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IX.3 Latent topic models
1. Basic idea
2. Latent semantic indexing (LSI)
3. Probabilistic latent semantic indexing (pLSI)
4. Latent Dirichlet allocation (LDA)

1
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Probabilistic latent semantic indexing (pLSI)
• We model documents as (probabilistic) mixtures of 

topics (a.k.a. aspects)
• Each topic generates words with topic-specific 

probabilities
• We assume conditional independence of word w and 

document d given topic t:
– Pr[w ⋀ d ⋀ t] = Pr[w ⋀ d | t] Pr[t] = Pr[w | t]Pr[d | t]Pr[t]
– Pr[w ⋀ d] = ∑t Pr[w | t] Pr[d | t] Pr[t]

• Generative model:
– Pr[w | d] = ∑t Pr[t | d] Pr[w | t]

2
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pLSI example

3
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Aspect Model: Probabilistic LSI (pLSI)
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Relationship of pLSI to co-clustering
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Aspect Model: Probabilistic LSI (pLSI)

documents d latent concepts z
(aspects)

terms w
(words)
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d and w 
conditionally
independent
given z

Co-clustering clusters documents and terms – no overlapping
Co-cluster mean µ is the ”strength of words in these documents”
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Relationship of pLSI to LSI

5
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Relationship of pLSI to LSI

¦ z
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Key difference to LSI:
• non-negative matrix decomposition
• with L1 normalization
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Key difference to LMs:
• no generative model for docs
• tied to given corpus

Pr[d,w] = Σt Pr[d | t] ×   Pr[t]     × Pr[w | t]

Differences to SVD:
•Probabilities are nonnegative (NMF!) and normalized
•Loss function is not squared loss, but Kullback–Leibler 

divergence
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Geometry of pLSI

6

PROBABILISTIC LATENT SEMANTIC ANALYSIS 183

In early stopping one does not necessarily optimize until convergence, but instead stops
updating the parameters once the performance on hold-out data is not improving. This is
a standard procedure that can be used to avoid overfitting in the context of iterative fitting
methods, EM being a special case.
Before discussing further algorithmic questions, we will study the relationship between

the proposed model and LSA in more detail.

3.3. Latent probability spaces and probabilistic latent semantic analysis

Consider the class-conditional probability mass functions P(· | zk) over the vocabularyW
which can be represented as points on theM−1 dimensional simplex of all probabilitymass
functions overW . Via its convex hull, this set of K points defines a K−1dimensional convex
region R ≡ conv(P(· | z1), . . . , P(· | zK )) on the simplex (provided they are in general
position). The modeling assumption expressed by (3) is that all conditional probabilities
P(· | di ) for 1 ≤ i ≤ N are approximated by a convex combination of the K probability
mass functions P(· | zk). The mixing weights P(zk | di ) are coordinates that uniquely define
for each document a point within the convex region R. A simple sketch of the geometry
is shown in Figure 2. This demonstrates that despite of the discreteness of the introduced
latent variables, a continuous latent space is obtained within the space of all probability
mass functions over W . Since the dimensionality of the convex region R is K − 1 as
opposed to M − 1 for the probability simplex, this can also be thought of in terms of
dimensionality reduction andR can be identified with a probabilistic latent semantic space.
Each “direction” in this space corresponds to a particular context as quantified by P(· | zk)
and each document di participates in each context with some specific fraction P(zk | di ).
Note that since the aspect model is symmetric with respect to terms and documents, by

Figure 2. Sketch of the probability simplex and a convex region spanned by class-conditional probabilities in
the aspect model.

Image: T. Hofmann Unsupervised learning by probabilistic latent semantic analysis. 2001
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Relationship of pLSI to NMF

7

• pLSI is equivalent to NMF that
– tries to minimize KL-divergence, not squared loss
– has factors normalized (probabilities must sum to 1)
– [Ding, Li & Peng, 2008]

• Equivalency means that they try to minimize the same 
loss function
–Typical algorithmic approaches differ
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EM for pLSI

8

• Data: n(d,w) – absolute freq. of word w in doc d
• Parameters: Pr[t | d], Pr[w | t] 
• Log-likelihood: ∑d∑w n(d,w) log Pr[d,w] 
• E-step:

M-step:

Pr[t | d,w] =
Pr[t | d] Pr[w | t]P
y Pr[y | d] Pr[w | y]

Pr[t | d] /
X

w

n(d,w) Pr[t | d,w]

Pr[w | t] /
X

d

n(d,w) Pr[t | d,w]

In addition uses ‘tempered’ method to avoid overfitting.
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EM for pLSI
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Folding-in of queries
• Keep all estimated parameters fixed
• Treat a query as a ‘new document’ to be explained
– Find topics that most likely generate the query
•Query = document; Pr[w | t] is kept fixed

–EM for query parameters

9

Pr[t | q,w] =
Pr[t | q]p̂[w | t]P
y Pr[y | q]p̂[w | y]

Pr[t | q] =
P

w n(q,w) Pr[t | q,w]P
w,y n(q,w) Pr[y | q,w]
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Query processing
• Documents and queries are both represented as 

probability distributions over k topics
– k-dimensional vectors with xi ≥ 0 and ∑xi = 1

• Any convenient vector-space similarity measure 
works
– scalar product
– cosine
–KL divergence
–…

10
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Experimental results: example

11
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Experimental Results: Example

Source: Thomas Hofmann, Tutorial at ADFOCS 2004
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On perplexity

12

• How well does the model generalize to unseen data?
–The question in statistics/machine learning
–Many measures
•But the proof of the pudding is in the eating…

• Perplexity is one measure of generalization 
performance
–Log-averaged inverse probability of unseen data:

• n’(d,w) = frequency of word w in doc d in test-data

P = exp

�
-

P
d,w n 0(d,w) log Pr[w | d]

P
d,w n 0(d,w)

�
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Experimental results: perplexity

13

190 T. HOFMANN

Figure 6. Perplexity results as a function of the latent space dimensionality for (a) the MED data (rank 1033) and
(b) the LOB data (rank 1674). Plotted results are for LSA (dashed-dotted curve) and PLSA (trained by TEM =
solid curve, trained by early stopping EM= dotted curve). The upper baseline is the unigrammodel corresponding
to marginal independence. The star at the right end of the PLSA denotes the perplexity of the largest trained aspect
models (K = 2048).

Two data sets that have been used to evaluate the perplexity performance: (i) a standard
information retrieval test collection MED with 1033 document, (ii) a dataset with noun-
adjective pairs generated from a tagged version of the LOB corpus. In Figure 6 we report
perplexity results for LSA and PLSAon theMED (a) and LOB (b) datasets dependent on the
number of dimensions of the (probabilistic) latent semantic space. For the noun-adjective
pairs the reported perplexity corresponds to predicting nouns conditioned on the correspond-
ing adjective. PLSA outperforms the statistical model derived from standard LSA by far. On
the MED collection PLSA reduces perplexity relative to the unigram baseline by more than
a factor of three (3073/936 ≈ 3.3), while LSA achieves less than a factor of two in reduction
(3073/1647 ≈ 1.9). On the less sparse LOB data, the difference between LSA and PLSA
is somewhat less drastic, but still very significant. With PLSA the reduction in perplexity
is 1316/547 ≈ 2.41 while the reduction achieved by LSA is only 1316/632 ≈ 2.08. In
order to demonstrate the advantages of TEM, we have also trained aspect models on the
MED collection by standard EM with early stopping. As can be seen from the curves in
Figure 6(a), the difference between EM and TEMmodel fitting is significant. Although both
strategies—annealing and early stopping—are successful in controlling themodel complex-
ity, EM training performsworse, since it makes a very inefficient use of the available degrees
of freedom. Notice, that with both methods it is possible to train high-dimensional models
with a continuous improvement in performance. The number of latent space dimensions
may even exceed the rank of the co-occurrence matrix N and the choice of the number of
dimensions becomes merely an issue of possible limitations of computational resources.
In order to investigate the effect of the final choice ofβ and to further stress the advantages

of TEM, we have performed another series of experiments on the TDT1 corpus using
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pLSI summary

14

• Probabilistic variant of LSI
–Equivalent to NMF with particular normalization

• Better experimental results than LSI
• Good on ‘closed’ corpora
–But tied on the fixed corpus
•No generative model!

• Computationally expensive
– Indexing and querying

• Number of latent concepts has to be selected
–BIC, AIC, asses with held-out data with different k
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Latent Dirichlet allocation (LDA)
• Multiple-cause mixture model (MCMM)
• Documents contain multiple topics
–Topics are expressed by specific word distributions

• LDA provides a generative model for this
–Dirichlet topic mixtures

15
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Latent Dirichlet Allocation (LDA)
State-of-the-art multiple-cause mixture model (MCMM)

LDA is a generative model for this situation:
Dirichlet topic mixtures
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LDA generative model
• For each document d 
–Choose doc length N (# word occurrences) ~ Poisson(λ) 
–Choose topic-probability parameters β ~ Dirichlet(α)
– For each N word occurrences in d (at position n)
•Choose one of k topics tn ~ multinomial(β, k)
•Choose one of M words wn from per-topic distribution 

~ multinomial(θ, M)

16

Dirichlet(α) multinomial(β, k) topic t word w

multinomial(θ, M) observable RV
(data)

latent (hidden)
RV

per document

per word occurrence
N

D



IR&DM, WS'11/12 IX.3&4-24 January 2012

LDA: instance-level model

17

α

β β

t1 t2 tN t1 t2 tN

w1 w2 wN w1 w2 wN

θ θ

…

…

…

…

…

…

topics of
words

words

topic 1 topic k

per topic 
word distr.’s

doc 1 doc D

hypergenerator for
topic distribution
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Comparison to other latent-topic models

18

IRDM  WS 2007 4-101
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Computing LDA

19

Pdf of Dirichlet:

Probability of document d given α and β:

⇒ Posterior probability is intractable!
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Variational inference

20

• Consider a family of tractable lower-bound functions
• In E-step, find optimal parameters for these lower-

bound functions
• In M-step, use the fixed lower-bound distribution to 

find parameters to maximize the log-likelihood
– In M-step we update parameters α and θ
– Full details in [Blei, Ng, Jordan: Latent Dirichlet 

Allocation, J. Mach. Learn. Res., 3, 2003]
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Lower-bound distributions

21

Dirichlet(α) multinomial(β, k) topic t word w

multinomial(θ, M)

N
D
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Lower-bound distributions

21

Dirichlet(α) multinomial(β, k) topic t word w

multinomial(θ, M)

N
D

These shouldn’t 
have anything to 
do with each other
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Lower-bound distributions

21

Dirichlet(α) multinomial(β, k) topic t word w

multinomial(θ, M)

N
D

These shouldn’t 
have anything to 
do with each other

Remove these 
edges and the node
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Lower-bound distributions

21

Dirichlet(α) multinomial(β, k) topic t word w

multinomial(θ, M)

N
D

These shouldn’t 
have anything to 
do with each other

Remove these 
edges and the node

multinomial(β, k) topic t N D

Dir(γ)

multinomial(ϕ, k)
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Lower-bound distributions

21

Dirichlet(α) multinomial(β, k) topic t word w

multinomial(θ, M)

N
D

These shouldn’t 
have anything to 
do with each other

Remove these 
edges and the node

Find γ* and ϕ* to minimize KL 
divergence between variational q(…) 
and data log-likelihood p(…):

(�⇤,�⇤) = arg min
(�,�)

D
�
q(�, t | �,�)kp(�, t | d,↵,✓)

�
multinomial(β, k) topic t N D

Dir(γ)

multinomial(ϕ, k)
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Extended LDA

22

• A new document arrives that has never-before seen 
word
–The word gets 0 probability ⇒ document gets 0 prob.

• Answer: smoothing
–Assign each word non-zero probability 

Dirichlet(α) multinomial(β, k) topic t word w

multinomial(θ, M)

N
D

k

Dirichlet(η)
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Geometry of latent-topic models

23
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Illustration of LDA vs. pLSI

Source: D.M. Blei, A.Y. Ng, M.I. Jordan: Latent Dirichlet Allocation, Journal of Machine Learning Research 2003

single-cause latent-topic model
places docs on corners
of topic simplex

pLSI places docs at 
discrete points in topic simplex

LDA imposes smooth
distribution in topic simplex
and can place docs at
arbitrary points in the simplex

Source: Blei et al., 2003
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LDA experimental results: example

24
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LDA Experimental Results: Example

Source: 
D.M. Blei, A.Y. Ng, M.I. Jordan: 
Latent Dirichlet Allocation, Journal 
of Machine Learning Research 2003
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LDA Experimental Results: Example

Source: 
D.M. Blei, A.Y. Ng, M.I. Jordan: 
Latent Dirichlet Allocation, Journal 
of Machine Learning Research 2003

Source: Blei et al., 2003
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LDA experimental results: perplexity

25
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LDA Experimental Results: Perplexity

Source: 
D.M. Blei, A.Y. Ng, M.I. Jordan: 
Latent Dirichlet Allocation, Journal 
of Machine Learning Research 2003

,22 dw
]|[log),(])|[),,(( 2 dwPdwfreqdwPdwfreqH ¦ 

��
perplexity: on corpus of 16333

AP newswire articles
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Summary of LDA

26

• Adds a generative model to pLSI
• Generally thought to be better than pLSI
– Some recent work enhances pLSI and makes it better
– pLSI = LDA with uniform Dirichlet prior

• Expensive computations and expensive query 
processing
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IX.4 Dimensionality reduction
1. Curse of dimensionality
2. Matrix factorization to help – Feature extraction
3. Johnson–Lindenstrauss lemma 
4. Feature selection

27

Zaki & Meira, Ch. 6 & 8
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Curse of dimensionality
• Many data mining algorithms need to work in high-

dimensional data
• But life gets harder as dimensionality increases
–The volume grows too fast

28
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• 100 points evenly-spaced points in unit interval have max 

distance between adjacent points of 0.01

28



IR&DM, WS'11/12 IX.3&4-24 January 2012

Curse of dimensionality
• Many data mining algorithms need to work in high-

dimensional data
• But life gets harder as dimensionality increases
–The volume grows too fast
• 100 points evenly-spaced points in unit interval have max 

distance between adjacent points of 0.01
•To get that distance for adjacent points in 10-dimensional unit 

hypercube requires 1020 points
• Factor of 1018 increase

28
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Hypersphere and hypercube
• Hypercube is d-dimensional cube with edge length 2r
–Volume: vol(Hd(2r)) = (2r)d

• Hypersphere is the d-dimensional ball of radius r
– vol(S1(r)) = 2r
– vol(S2(r)) = πr2

– vol(S3(r)) = 4/3 πr3 
– vol(Sd(r)) = Kdrd, where
• Γ(d/2 + 1) = (d/2)! for even d

29

Kd =
⇡d/2

�(d/2 + 1)
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Hypersphere within hypercube

30

CHAPTER 6. HIGH DIMENSIONAL DATA 154
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Figure 6.3: Hypersphere inscribed inside a hypercube in (a) 2D, (b) 3D

In d Dimensions As the dimensionality d increases asymptotically, we get

lim
d→∞

vol(Sd(r))

vol(Hd(2r))
= lim
d→∞

πd/2

2dΓ(d2 + 1)
→ 0 (6.19)

This means that as the dimensionality increases, most of the volume of the hypercube
is in the “corners”, whereas the center is essentially empty. The mental picture that
emerges is that high-dimensional space looks like a rolled-up porcupine, as illustrated
in Figure 6.4.

DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.
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higher dimensions
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Hypersphere within hypercube
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Figure 6.3: Hypersphere inscribed inside a hypercube in (a) 2D, (b) 3D

In d Dimensions As the dimensionality d increases asymptotically, we get

lim
d→∞

vol(Sd(r))

vol(Hd(2r))
= lim
d→∞

πd/2

2dΓ(d2 + 1)
→ 0 (6.19)

This means that as the dimensionality increases, most of the volume of the hypercube
is in the “corners”, whereas the center is essentially empty. The mental picture that
emerges is that high-dimensional space looks like a rolled-up porcupine, as illustrated
in Figure 6.4.
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Figure 6.4: Conceptual View of High Dimensional Space in (a) 2D, (b) 3D, (c) 4D,
and (d) Higher Dimensions. In d dimensions there are 2d “corners” and 2d−1 diagonals.
The radius of the inscribed circle accurately reflects the difference between the volume
of the hypercube and the inscribed hypersphere in d dimensions.

6.4 Volume of Thin Hypersphere Shell

Let us now consider the volume of a thin hypersphere shell of width ε bounded by an
outer hypersphere of radius r , and an inner hypersphere of radius r − ε. The volume
of the thin shell is given as the difference between the volumes of the two bounding
hyperspheres, as illustrated in Figure 6.5.
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Figure 6.5: Volume of the Thin Shell: Comparing vol(Sd(r − ε)) to vol(Sd(r)) for
small ε > 0

Let Sd(r, ε) denote the thin hypershell of width ε. Its volume is given as

vol(Sd (r, ε)) = vol(Sd(r))− vol(Sd(r − ε)) = Kd rd −Kd(r − ε)d . (6.20)

Let us consider the ratio of the volume of the thin shell to the volume of the outer
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The radius of the inscribed circle accurately reflects the difference between the volume
of the hypercube and the inscribed hypersphere in d dimensions.
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of the hypercube and the inscribed hypersphere in d dimensions.
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Let us now consider the volume of a thin hypersphere shell of width ε bounded by an
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6.4 Volume of Thin Hypersphere Shell

Let us now consider the volume of a thin hypersphere shell of width ε bounded by an
outer hypersphere of radius r , and an inner hypersphere of radius r − ε. The volume
of the thin shell is given as the difference between the volumes of the two bounding
hyperspheres, as illustrated in Figure 6.5.
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Let Sd(r, ε) denote the thin hypershell of width ε. Its volume is given as
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Feature extraction
• Aim: reduce the number of features by replacing them 

with new ones
• Tools: PCA (and other matrix factorizations)
–Typical matrix factorizations give linear transformation
• Projection of data to small-dimensional subspace

–Using so-called kernel trick we can have non-linear 
transformations
• See Zaki & Meira for more on kernel trick

32



IR&DM, WS'11/12 IX.3&4-24 January 2012

Johnson–Lindenstrauss lemma
• Finding the decomposition can be expensive
• Decompositions give only global guarantees
–Any pair of points can have very different distances 

• Can we guarantee local similarity?

33

Johnson–Lindenstrauss lemma. Given ε > 0 and an integer n, let k 
be a positive integer such that k ≥ k0 = O(ε–2log n). For every set X 
of n points in ℝd there exists F: ℝd → ℝk such that for all xi, xj ∈ X

(1 - ") kxi - xjk2 6 kF(xi)- F(xj)k2 6 (1 + ") kxi - xjk2
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How to find the projections?

34

• We need to find an k-by-d matrix R = (rij) such that 
function x ↦ Rx satisfies JL
• Remarkably, if we select rij ~ N(0,1), R satisfies JL 

with high probability 
–That is, JL holds for all points of X with high probability

• Achlioptas has show that we can also select 
Pr[rij = 1] = 1/2 and Pr[rij = –1] = 1/2 or 
Pr[rij = 1] = 1/6, Pr[rij = 0] = 2/3, Pr[rij = –1] = 1/6
– Sparse matrix
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Feature selection
• Sometimes we want to retain the original features
– Interpretability
– Sparsity
–…

• We can select the most important features and work 
only on them
–Greedy algorithm: start with one feature and add new ones 

based on how much they improve
• Improvement can be hard to compute

–One can also use CX matrix decomposition
•Matrix C selects the features
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