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Tucker2 Decompositions and RESCAL

* Recall: Tucker3 decomposition decomposes a 3-way
tensor into smaller core tensor and three factor
matrices

* Tucker2 decomposition decomposes a 3-way tensor
into a core tensor and two factor matrices

— If the original tensor was of size N-by-M-by-K, the core 1s
of size I-by-J-by-K (or M-by-I-by-J or I-by-M-by-J)

— Equivalently, Tucker2 is Tucker3 with one factor matrix
replaced with an 1dentity matrix




More on Tucker?

* Tucker2 can be presented slice-wise:
X = AGiB' for each &
— Xy 18 the kth (frontal) slice of X

— G 18 the Ath (frontal) slice of the core tensor G

— A and B are the factor matrices
* In matricized form

X1 =AGu)(Ik ® B)"

— X 1s N-by-M-by-K




Whatif B=A?

* Assume our tensor’s two modes represent same
entities

—E.g. tensor 1s subject—relation—object, with subjects and
objects from the same set of entities (e.g. humans)

— Sender—topic—recerver with senders and recervers in the
same set of people

* We can model this by restricting the two factor
matrices to be the same

— “Flow of information”

—If we assign a dimension 1nto a factor in one mode, that
assignment holds also 1n the other mode




The RESCAL Problem

* Given an N-by-N-by-M tensor X and rank R, find an
N-by-R factor matrix A and R-by-R-by-M core tensor
G such that they minimize
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Notational convenience




The RESCAL Algorithm

* [terative updates

—In updating A for AG,A’, we temporarily consider A and
A’ different matrices, and only update A

* Updating A: We stack the frontal slices of the data
side-by-side and solve the resulting matrix problem

—Y = AH(LLy®AT)
Y = (X1, X1, X2, X2, ..., Xur, Xas)
H = (G1, Gi!, G2, G2, ..., Gu, Guh)
— The gradient of this 1s
H(IoA"AH'A" —(IA")Y") +2A"

* Here A’ 1s the version of A kept constant




Update Rules Continued

* Setting the gradient to zero, we get update rule

—1
M M
A (Z XmAG,{,,+X,{1AGm) (Z Bm+Cm+M)
m=1 m=1

—Here B,, = G,ATAG,, and C,, = G,/ATAG,,

 Updating G: Writing X, and G, as vectors, we get
optimization task
[vec(Xn) — (A®A)vec(Gn)|| + A|[vec(Gr)|

— Regularized linear regression
G, — (Z'Z+MN) 'Zvec(X,,)
o7 = A®A




A Bit on Complexity
e 7. = A®A can be huge

— The most expensive computation is (Z/Z + AI) — 1

— The same computation works for every frontal slice of X

— If there’s no regularization at G, then this becomes
(Z'7)"' = (A®A)(A®A)) ! = (ATA) TA®(ATA) A
* Only needs the inverse of R-by-R matrix A’A

* We can use the QR matrix decomposition

— A = QR, where Q 1s orthogonal and R 1s upper triangular
—We get X, — AGrAT = X, — QRG,RIQ7

= Q’X,»Q — RG,R’

* Now R 1s only R-by-R




More on Computational Complexity

(I8

p = number of O(pNR)

non-zeros i X %= 0: O(p)

A#0: O(p°)

QR of A: NR2)
Projection Q’X,,Q: O(pNR?)

DTDM, WS 12/13 5 February 2013 TIV.2-10



Application of RESCAL

e Tensor factorizations like RESCAL can be used for
link prediction
— Non-zero elements mean observed links

— Zero elements mean unobserved

* The factorization will give us a representation of the
original tensor where some of the zero elements will
be represented with values above some threshold ¢

hese elements are predicted as missing links

his can be evaluated using training data

* Problem: Multiplying the factors back 1s very
expensive operation




Recap of the Course

* Discrete topics in data mining

— A k.a. “What Pauli likes to talk about in DM”

— The modules of the course are not strongly connected
* But some connections exist...

* Aim: high-level view of the 1deas
— Not too much details (too little details?)

* Few selected papers on each topic
— Not necessarily the “best” papers
— Very subjective selections process

* Essays instead of home works

—Good (?) training for reading and writing




Intro

* Data mining, in a broad sense, 1s the set of techniques
for analyzing and understanding data. (Zaki & Meira)

—Is data mining voodoo science?

* Data mining 1s also a methodological science

— The development of the tools to do data mining
— C.1. statistics




Topic I: Pattern Set Mining

* What are patterns?

— Frequent 1temsets? Others?

 The tlood of itemsets

— Closed itemsets
* No 1tem can be added without changing the support

— Maximal 1temsets
* No 1item can be added without becoming infrequent

— Non-derivable itemsets
* The support can’t be computed from subsets support




Tiling problems

* Minimum tiling. Given X, find the least number of
tiles (r,c) such that

—For all (i,j) s.t. x;; = 1, there exists at least one pair (r,c¢) such
thatiErandj € c (1.€. x; € X(r,c))

eicrifexistsjst.ri=i
* Maximum A-tiling. Given X and integer £, find £ tiles
(r, ¢) such that

— The number of elements x;; = 1 that do belong 1n at least one
X(r,c) 1s maximized




Geometric Tiles

* There are 2"2™ possible combinatorial submatrices in
an n-by-m matrix
—If we look for density, we cannot look just monochromatic
arcas

* A geometric (density) tile 1s a tile with continuous
row and column indicesTeksti

—1It can be described given two corners =g @mEEL] |
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— Only n?m? possible

< 8

* We also allow a hierarchy of tiles " N

— A sub-tile must be completely within its parent




Tiles That Overlap Within Parents

No overlap

Overlap
within
parent

Tatt1 & Vreeken 2012
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The MDL Principle and Data Mining

* The MDVL principle can be used to combat overfitting

— Overfitting: model explains the training data too well and
doesn’t generalize to unseen data

—MDL presents a natural penalty to too complex models

* The MDL principle can be used to select the output

— Among many possible sets of results (models), select the
one that compresses the data best

— Note: we must explain the whole data

* E.g. MDL does not allow lossy compression

* But we can circumvent this by having a lossy model and a
correction term (error)




Example of a Final Code Table

Code Table
[temset Code Usage

(A |
(_B ]
(cC
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Topic 1I: Graph Mining

* Graphs are everywhere

— Analysing them 1s important

* Measures of centrality

— Degree centrality

— Eccentricity centrality
— Closeness centrality

— Betweenness centrality

— Prestige
— PageRank

* Random graph models
— Erddés—Reny1
— Watts—Strogats
— Barabasi—Albert




Frequent Subg

raph Mining

* Given a set D of n graphs and a minimum support

parameter minsup,

find all connected graphs that are

subgraph 1somorphic to at least minsup graphs in D

— Enormously complex problem

—For graphs that have m vertices there are

. 20(m) subgraphs (not all are connected)

—If we have s labels

or vertices and edges we have

. 0 ((2s)0<m2>) labe

1ngs of the different graphs

— Counting the support means solving multiple NP-hard

problems




The AGM Algorithm

 Start with frequent graphs of 1 vertex

* while there are frequent graphs left
—Join two frequent (k—1)-vertex graphs

— Check the resulting graphs subgraphs are frequent
e [f not, continue

— Compute the canonical form of the graph
* [ this canonical form has already been studied, continue

— Compare the canonical form with the canonical forms of the
k-vertex subgraphs of the graphs in D

* [f the graph 1s frequent, keep, otherwise discard

 return all frequent subgraphs




The gSpan Algorithm

e SSpan:
—for each frequent 1-edge graphs
* call subgrm to grow all nodes in the code tree rooted in
this 1-edge graph
*remove this edge from the graph
e subgrm
— if the code 1s not canonical, return
— Add this graph to the set of frequent graphs

— Create each super-graph with one more edge and compute
its frequency

—call subgrm with each frequent super-graph




More Coherent Story

Clinton Predicts Clinton
Admits § Impeac. Angered
Lewinsky § Clinton As Gore

Bl B2 B3 B4 B5 B6 B7

Clinton
Lewinsky ..

Impeachment IS

Gore I
Vote I ——

Topic consistent over transitions

Shahaf & Guestrin 2010

DTDM, WS 12/13 5 February 2013 TIV.2-24




More Detailled Example

Greek Civil Servants o T e P o8
Strike Oversusterity  Greece Paralyzed Greek Workers
Measures by Meww Strike Protest Austerity Plan

2010-02-10 2010-03-11 2010-05-04

Streets, butLacking
EarlierZeal
2010-05-13

Greece Strugglesto European Union Sets oy e
Stay Afloatas Debts B dlit o e isreek bonds rated 'junk' by Greece Gets Help
Pile On TR Standard & Poor's but Iz It Enough?

2009-12-11 2010-02-16 2010-04-27 2010-05-02
=3 &

E.U Official Backs
Greece’s Deficit

Cutting Plan,
2010-02-02

I nfighting Adds to o
Merkel e inies Euro Unity? It's Germany Mow savys
Germany That | MLE Should B UK. Backs Sermany’s
2009-12-23 PAF Shou BSCLIE ks
Matters Eiaaes Effortto SupportEuro
2010-03-09 201 0a035-19 2010-05-21

mm debt, austerity, credit
B ctrike, riot, bank

B germany, euro, merkel
mm mf, fund, strauss

|.M.F. More Likelyto  [LM.F 15 Urged to

Lead Efforts for Mowve Forward on

Greek &id woting Changes
2010-03-23 2010-04-24

Shahaf, Guestrin & Horvitz 2012a
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Topic III: Significance Testing

* The bread-and-butter of statistics
* Are my finding significant?

—How to test this 1n data mining?




The Main Idea

e Let Ors be the number of observed k-1temsets of
support at least s

—Let Oy s be the random variable corresponding to that in a
random dataset

e Theorem. There exists a level smin such that 1f

s > Smin, Oks 1s approximated well by Poisson
distribution

— With this, we can compute the p-values easily
* No need for data samples (almost...)

— Only works with large-enough support levels
* Rare events




'M TELLING You, \\ I HE'S GOT ELVES ‘ [ HE ALWAYS WEARS ‘ CANTA CLAUS 1S
SLAVING AWAY ALL

HE KEEPS A THE SAME VEST AND A PROFESSOR!!

LIGT OF PEOPLE R YEAR DOING MENIAL WE ONLY &dowsS uP
HE LIKES AND TASKS FOR LITTLE ‘

i
WWW.PHDCOMICS, COM
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* A swap box of D 1s a 2-by-2 combinatorial sub-
matrix that is either diagonal or anti-diagonal

* A swap turns diagonal swap box 1nto anti-diagonal, or
VICE Versa

e Theorem [Ryser ’57]. If A, B € M(r, c¢), then 4 1s
reachable from B with a finite number of swaps




Example Markov chain

0 9/10 1/10
pP= ( 3/10 1/10 6/10 )

1/2 1/2 0




The Metropolis Algorithm

* The Metropolis algorithm 1s a general technique to
transform any 1rreducible Markov chain 1nto a time-
reversible chain with a required stationary distribution

— A Markov chain 1s time-reversible if m;P;; = w;P;i

* Let N(x), N, and M be as in previous slide, and let w =

(11, M2, ..., Wy) be the desired stationary distribution.
— Let

1/ Mmin{l,m,/mt,} ifx#yandye N(x),
0 if xAyandyé¢ N(x),
1 — Zy;éx ny 1f x = V.

— If the chain 1s aperiodic and irreducible, the stationary
distribution 1s the desired one




Local Changes

* One-element changes

—Replace a value
— Add another value

* Four-clement changes

— Rotate

e[fa=a’and b=">b’, equals to
swap

— Mask

* Preserves row and column sums

Mask

Ojala et al. 2009




Finding the MaxEnt Distribution

* Finding the MaxEnt distribution is a convex program
with linear constraints

maxpyx) — YxPr(x)logPr(x)

s.t. Y, Pr(x)fi(x)=d; foralli
¥ Pr(x) = |

* Can be solved, e.g., using the Lagrange multipliers




Example

minimize f{x,y) = x%y
subject to g(x,y) = x>+ > =3

L(x,y,A) = x%y + Mx? + y* = 3)

oL
a—x :ZXU—I_Q)\X:O

oL )

— = 22y =0
o X"+ 2AY

— = —3 =0
™ X"+ Yy

Solution: x =+V2, y =—1
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MaxEnt Models for Tiling
* The Tiling problem

— Binary data, aim to find fully monochromatic submatrices

* Constraints: the expected row and column margins

Z PI’(D) (idlj) — I

De{0,1}rxm

Z PI‘(D) (ildl]> — Cj

De{0,1}r>xm
— Note that these are 1n the correct form

De Bie 2010




Preserving Means and Variances

* To preserve row and column means and variances, we
need to constraint

— Row and column sums

—Row and column sums-of-squares

* After solving the MaxEnt equation, we again get that
the MaxEnt distribution for D 1s a product of

probabilities for gijx
IS ~1/2
—Pr(dy) ~ A (gt (20 +4) )
* As are Lagrange multipliers associated with the constraints on
sums

* us are Lagrange multipliers associated with the constraints on
sums-of-squares




Topic IV: Tensors

e Tensors are cool.

Cq




Feedback on Topic III Essays

* Generally, quality’s still high
* MaxEnt seemed to cause problems to you
— Very briefly discussed

— Sometimes mixed with other approaches using maximum
entropy

* Both swap-based and MaxEnt-based methods can
handle numerical data

— Constraining row and column margins makes only sense 1f
row and column margins make sense




Exam Information

19 February (Tuesday)
* Oral exam

 Room 021 at MPII building (E1.4)
* Time frame: 10 am — 6 pm

—If you have constraints within this time frame, send me
email

— About 20 min per student
* [ will ask questions on one or two topic areas

— You can veto one proposed topic are—but only one




