if you want to do plotting, you need less...

17 January 2012

Nonnegative matrix factorization (NMF)

- Eigenvectors and singular vectors can have negative entries even if the data is non-negative
 - This can make the factor matrices hard to interpret in the context of the data
- In **nonnegative matrix factorization** we assume the data is nonnegative and we require the factor matrices to be nonnegative
 - -Factors have parts-of-whole interpretation
 - Data is represented as a sum of non-negative elements
 - -Models many real-world processes

Definition

- Given a nonnegative *n*-by-*m* matrix X (i.e. x_{ij} ≥ 0 for all *i* and *j*) and a positive integer k, find an *n*-by-k nonnegative matrix W and a k-by-m nonnegative matrix H s.t. ||X WH||_F² is minimized.
 - If $k = \min(n,m)$, we can do W = X and $H = I_m$ (or vice versa)
 - -Otherwise the complexity of the problem is unknown
- If either *W* or *H* is fixed, we can find the other factor matrix in polynomial time
 - Which gives us our first algorithm...

The alternating least squares (ALS)

- Let's forget the nonnegativity constraint for a while
- The alternating least squares algorithm is the following:
 - -Intialize W to a random matrix
 - -repeat
 - Fix W and find H s.t. $||X WH||_{F^2}$ is minimized
 - Fix **H** and find **W** s.t. $||X WH||_{F^2}$ is minimized
 - -until convergence
- For *unconstrained least squares* we can use $H = W^{\dagger}X$ and $W = XH^{\dagger}$
- ALS will typically converge to *local optimum*

NMF and ALS

- With the nonnegativity constraint pseudo-inverse doesn't work
 - The problem is still *convex* with either of the factor matrices fixed (but not if both are free)
 - -We can use *constrained convex optimization*
 - In theory, polynomial time
 - In practice, often too slow
- Poor man's nonnegative ALS:
 - -Solve *H* using pseudo-inverse
 - -Set all $h_{ij} < 0$ to 0
 - -Repeat for W