IX.3 Latent topic models il

1. Basic idea

2. Latent semantic indexing (LSI)

3. Probabilistic latent semantic indexing (pLSI)
4. Latent Dirichlet allocation (LDA)
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Probabilistic latent semantic indexing (pLSI)

* We model documents as (probabilistic) mixtures of
topics (a.k.a. aspects)

* Each topic generates words with topic-specific
probabilities

* We assume conditional independence of word w and
document d given topic t.
—Pr[w Ad A t] =Pr[w A d | t] Pr[t] = Pr|[w | {]Pr[d | ]Pr[{]
—Pr{w A d] =), Pr[w]| ] Pr[d | t] Pr[1]

* Generative model:

—Pr{w | d]= 2. Prlt]d] Pr[w | ]




pLSI example
[w|d]=)_ Plz|d]-P[w]|z]

.

documents d latent concepts z terms w



Relationship of pLSI to co-clustering

Co-clustering clusters documents and terms — no overlapping
Co-cluster mean p 1s the ’strength of words in these documents”
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Plw|d]=)_ Plz|d]-P[w]|z]
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documents d latent concepts z terms w
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Relationship of pLSI to LSI

Prldw] =X Pr|d | t] X Pr[t] xPrlw]|]

U 2 Vi
........................ ~] X |0 Ok X
mXn ke kxk kxn
doc probs concept term probs
per concept  probs per concept

Differences to SVD:

e Probabilities are nonnegative (NMF!) and normalized

* Loss function 1s not squared loss, but Kullback—Leibler
divergence
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Geometry of pLSI
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Image: T. Hofmann Unsupervised learning by probabilistic latent semantic analysis. 2001
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Relationship of pLSI to NMF
* pLSI 1s equivalent to NMF that

—tries to minmimize KL-divergence, not squared loss
— has factors normalized (probabilities must sum to 1)
—[Ding, L1 & Peng, 2008]

* Equivalency means that they try to minimize the same
loss function
— Typical algorithmic approaches differ



EM for pLSI

* Data: n(d,w) — absolute freq. of word w 1n doc d
e Parameters: Pr[7 | d], Pr[w | {]
* Log-likelihood: ) ) w n(d,w) log Pr[d,w]
Pr(t | d] Pr{w | t]
Z Prly | d] Priw | y]

* E-step:

Prit | d,w] =

M-step:
Priw | t] Zn(d,w) Prlt | d,w]

Prit | d] < ) mn(d,w)Prlt|d,w]

In addition uses ‘tempered’ method to avoid overfitting.
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Folding-1n of queries
» Keep all estimated parameters fixed

* Treat a query as a ‘new document’ to be explained
— Find topics that most likely generate the query

* Query = document; Pr[w | t] 1s kept fixed
—EM for query parameters

Pr(t | qlplw | t]
Pr[t ‘ qQW:I — 1 A
>y Priy [ qlplw | y]

2wy Mg, W) Prly | g, W]



Query processing

* Documents and queries are both represented as
probability distributions over k topics

— k-dimensional vectors with x; > 0 and ) x; =

* Any convenient vector-space similarity measure
works

— scalar product
— CcoSsIne
— KL divergence



Experimental results: example

P(w|z)

P(w|z)

articles (12K)

drug
patients
drgs
clircal
treatment
trials
therapy
trial

dizease
medical

00672
00455
0. 0444
0.0346
0028
0.0277
0.0213
00164
0.0157
0.00%57

UNIVErSE 0.0429
calasxies 00575
clusters 0.0279
tnatter 00233
calay 0.0232
cluster 0.0214
COSHE 00137
darl: 0.0121
light 0.0109
density 0.01
hacteria 00983
bacteral 00561
resistance 004351
colt 0.0381
straths 0025
trictrobiol 0.0214
ticrobial 00196
strain 00165
salmonella 0.0163
resistant 0.0145

trnale
ternales
ternale
tnales

SEX

reproductive

offspring
sexual

reproduction

Bgos

0.0558
0.0541
G:0023
0.0477
0.0533
0.0T72
0.0163
0.0166
0.0143
0.0128

» Concepts (100f 128) extracted from Science Magazine

cells 00675 SECUENCE 00818
stern 00478 SECUENCES 004593
humat 00421 CENOINE 00353
cell 0.0309 dna 0.0257
SENE 0025 sequencing 00172
tissue 0.0185 tnag 0.0123
cloning 0.016%9 CENES 00122
transfer 0.0155 chromoseme 00115
blood QTS tegions 0011%
embtyos 00111 human 00111
theory 00211 Intrne 00203 | | stars 0.0524
physics 00782 response 00375 star 0.0458
physicists ~ 0.0146 || system QL0358 | | astrophys  0.0237
eitistein 00142 rEsponses 00222 | | mass 0.021
university  0.013 antigen 00263 | disk 0.0173
oravity 0013 antigens 0.0184 | | black 00161
tlack 00127 ittty 0.0T76 | | gas 0.0149
theoties 0.01 mmunclogy  0.0145 | | stellar 0.0127
aps 0.00987|| antibody  0.014 | | astron 0.0125
matter O a0554| | autettnmune  0.0125 [ | hole 0.00224

Source: Thomas Hofmann, Tutorial at ADFOCS 2004




On perplexity

 How well does the model generalize to unseen data?
— The question 1n statistics/machine learning

— Many measures
e But the proof of the pudding 1s 1n the eating...

* Perplexity 1s one measure of generalization
performance

— Log-averaged inverse probability of unseen data:
[ 2 _awn/(d,w)logPrlw | d]®
| > dw N/ (d,w) /

e n’(d,w) = frequency of word w 1n doc d in test-data

>

P = exp «



Experimental results: perplexity
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Figure 6. Perplexity results as a function of the latent space dimensionality for (a) the MED data (rank 1033) and
(b) the LOB data (rank 1674). Plotted results are for LSA (dashed-dotted curve) and PLSA (trained by TEM =
solid curve, trained by early stopping EM = dotted curve). The upper baseline is the unigram model corresponding
to marginal independence. The star at the right end of the PLSA denotes the perplexity of the largest trained aspect

models (K = 2048).



pLSI summary

e Probabilistic variant of LLSI

—Equivalent to NMF with particular normalization
* Better experimental results than LSI

* Good on ‘closed’ corpora

— But tied on the fixed corpus
* No generative model!

* Computationally expensive
—Indexing and querying

* Number of latent concepts has to be selected
— BIC, AIC, asses with held-out data with different &



Latent Dirichlet allocation (LDA)

* Multiple-cause mixture model (MCMM)
* Documents contain multiple topics

—Topics are expressed by specific word distributions

* LDA provides a generative model for this

— Dirichlet topic mixtures

lllllllllllllllllll

1.5 i1 e |
1 Ti= '-_ wij 11 3 []
1 1
i il il I = X 1
| L [ R Y] s i 3 | . [ [RPET TRIN | 10 1
1 Tl | 1 JAL (BN I ER [ININT IENIE
el s iy rrjcularly fnure el
1 | [ 1 I i i L [ g I | .
1 1 1 il i (N[N 171:1 LR L 1 iz
1 II 1 11} (NS b XTI
Tl Y [T TS M. p
i i I 1 10 T D5NE0R Dol | LT
i I hinoslogy Informaced 1 )
e
[ 1 | i il Lasnparin -
i = 1
L}
n

] arel Sequsns-



LDA generative model

 For each document d

— Choose doc length N (# word occurrences) ~ Poisson(A)

— Choose topic-probability parameters p ~ Dirichlet(a)

—For each N word occurrences 1n d (at position »)

* Choose one of £ topics ¢, ~

multinomial(P, k)

* Choose one of M words w, from per-topic distribution
~ multinomial(0, M)

multinomial(0, M) @

latent (hidden)
RV

observable RV
(data)

O

Dirichlet(a)

C

multinomial(p, k)

O

topic ¢

wordw N

—— per document

per word occurrence




LDA: mstance-level model
hypergenerator for
a topic distribution
00 Ov00 O
words

words

< per topic

0 .. word distr.’s
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Comparison to other latent-topic models

word w

[R&DM, WS'11/12

multinomial (6, M) ()\

9

Dirichlet (ot) |multinomial (3, k) topic z word w
doc d topic z word w
e [O—@
unigram topic z word w
model ,
discrete
univariate
distribution

24 January 2012

LDA

pLSI

single-cause
mixture of
unigrams
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Computing LDA

r (Zlle (Xl) 061—1 ock—l

Pdf of Dirichlet: f(B| ax) = R 3y
[T Mle)

Probability of document d Nglven o and B:

Prid | &, 0] = | (B | ) (HZﬁt Ot,, wn)dﬁ

. n=1+t

I (Z]le (Xi) L/ K 1 N  k
— o tnetn,wn d
[T M) - (1_[1 g ) (H 2_F ) :

n=1t,, =1

= Posterior probability 1s intractable!



Variational inference

* Consider a family of tractable lower-bound functions

* In E-step, find optimal parameters for these lower-
bound functions

* In M-step, use the fixed lower-bound distribution to
find parameters to maximize the log-likelihood

—In M-step we update parameters a and 0

—Full details 1n [Ble1, Ng, Jordan: Latent Dirichlet
Allocation, J. Mach. Learn. Res., 3, 2003]




[.ower-bound distributions

multinomial(0, M) ‘

Dirichlet(a) ' wordw N
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Lower-bound distributions

Theeshuldn {
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Lower-bound distributions

i These shouldn t

tdo with each other {~
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Lower-bound distributions

' These shouldn t 4

tdo with each other §™~

Dirichlet(a) | multinomial(B, B[N topict /  Adordw N

multinomial(¢, k)

o[

i Remove these |
tedges and the nodej

multinomial(p, k) topict N | p




Lower-bound distributions
These shouldn’t |
thave anything to

tdo with each other §>

Dirichlet(a)

multinomial(p, &)\  topic ¢

QDir(v)

multinomial(p, k)

multinomial(¢, k)

o

topic ¢

N

D

(v.P)

i Remove these |
tedges and the nodej

Find y* and ¢* to minimize KL
divergence between variational ¢g(...)
and data log-likelr.

(v", d*) = argmin D (q(B, t |y

nood p(...):
d)|lp(B.t]d e, 0))



Extended LDA

* A new document arrives that has never-before seen
word

—The word gets 0 probability = document gets O prob.

* Answer: smoothing

— Assign each word non-zero probability

Dirichlet(n) multinomial(0, M)

o k
OO

Dirichlet(a) | multinomial(B, ) topic ¢ wordw N




Geometry of latent-topic models

- single-cause latent-topic model
places docs on corners
of topic simplex

pLSI places docs at
-discrete points in topic simplex

LDA imposes smooth

. distribution in topic simplex
and can place docs at
arbitrary points in the simplex

Source: Blei1 et al., 2003



LDA experimental results: example

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 mullion to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research. education
and the social services.” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200.000 for its new building. which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.000 each. The Juilliard School. where music and
the performing arts are taught. will get $250.000. The Hearst Foundation. a leading supporter

donation. too.

IR&DM,

WS'11/12 24 January 2012

Source: Blei et al., 2003
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LDA experimental results: perplexity

on corpus of 16333
AP newswire articles
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Summary of LDA

» Adds a generative model to pLSI
* Generally thought to be better than pLSI

— Some recent work enhances pLSI and makes 1t better
—pLSI = LDA with uniform Dirichlet prior

* Expensive computations and expensive query
processing



IX.4 Dimensionality reduction il

1. Curse of dimensionality

2. Matrix factorization to help — Feature extraction
3. Johnson—Lindenstrauss lemma

4. Feature selection

Zaki & Meira, Ch. 6 & 8
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Curse of dimensionality

* Many data mining algorithms need to work 1n high-
dimensional data

* But life gets harder as dimensionality increases

— The volume grows too fast
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100 points evenly-spaced points in unit interval have max
distance between adjacent points of 0.01



Curse of dimensionality

* Many data mining algorithms need to work 1n high-
dimensional data

* But life gets harder as dimensionality increases

— The volume grows too fast

100 points evenly-spaced points in unit interval have max
distance between adjacent points of 0.01

 To get that distance for adjacent points in 10-dimensional unit
hypercube requires 10%° points

e Factor of 10!8 increase



Hypersphere and hypercube

* Hypercube 1s d-dimensional cube with edge length 2r
— Volume: vol(Ha4(2r)) = (2r)¢

* Hypersphere 1s the d-dimensional ball of radius r
—vol(Si(r)) = 2r
—vol(Sa(r)) = 12
—vol(S3(r)) = 4/3 ©r’
—vol(Sa(r)) = Kar¢, where Kgq =
I'(d/2+1)=(d/2)! for even d

/2

rd/2+1)




Hypersphere within hypercube

2=
N/

Fraction of volume hypersphere has of surrounding hypercube:

higher dimensions
[R&DM, WS'11/12 24 January 2012 IX.3&4-30



Hypersphere within hypercube

2=
N/

Fraction of volume hypersphere has of surrounding hypercube:

lim YolSa() o m? . 0
d—oo vOl(Hg(27)) d—oo24T(d/2+1)

higher dimensions



Hypersphere within hypercube

2 s
N

Fraction of volume hypersphere has of surrounding hypercube:

im YolSa(m) _ o wtP . 0
d—oo vOl(Hg(27)) d—oo24T(d/2+1)

0

higher dimensions



Hypersphere within hypercube

2=
NI

Fraction of volume hypersphere has of surrounding hypercube:
VOl(Sd(T)\ : 7Td/2

J

i Mass is in the corners!§

)
dmso0 vol (Hy (21))

2D 3D 4D higher dimensions



Volume of thin shell of hypersphere

Sa(7,€)




Volume of thin shell of hypersphere

Sa(7,€)

vol(Sa(7,€)) = vol(Sa(7)) — vol(Sa(r—¢))
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Volume of thin shell of hypersphere

Sa(7,€)

vol(Sa(7,€)) = vol(Sa(7)) — vol(Sa(r—¢))
= Kar? — Ka(r—)?

| . vol(Sq4(T, €)) €
Fraction of volume in the shell: i — 1 — (

vol(Sq4(r))



Volume of thin shell of hypersphere

Sa(7,€)

vol(Sa(7,€)) = vol(Sa(7)) — vol(Sa(r—¢))
= Kar? — Ka(r—)?

. . vol(Sq4 (T, €)) €
Fraction of volume 1n the shell: =1 — (1 — —
vol(S4(r)) T
. vol(Sq4(r,€)) , €\ d
1 — lim 1 — (1 _ —) 1
Ao vol(Sq4(1)) Ao T ~



Volume of thin shell of hypersphere

Sa(7,€)

vol(Sa(7,€)) = vol(Sa(7)) — vol(Sa(r—¢))
= Kar? — Ka(r—)?

. . vol(S4(T, €)) €
Fraction of volume 1n the shell: =1 — (
vol(S4(1))

. vol(Sq4(r,€)) , €\ d
1 — lim1—=(1== ;
dmroc vol(S4(T)) dmroc ( r> 1




Feature extraction

* Aim: reduce the number of features by replacing them
with new ones

* Tools: PCA (and other matrix factorizations)

— Typical matrix factorizations give linear transformation

* Projection of data to small-dimensional subspace

— Using so-called kernel trick we can have non-linear
transformations

e See Zaki & Meira for more on kernel trick



Johnson—Lindenstrauss lemma

* Finding the decomposition can be expensive

* Decompositions give only global guarantees

— Any pair of points can have very different distances

* Can we guarantee [ocal similarity?

ohnson—Llndenstrauss lemma. Given g > >0 and an 1nteger n, , let
be a positive integer such that £ > ko = O(e*log n). For every set X

of n points in R< there exists F: RY — R* such that for all x;, x; € X ;

(1—¢) [[xi —x;5]1> < IF(x1) — F(x)|1” < (1 + &) |[xi — x5



How to find the projections?
* We need to find an k-by-d matrix R = () such that

function x = Rx satisfies JLL

* Remarkably, 1f we select 7;; ~ N(0,1), R satisfies JL
with high probability
—That 1s, JL holds for all points of X with high probability

» Achlioptas has show that we can also select
Pr|r;=1]=1/2 and Pr[r;j=—1]=1/2 or
Pr[ri=1]=1/6, Pr|r;=0]=2/3, Pr[rij=—1]=1/6

— Sparse matrix



Feature selection

* Sometimes we want to retain the original features
— Interpretability
— Sparsity

* We can select the most important features and work
only on them

— Greedy algorithm: start with one feature and add new ones
based on how much they improve

* Improvement can be hard to compute

— One can also use CX matrix decomposition
» Matrix C selects the features



