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Motivation & Basic Idea

* Permutation test for assessing the significance of a
data mining result
— Is this 1temset significant?

— Are all itemsets that are frequent w.r.t. threshold ¢
significant?

— Is this clustering significant?

* Null hypothesis: The results are explained by the
number of 1s in the rows and columns of the data

— We expect binary data for now
— Previous lecture: only number of 1s per column was fixed




Basic Setup

* Let D be n-by-m data matrix and let  and ¢ be 1ts row
and column margins

* Let M(r, c) be the set of all n-by-m binary matrices
with row and column margins defined by r and ¢

—Let S € M(r, ¢) be a uniform random sample of M(r, c)
* Let R(D) be a single number that our data mining
method outputs

—E.g. the number of frequent itemsets w.r.t. ¢, the frequency
of an itemset /, the clustering error

* The empirical p-value for R(D) being big 1s
(KD’€S:RWD’)>RWD)}| +1)/(S]+1)




Comments on Empirical p-value

* The empirical p-value for R(D) being big 1s
(KD’€S:RWD’)>RWD)}| +1)/(S]+1)
* The +1°s are to avoid having problems with 0Os
o I[f S = M(r, c¢) this 1s an exact test
—+1’s are not needed

* The bigger the sample, the better

— Sample size also controls the maximum accuracy

* Changing the definition for small R(D) or two-tailed
test 1s easy




* A swap box of D 1s a 2-by-2 combinatorial sub-
matrix that is either diagonal or anti-diagonal

* A swap turns diagonal swap box 1nto anti-diagonal, or
VICE Versa

e Theorem [Ryser ’57]. If A, B € M(r, c¢), then 4 1s
reachable from B with a finite number of swaps




Generating Random Samples

* Idea: Starting from the original matrix, perform k
swaps to obtain a random sample from M(r, ¢), and
run the data mining algorithm with this data. Repeat.
— The empirical p-value can be computed from the results
— Simple
— Requires running the data mining algorithm multiple times

e Can be very time consuming with big data sets

* Question: Are we sure we get a uniform sample from
M(r, ¢)?
— The results are not valid 1f the sample 1s not uniform
—To ensure uniformity, we need a bit more theory...




Markov Chains and Sampling

* A stochastic process 1s a family of random variables
(X teT)

—Henceforth 7= {0, 1, 2, ...} and ¢ 1s called time

* This 1s discrete stochastic process

» Stochastic process {X;} i1s Markov chain if always
PriXe=x|Xe1=a Xe2=0b, ..., Xo = z]
= Pr[X; = x | X1 = a]

— Memory-less property

* A Markov chain 1s time-homogenous 1f for all ¢
PriXi+1 =x| Xs =y ]| =Pr[Xi = x| X1 =]

— We only consider time-homogenous Markov chains




Transition matrix

 The state space of a Markov chain {X;};er1s the
countable set S of all values X; can assume
— X Q—>SforallreT

—Markov chain 1s 1n state s at time 7 1f X; = s
— A Markov chain {X;}/eris finite if it has finite state space

 [f Markov chain {X;} 1s finite and time-homogenous,
its transition probabilities can be expressed with a
matrix P = (p;j), pi; = Pr|X; = | Xo =i}

— Matrix P 1s n-by-n 1f Markov chain has » states and it 1s
right stochastic, 1.e. ) ; p; = 1 tor all i (rows sum to 1)




Example Markov chain

0 9/10 1/10
pP= ( 3/10 1/10 6/10 )

1/2 1/2 0




Classifying the states

* State i can be reached from state j 1f there exists n > 0
such that (P");; > 0
— P” 1s the nth exponent of P, P" = PxPx---xP

* It i can be reached from j and vice versa, i and j
communicate

— If all states i, j € § communicate, Markov chain 1s irreducible

» [f the probability that the process visits a state i
infinitely many times 1s 1, then state i 1s recurrent

— State 1s positive recurrent 1f the estimated return time to 1t 1s
finite

— Markov chain 1s recurrent if all of its states are




More classifying of the states

* State 7 has period k£ 1f any return to i must occur in
time that 1s multiple of £:

k=gcdi{n:Pr|X,=1i| Xo=1]>0}
— State i 1s aperiodic 1if 1t has period £ = 1; otherwise 1t 1s
periodic with period £
—Markov chain 1s aperiodic 1f all of its states are
* State i 1s ergodic 1f 1t 1s aperiodic and positive
recurrent
— Markov chain 1s ergodic 1f all of its states are




Two important results for finite MCs
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Stationary distributions

* [f wissuch thatm; >0 foralli, ; m; =1, and
nP=mn
then 7 1s the stationary distribution of the Markov
chain

e Let hii = > =1 (Pr[X; =iand X, #i for n <t | Xo=i] be

the estimated return time to state 7

Theorem. If Markov chain 1s finite, irreducible, and
ergodic, then
1. 1t has an unique stationary distribution 7

2. for all 7 and j, lim;—« (P?);; exists and 1s the same for all ;
3. = limi—w (Pt)ji = 1/h;i




More on stationary distributions

* If Markov chain has a stationary distribution, then the
probability that the chain 1s 1n state i after long-
enough time 1s independent of the starting time but
depends only on the stationary distribution

* Aperiodicity 1s not necessary condition for stationary
distribution to exist, but then the stationary
distribution will not be the limit of transition
probabilities
— Two-state chain that always switches the state has stationary

distribution (1/2, 1/2), but the transitions look either (1, 2, 1,
2,..0)o0r(2,1,2,1,..)depending on the starting state




Markov Chain Monte Carlo Method

* The Markov Chain Monte Carlo (MCMC) method
1s a way to sample from probability distributions

* Each possible sample 1s a state in a Markov chain

* Each state has a neighbour structure giving the
transitions 1n the chain

* The chain 1s build so that its stationary distribution 1s
the desired distribution to sample from

» After burn-in period, the chain 1s well-mixed, and we
can sample by taking every nth state




Uniform Stationary Distribution

* Lemma. Consider a Markov chain with a finite state
space. Let M(x) be the set of neighbours of state x, let

N = max, |[N(x)|, and let M > N. Define the transition
probabilities by

if x#yandy € N(x),
0 if x#yandy¢ N(x),
1 -Nx)/M ifx=y.

If this chain 1s 1rreducible and aperiodic, then the
stationary distribution 1s the uniform distribution.




The Metropolis Algorithm

* The Metropolis algorithm 1s a general technique to
transform any 1rreducible Markov chain 1nto a time-
reversible chain with a required stationary distribution

— A Markov chain 1s time-reversible if m;P;; = w;P;i

* Let N(x), N, and M be as in previous slide, and let w =

(11, M2, ..., Wy) be the desired stationary distribution.
— Let

1/ Mmin{l,m,/mt,} ifx#yandye N(x),
0 if xAyandyé¢ N(x),
1 — Zy;éx ny 1f x = V.

— If the chain 1s aperiodic and irreducible, the stationary
distribution 1s the desired one




Notes on the Metropolis Algorithm

* Two-step process: each neighbour 1s selected with
probability 1/M, and accepted with probability mt,/m,

—To obtain uniform distribution, only the first step 1s needed

* We do not need to have the transition matrix defined
explicitly
—E.g. mifinite state space
— Even with finite chains, MCMC methods can be faster than
solving the stationary distribution first

» Slightly more general method 1s known as the
Metropolis—Hastings algorithm




The Metropolis—Hastings Algorithm

* A generalization of the Metropolis algorithm

* Suppose we have a Markov chain with transition
matrix Q

* We generate a new chain where we move from state x
to state y with probability min { Qe } and

. . T Qxy
otherwise stay still

* This new chain will have the desired stationary
distribution




Besag—Clifford Correction

* The subsequent states in Markov chains are
dependent
— Subsequent samples 1n Metropolis are dependent, too

—No problem if we have long-enough (mixing time) gaps
between samples
* But mixing time 1s hard to estimate...

* In Besag—Clifford correction, we first run the chain s
steps backward and then from there & times s steps
forward
—The original data and random samples are exchangeable
— Time-reversible chains: backward = forward




Swap-Randomization for Binary Data

* To obtain the uniform samples from M(r, ¢), we use an
MCMC method

— The states of the chain are the matrices in M(r, c)

— The neighbours of X are the matrices Y € M(r, c¢) that are
reachable from X with a single swap

— But the resulting chain does not have uniform stationary
distribution
* To ensure the uniform distribution, we have two
options
— Add multiple self-loops so that each state has the same
degree

— Use the Metropolis—Hastings algorithm
Gionis, Mielikdinen & Mannila 2007




Self-Loops

* In every state X, we select u.a.r. two elements (i, ;)
and (k, /) of the matrix (i # k&, j # [) such that
Xj=Xu=1

o If the selected elements are corners of a swap box, we
perform the swap

—Swap box 1f X;; =X, =0

* Otherwise, we stay at X but consider this a step

* This chain has uniform stationary distribution because
each state has equivalent degree

— Each self-loop 1s counted separately

* This chain has long burn-in time




Metropolis—Hastings

* Let N(X) be the number of neighbours of matrix X

* For Metropolis—Hastings, we select Y € N(X) u.a.r.
and make the transition with probability
min{ VN(X)/N(Y), 1}
—To select Y, we use rejection sampling

 Try random pairs (i, j), (k, /) and return the first that defines a
swap box

* Metropolis—Hastings probably converges faster than
the self-loop method

— But 1t needs to know the size of the neighbourhood




Counting the Neighbours

* Theorem. The number of neighbours of X 1s

N(X) = J(X) — Z(X) + 2K»n(X),
where
—J(X) 1s the number of pairs (i, j), (k, /) with distinct i, j, £,
and / such that X;; = Xu = 1

* All potential swap boxes

— Z(X) 1s the number of “Z-structures”: distinct i, j, k, and /
such that X = X = Xy = 1

e Non-swap boxes

— K72(X) 1s the number of 2-by-2 all-1s submatrices of X

e Z(X) removes some non-swap boxes multiple times




Updating the Neighbour Count

* Theorem. If we know N(X) and Y 1s obtained from X
with a single swap, then we can compute N(Y) by
N(Y)=N(X)—-AZ+ 2AK2,
where AZ 1s the change 1n number of Z-structures and
AK?2> 1s the change in number of 2-by-2 all-1s
submatrices.

* The change can be computed in time min{»n, m}

—Thus, the convergence 1s probably faster, but each step costs
considerably more than with self-loops




Mixing Times for Self-Loop
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Numerical Data

* Swap randomization per se works only for binary
data

e [t can be extended to handle real-valued data
» Two different tasks (null hypotheses):

— Approximately the same value distributions on rows and
columns

— Approximately the same mean and variance on rows and
columns

* The algorithms are based on the Metropolis algorithm

— The neighbourhood 1s based on different local changes

Ojala et al. 2009




Local Changes

* One-element changes

—Replace a value
— Add another value

* Four-clement changes

— Rotate

e[fa=a’and b=">b’, equals to
swap

— Mask

* Preserves row and column sums

Mask

Ojala et al. 2009




Acceptance Probability

* The Metropolis algorithm performs the local change
and accepts the result with a certain probability

* If X 1s the original matrix, and Y is the result, we
accept with probability cxexp{—w£E(X, Y)}, where
— ¢ 1s a normalization constant
—w 1s a welght parameter

—E(X, Y) 1s a distance measure between X and Y
* Depends on the task

* Further away the result 1s from the original, the less likely it 1s to
be selected




Distance Measures

* For having approximately the same value
distributions, we need to measure the distance of
these distributions

— L1 norm between the observed unnormalized cdf’s

— Faster method: compare histograms

* For approximately the same mean and variance, that’s

what we must

mcasurc

= [s|(ju = w| + |o —o7[), where

* |s| 1s the number of distinct values

epand p are t

ne means of the original and transformed matrix

* ¢ and ¢’ are the standard deviations of the original and
transformed matrix




Example

(a) Original (b) GeneralMetropolis with (c) General Metropolis with (d) SwapDiscretized
Resample and difference Mask and difference measure
measure in distributions in means and variances

Ojala et al. 2009
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Some Notes

* Masking seems to be a good local modification

* Computing the L1 in cdf’s 1s very slow
— Approximation using histograms doesn’t hamper the results

* Cannot handle missing values

* Is not good with cases where columns are in different

scales
—E.g. temperature and rainfall; blood pressure and height
— A method to handle these 1s presented by Ojala (2010)




Feedback from Topic II Essay

* Metro Maps of Science was the most popular choise
by far

— Applications of Frequent Subgraph Mining was the other
one selected

— Surprising, as I thought the MMoS§ as the hardest option

* Overall quality keeps on increasing, great work!
— And also the requirement level increases a bit. ..

* Once again: 1f you use figures or tables directly from
some other paper, you must cite the source in the
caption of the said table or figure




