Topic II.2: Connecting the Dots

Discrete Topics in Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2012/13

T II.2: Connecting the Dots

- **1. Connecting the Dots 1.1. Intuition & Motivation 1.2.** Coherence of a Chain • Influence **1.3. More on Coherence 1.4. Finding the Chain** 2. Metro Maps **2.1. Idea 2.2.** Concepts
 - 2.3. Algorithm

Shahaf & Guestrin 2010, 2012; Shahaf, Guestrin & Horvitz 2012a

Connecting the Dots

- What connects two events?
 - -E.g. 2007 housing bubble burst and Obamacare
- More concretely, given two user-selected news articles, find a series of news articles that explain how these articles are connected
 - Each successive article should reasonably connect to the previous one
 - Together, the articles should tell a coherent story
- **Goals**: Formalise "connected" and "coherent" and find the good chains

Example Chain

<u>B1:</u> Talks Over **Ex-Intern's Testimony On Clinton** Appear to Bog Down

<u>B2:</u> **Clinton Admits Lewinsky** Liaison to Jury; Tells Nation 'It was Wrong,' but Private

B3: G.O.P. Vote Counter in House **Predicts** Impeachment of Clinton

<u>B4:</u> **Clinton Impeached**; He Faces a Senate Trial, 2d in History; Vows to Do Job till Term's 'Last Hour'

<u>B5</u>: **Clinton's Acquittal**; Excerpts: Senators Talk About Their Votes in the Impeachment Trial

<u>B6:</u> Aides Say Clinton Is Angered As **Gore Tries to Break Away**

B7: As Election Draws Near, the Race Turns Mean

<u>B8:</u> **Contesting the Vote**: The Overview; Gore asks Public For Patience; Bush Starts Transition Moves

First Idea

- Take the news articles as vertices in the graph
- Add an edge between two vertices if the articles share words
 - -Perhaps just titles and/or require multiple instances
 - In general, measure similarity
 - -Direction of the edge based on chronological order
- Find the shortest path between the two vertices –Breath-first search

Court trials

A1: Talks Over Ex-Intern's Testimony On Clinton Appear to Bog Down **Court trials** <u>A2:</u> Judge Sides with the Government in **Microsoft Antitrust Trial** Microsoft A3: Who will be the Next Microsoft? trading at a **market** capitalization... <u>A4:</u> Palestinians Planning to Offer **Bonds on Euro. Markets** A5: Clinton Watches as Palestinians Vote to Rescind **1964** Provision <u>A6:</u> Contesting the Vote: The Overview; Gore asks Public For Patience; Bush Starts Transition Moves The **Clinton** administration has denied... Shahaf & Guestrin 2010

Court trials

Microsoft

Markets

A1: Talks Over Ex-Intern's Testimony On Clinton Appear to Bog Down <u>A2:</u> Judge Sides with the Government in **Microsoft Antitrust Trial** A3: Who will be the Next Microsoft? trading at a market capitalization... <u>A4:</u> Palestinians Planning to Offer **Bonds on Euro. Markets** A5: Clinton Watches as Palestinians Vote to Rescind **1964** Provision A6: Contesting the Vote: The Overview; Gore asks Public For Patience; Bush Starts Transition Moves The **Clinton** administration has denied... Shahaf & Guestrin 2010

Court trials

Microsoft

Markets

Palestinians

A1: Talks **Over Ex-Intern's Testimony** On Clinton Appear to Bog Down

A2: Judge Sides with the Government in Microsoft Antitrust Trial

<u>A3:</u> Who will be the Next Microsoft? trading at a market capitalization...

<u>A4:</u> Palestinians Planning to Offer **Bonds on Euro. Markets**

A5: Clinton Watches as **Palestinians Vote to Rescind** 1964 Provision

<u>A6:</u> Contesting the Vote: The Overview; Gore asks Public For Patience; Bush Starts Transition Moves

The **Clinton** administration has denied...

Court trials

Microsoft

Markets

Palestinians

Votes & Clinton A1: Talks **Over Ex-Intern's Testimony** On Clinton Appear to Bog Down

A2: Judge Sides with the Government in Microsoft Antitrust Trial

A3: Who will be the Next Microsoft? trading at a market capitalization...

<u>A4:</u> Palestinians Planning to Offer **Bonds on Euro. Markets**

A5: Clinton Watches as **Palestinians Vote to Rescind** 1964 Provision

- <u>A6:</u> **Contesting the Vote:** The Overview; Gore asks Public For Patience; Bush Starts Transition Moves
- The **Clinton** administration has denied...

Court trials

Microsoft

Markets

Palestinians

Votes & Clinton A1: Talks **Over Ex-Intern's Testimony** On Clinton Appear to Bog Down

A2: Judge Sides with the Government in Microsoft Antitrust Trial

A3: Who will be the Next Microsoft? trading at a market capitalization...

<u>A4:</u> Palestinians Planning to Offer **Bonds on Euro. Markets**

A5: Clinton Watches as **Palestinians Vote to Rescind** 1964 Provision

- <u>A6:</u> Contesting the Vote: The Overview; Gore asks Public For Patience; Bush Starts Transition Moves
- The **Clinton** administration has denied...

Not very coherent

Not-So Coherent Story

Not-So Coherent Story

Topic changes in every transition

Shahaf & Guestrin 2010 T II.2-7

More Coherent Story

More Coherent Story

Topic consistent over transitions

Shahaf & Guestrin 2010 T II.2-8

Intuition for a Good Chain

- Every transition must be strong – Articles must be well linked
- There must be a global theme
 Topic that spans (almost) all articles
- No jitteriness
 - -No switching topics back-and-forth
- Short

First Attempt on Strong Transitions

• A chain is as weak as its weakest link

-We score the chain by its minimum-strength transition

- First idea for the strength of transition: shared words
- Let *d* be a document (bag-of-words) and write $w \in d$ if word *w* appears in document *d*
 - Let the chain *C* be $\langle d_1, d_2, ..., d_n \rangle$
- Define *Coherence* as

Coherence
$$(d_1, d_2, ..., d_n) = \min_{i=1}^{n-1} \sum_{w} \mathbf{1}(w \in d_i \cap d_{i+1})$$

Document Influence

- The appearance of words is too coarse
 - -Doesn't measure which words are important
 - Stop words are not important at all, other words can be very important
 - -Important words might be missing from the articles
 - E.g. if the document has *lawyer* and *court*, also *judge* is probably important, even if it's not in the document
- The *influence* of d_i to d_{i+1} through word w is high if
 - $-d_i$ and d_{i+1} are highly connected
 - -w is important for the connectivity

$$Coherence(d_1, d_2, \dots, d_n) = \min_{i=1}^{n-1} \sum_{w} Influence(d_i, d_{i+1} \mid w)$$

Computing the Influence

- Measuring the influence is commonly done with linked data
 - E.g. PageRank computes an influence of the web page based on the link structure
- Here the news articles don't link to each other
 - The articles are joined via words in them
 - We want to assess the significance of a word for the link
- Build a bipartite graph of articles × words
 - Measure the influence of a word based on how surely we travel through it when moving from d_i to d_j
 - N.B. words can be influental even if they are in neither of the articles

Directed, Weighted Bipartite Graph

Weights and Random Walks

- The document-to-word edge is weighted based on how important this word is to this document
 - –E.g. TF-IDF
 - -Weights are normalised so that each document's outgoing edge weights sum to 1
- The word-to-document edge uses same weights but normalised for words
- We consider random walks that start from d_i
 - If d_i is (strongly) connected to d_j , short random walks should visit d_j often
 - This probability is in the stationary distribution

Stationary Distributions

• The stationary distribution for random walks starting from *d_i* tells how big a proportion of time the walk stays in vertex *v* (an article or a word)

$$\Pi_i(v) = \varepsilon \cdot \mathbf{1}(v = d_i) + (1 - \varepsilon) \sum_{(u,v) \in E} \Pi_i(u) \operatorname{Pr}(v \mid u)$$

- $-\varepsilon$ is the restart parameter
- we expect a re-start of the random walk after $1/\varepsilon$ steps $-\Pr(v \mid u)$ is the probability of moving from u to v
- We also compute the distribution with word *w* as a *sink* - $\Pr^{w}(v \mid u) = 0$ if u = w and $v \neq w$, 1 if u = v = w, and $\Pr(v \mid u)$ otherwise $\Pi^{w}_{i}(v) = \varepsilon \cdot \mathbf{1}(v = d_{i}) + (1 - \varepsilon) \sum_{(u,v) \in E} \Pi^{w}_{i}(u) \Pr^{w}(v \mid u)$

Computing the Influence

- We compute the influence as *Influence*(d_i, d_j | w) = Π_i(d_j) – Π^w_i(d_j) – The fraction of time we spend in d_j if starting from d_i and walking thru w
- The stationary distributions can be solved using a power method
 - Start with uniform distribution, update the distribution, use that to update again, etc. until the updates converge
- The restart frequency ε matters a lot
 - Too small \Rightarrow too long walks \Rightarrow only general words matter
 - Too big \Rightarrow too short walks \Rightarrow only immediate words matter

Example

Word Influence

Influences of words on connections between an article about O.J. Simpson's trial and two other articles

DTDM, WS 12/13

4 December 2012

Back to Coherence

- Recall, currently we define coherence as *Coherence*(d₁, d₂,...,d_n) = minⁿ⁻¹_{i=1} ∑_w *Influence*(d_i, d_{i+1} | w) – This still suffers from *jitteriness*, jumping back-and-forth between topics
- We add the concept of word activations
 - -Any word can be activated in any document
 - -Each word can be activated only once
 - The total number of active words and the number of words active per transition is limited

 $Coherence(d_1, d_2, \ldots, d_n)$

$= \max_{\text{activations}} \min_{i=1}^{n-1} \sum_{w} Influence(d_i, d_{i+1} \mid w) \mathbf{1}(w \text{ active in } d_i, d_{i+1})$

Activation Patterns Example

Terror	
Bin Laden	
Afghanistan	
Pakistan	
Pearl	

- Activation patterns connecting 9/11 to Daniel Pearl's murder
 - -Left: activation patterns (documents on *x*-axis)
 - -Right: activation patterns scaled with the influence
- "Terror" is constantly active
- There's a smooth chain between topics

Scoring a Chain

- The optimal activation patterns for a given chain can be computed using an integer program – Includes the constraints for the activations
- But interger programs are NP-hard to compute
 - -We can move to continuous activation levels (in [0,1]) to get a linear program
 - -Now words can be activated multiple times
 - But only with fractional activation levels
- The number of active words in total (*kTotal*) and per transition (*kTrans*) effect the quality
 - -Empirically $kTotal/4 \le kTrans \le kTotal/2$ is good

Finding the Chain: Idea

- We know how to score a given chain, but how to find one?
- Idea: find partial paths using optimistic approximations on their coherence
 - If p_i and p_{i+1} are two paths of length *i* and *i*+1 respectively and p_i is the prefix of p_{i+1} , then $Coherence(p_i) \ge Coherence(p_{i+1})$
 - If we extend p_i with edge e, the resulting path will have coherence at most

 $min\{Coherence(p_i), Coherence(e)\}$

• We only need to care about edges with high coherence

Finding the Chain: Algorithm

- 1. Compute all single-edge coherences and put the zero-edge path (s) to a priority queue Q
- 2. while Q is not empty
 - 2.1. Pop the highest-coherence prefix path from Q
 - 2.2. if path coherence has been approximated, compute exact and push the path back to Q

2.3. else

- 2.3.1. **if** this is *s*–*t* path, **return** it
- 2.3.2. else compute all 1-extensions of the path that can reach t with remaining steps, approximate their coherence and push them to Q

Metro Maps

- We've learned how to connect two news articles
 But it still requires us to select those articles
- Could we map all connections within some topic?
 - -Lines that explain progression of news (narrative)
 - -Possibly intersecting and overlapping

Shahaf, Guestrin & Horvitz 2012a

session Web Mining tailed Example

April 16-20, 201

Shahaf, Guestrin & Horvitz 2012a

Objectives for Metro Maps

• Coherence

-Each line has to be coherent

• Coverage

- -Just asking for coherent lines yields very boring and narrow stories
- We need the stories to cover many topics
 - Many stories and diverse stories

• Connectivity

- The lines should connect to each other to reveal the structure

Coherence and Connectivity

- **Coherence** of each line is computed as when we were connecting the dots
 - -Coherence of the map is the minimal coherence of any of its lines
 - We care about *m*-coherence: a line is *m*-coherent if each of it's sub-lines of length *m* is coherent
 - Makes computation simpler
- The **connectivity** of the map is the number of line pairs that intersect

Coverage

• Define *cover*_d(w) be the amount document d covers word w (in [0,1])

-E.g. a TF-IDF value

• The cover of a word w in map M is the probability that at least one document of M covers w

$$cover_M(w) = 1 - \prod_{d \in docs(M)} (1 - cover_d(w))$$

- Adding new documents that cover well-covered word doesn't help
- The **cover** of *M* is $Cover(M) = \sum_{w} \lambda_{w} cover_{M}(w)$ $-\lambda_{w}$ is a (subjective) word importance

Objective Function

- Coherence and coverage are constraints
 - We want lines to be coherent and have a good coverage, but we don't try to maximise either
 - -Both have to be above some threshold
- We try to maximise connectivity within the given constraints
 - -Coverage threshold stops us having just the same story many times
 - -Coherence threshold stops us having meaningless crossings
 - Actually, *m*-coherence

Finding All *m*-Coherent Lines

- We generate all coherent lines of length *m* using similar best-first search as when connecting the dots
 - Priority queue of sub-chains, create all extensions of mostcoherent sub-chain, remove chains of length *m*
- Of these we create a graph G
 - Each vertex is a coherent line of length *m*
 - There is an edge between two vertices if the corresponding lines differ in one document
 - The merge two such lines is still coherent
- This map gives us the input for our algorithm

Finding a High-Coverage Map

- From *G* we want to find a set of paths that maximise the coverage
- The coverage is *submodular* function *f*(*X* ∪ {*x*}) − *f*(*X*) ≥ *f*(*Y* ∪ {*x*}) − *f*(*Y*) if *X* ⊆ *Y*"Diminishing returns"
 - We can get (e 1)/e approximation with greedy algorithm
 - But we cannot enumerate every candidate
- Compute the max-coverage path between every pair of documents and greedily select the best of them
 - -Algorithms with $\alpha = O(\log OPT)$ approximation ratio exist
 - Overall, $(e^{\alpha} 1)/e^{\alpha}$ approximation

Increasing Connectivity

- We now have coherent, high-coverage maps and we're left with maximising the connectivity
- We use local search
 - Replace each path of the map (one at time) with another one that increases the connectivity without hurting the coverage (too much)
 - After each replace has been tried, select the one with highest connectivity
 - Repeat until convergence
- Time complexity:
 - $-|D|^m$ linear programs for coherence map creation
 - $-K|D|^2$ quasi-polynomial algorithms for coverage
 - $-K|D|^2$ quasi-polynomial algorithms for each iteration in local search

Essay Subjects for Topic II

- Applications of frequent subgraph mining
 - -Read other literature; what is the data, how is it (modelled) as a graph, what are the subgraphs and why are they interesting
- Metro Maps of Science
 - -Read *Metro Maps of Science* by Shahaf, Guestrin & Horvitz (KDD '12) and explain it
- Parameters in Connecting the Dots and Trains of Thought
 - Explain all user-supplied parameters in today's articles: what they do, why they are needed, how to find good values for them; give your opinion about these parameters (Too many/ few? Easy/hard to understand the importance? etc.)

Feedback on Topic I Essays

- Good quality
- I could see your own ideas/opinions: good!
- Much improved citing practices
 - -But: if you cite an article that has been published (in journal or conference), you have to give that information
 - And you don't have to give the URL where you found it (or access date)
 - It's important that the reader can understand what type of a work you're citing