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The Maximum-Entropy Principle
• Goal: To define a distribution over data that satisfies 

given constraints
–Row/column sums
–Distribution of values
–…

• Given such a distribution
–We can sample from it (as with swap randomization)
–We can compute the likelihood of the observed data
–We can compute how surprising our findings are given the 

distribution
–…
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Maximum Entropy
• We expect the constraints to be linear
– If x ∈ X is one data set, Pr(x) is the distribution, and fi(x) is 

a real-valued function of the data, the constraints are of type
                           ∑x Pr(x)fi(x) = di  

• Many distributions can satisfy the constraints; which 
to choose?
• We want to select the distribution that maximizes the 

entropy and satisfies the constraints
–Entropy of a discrete distribution: –∑x Pr(x)log(Pr(x))
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Why Maximize the Entropy?
• No other assumptions
–Any distribution with less-than-maximal entropy must have 

some reason for the reduced entropy
–Essentially, a latent assumption about the distribution
–We want to avoid these

• Optimal worst-case behaviour w.r.t. coding lenghts
– If we build an encoding based on the maximum entropy 

distribution, the worst-case expected encoding length is the 
minimum over any distribution
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Finding the MaxEnt Distribution
• Finding the MaxEnt distribution is a convex program 

with linear constraints

• Can be solved, e.g., using the Lagrange multipliers
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Intermezzo: Lagrange multipliers
• A method to find extrema of constrained functions via 

derivation
• Problem: minimize f(x) subject to g(x) = 0
–Without constraint we can just derive f(x)
•But the extrema we obtain might be unfeasible given the 

constraints

• Solution: introduce Lagrange multiplier λ
–Minimize L(x, λ) = f(x) – λg(x)
–∇f(x) – λ∇g(x) = 0
• ∂L/∂xi = ∂f/∂xi – λ×∂g/∂xi = 0 for all i 
• ∂L/∂λ = g(x) = 0
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More on Lagrange multipliers
• For many constraints, we need to add one multiplier 

for each constraint
– L(x,λ) = f(x) – Σj λjgj(x)
– Function L is known as the Lagrangian  

• Minimizing the unconstrained Lagrangian equals 
minimizing the constrained f 
–But not all solutions to ∇f(x) – Σjλj∇gj(x) = 0 are extrema
–The solution is in the boundary of the constraint only if 
λj ≠ 0
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Example

9

 minimize f(x,y) = x2y
subject to g(x,y) = x2 + y2 = 3
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Example
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 minimize f(x,y) = x2y
subject to g(x,y) = x2 + y2 = 3

L(x,y,λ) = x2y + λ(x2 + y2 – 3)
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Example

9

 minimize f(x,y) = x2y
subject to g(x,y) = x2 + y2 = 3

L(x,y,λ) = x2y + λ(x2 + y2 – 3)

Solution: x = ±√2, y = –1
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Solving the MaxEnt
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• The Lagrangian is

• Setting the derivative w.r.t. Pr(x) to 0 gives

–Where                                             is called the partition 
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The Dual and the Solution
• Subtituting the Pr(x) in the Lagrangian yields the 

dual objective 
• Minimizing the dual gives the maximal solution to the 

original constrained equation
• The dual is convex, and can therefore be minimized 

using well-known methods
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Using the MaxEnt Distribution
• p-Values: we can sample from the distribution and re-

run the algorithm as with swap randomization
• Self-information: the negative log-probability of the 

observed pattern under the MaxEnt model is its self-
information
–The higher, the more information the pattern contains

• Information compression ratio: more complex 
patterns are harder to communicate (longer 
description length); when contrasted to self-
information, this gives us the information 
compression ratio
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MaxEnt Models for Tiling
• The Tiling problem
–Binary data, aim to find fully monochromatic submatrices

• Constraints: the expected row and column margins

–Note that these are in the correct form
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The MaxEnt Distribution
• Using the Lagrangian, we can solve the Pr(D),

–where 
• Note that Pr(D) is a product of independent elements
–We did not enforce this independency, it’s a consequence of 

the MaxEnt model
• Also, each element is Bernoulli distributed with 

success probability 
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Other Domains
• If our data contains nonnegative integers, the 

distribution changes to the geometric distribution 
with success probability 
• If our data contains nonnegative real numbers, the 

partition function becomes

–Assuming 
–The distribution is the exponential distribution with rate 

parameter                     for dij 
–Note: a continuous distribution
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Maximizing the Entropy
• The optimal Lagrange multipliers can be found using 

standard gradient descent methods
• Requires computing the gradient for the multipliers
–There are m + n multipliers for an n-by-m matrix
– But we only need to consider λs for distinct ri and cj, which can be 

considerably less
•E.g. √(2s) for s non-zeros in a binary matrix

• Overall worst-case time per iteration is O(s) for 
gradient descent
– For Newton’s method, it’s O(√s3)
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MaxEnt and Swap Randomization
• MaxEnt models constrain the expected margins; swap 

randomization constrains the actual margins
–Does it matter?

• If M(r, c) is the set of all n-by-m binary matrices with 
same row and column margins, the MaxEnt model 
will give the same probability for each matrix in
M(r, c)
–More generally, the probability is invariant under adding a 

constant in the diagonal and reducing it from the anti-
diagonal of any 2-by-2 submatrix
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The Interestingness of a Tile
• Given a tile τ and a MaxEnt model for the binary data 

(w.r.t. row and column margins), the self-information 
of τ is 
–   

• The description length of the tile is the number of 
bits it takes to explain the tile
• The compression ratio of τ is the fraction

          SelfInformation(τ)/DescriptionLength(τ)
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Set of Tiles
• The description length for a set of tiles is the sum of 

tiles’ description lengths
• The self-information for a set of tiles is the self-

information of their union
–Repeatedly covering a value doesn’t increase the self-

information
• Finding a set of tiles with maximum self-information 

but with a description length below a threshold is NP-
hard problem
–Budgeted maximum coverage
–A greedy approximation achieves (e – 1)/e approximation
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Noisy Tiles
• If we allow noisy tiles, the self-information changes
–The 0s also convey information

• The location of 0s in the tile can be encoded in the 
description length using at most              bits for a tile 
of size I-by-J that have n0 zeros
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Real-Valued Data
• We already saw how to build MaxEnt model with 

constraints on the means of rows and columns
• Here: constraint means and variances —or— 

constraint the histograms of rows and columns
– Similar to the options from last week
– Second option is obviously stronger

21
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Preserving Means and Variances
• To preserve row and column means and variances, we 

need to constraint 
–Row and column sums
–Row and column sums-of-squares

• After solving the MaxEnt equation, we again get that 
the MaxEnt distribution for D is a product of 
probabilities for dij   
– Pr(dij) ~ 
• λs are Lagrange multipliers associated with the constraints on 

sums
• µs are Lagrange multipliers associated with the constraints on 

sums-of-squares
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Preserving the Histograms
• We can express the distribution using a histogram of 

its values
–Bin number and widths are selected automatically based on 

MDL
• The constraints for histograms requires we keep the 

contents of the bins (on expectation) intact
• The resulting distribution is a histogram itself
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Some Notes
• These methods—again—assume that summing over 

rows and columns makes sense
• Sampling is considerably faster that with swap 

randomizations
–Order-of-magnitude difference in worst case

• MaxEnt models also allow computing analytical p-
values for individual patterns
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Essay Topics
• Swap-based methods vs maximum entropy methods
–What are they? How they work? Similarities? Differences? Is 

one better than other? Consider both binary and continuous 
cases

•  Method for finding a frequency threshold for significant 
itemsets vs other methods
–Kirsch et al. 2012 paper
– Explained in the TIII.intro lecture
–How is it different from the swap-based or MaxEnt based 

methods we’ve discussed
–Only for binary data

• DL 29 January
25
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Exam Information
• 19 February (Tuesday)
• Oral exam
• Room 021 at MPII building (E1.4)
• Time frame: 10 am – 6 pm
– If you have constraints within this time frame, send me 

email 
–About 20 min per student

• I will ask questions on one or two topic areas
–You can veto one proposed topic are—but only one
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