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Topic IV.2: Tensor Applications
1. Tucker2 Decompositions and RESCAL

1.1. Tucker2 and equivalent factors
1.2. The RESCAL algorithm

2. Recap of the course
3. Feedback from Essay III
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Tucker2 Decompositions and RESCAL
• Recall: Tucker3 decomposition decomposes a 3-way 

tensor into smaller core tensor and three factor 
matrices
• Tucker2 decomposition decomposes a 3-way tensor 

into a core tensor and two factor matrices
– If the original tensor was of size N-by-M-by-K, the core is 

of size I-by-J-by-K (or M-by-I-by-J or I-by-M-by-J)
–Equivalently, Tucker2 is Tucker3 with one factor matrix 

replaced with an identity matrix
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More on Tucker2
• Tucker2 can be presented slice-wise:

Xk = AGkBT for each k 
–Xk is the kth (frontal) slice of X 

–Gk is the kth (frontal) slice of the core tensor G  

–A and B are the factor matrices
• In matricized form

X(1) = AG(1)(IK ⊗ B)T  
–X is N-by-M-by-K  
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What if B = A?
• Assume our tensor’s two modes represent same 

entities
–E.g. tensor is subject–relation–object, with subjects and 

objects from the same set of entities (e.g. humans)
– Sender–topic–receiver with senders and receivers in the 

same set of people
• We can model this by restricting the two factor 

matrices to be the same
– “Flow of information”
– If we assign a dimension into a factor in one mode, that 

assignment holds also in the other mode
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The RESCAL Problem
• Given an N-by-N-by-M tensor X and rank R, find an 

N-by-R factor matrix A and R-by-R-by-M core tensor 
G such that they minimize  
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Squared error Regularizer
Regularization

coefficientNotational convenience
Nickel, Tresp & Kriegel 2011, 2012
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The RESCAL Algorithm
• Iterative updates
– In updating A for AGmAT, we temporarily consider A and 

AT different matrices, and only update A
• Updating A: We stack the frontal slices of the data 

side-by-side and solve the resulting matrix problem
–Y ≈ AH(I2M⊗AT)
•Y = (X1, X1T, X2, X2T, …, XM, XMT)
•H = (G1, G1T, G2, G2T, …, GM, GMT)

–The gradient of this is

•Here A’ is the version of A kept constant
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Update Rules Continued
• Setting the gradient to zero, we get update rule

–Here Bm = GmATAGmT and Cm = GmTATAGm  
• Updating G: Writing Xm and Gm as vectors, we get 

optimization task 
       ||vec(Xm) – (A⊗A)vec(Gm)|| + λ||vec(Gm)||
–Regularized linear regression

•Z = A⊗A
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A Bit on Complexity
• Z = A⊗A can be huge
–The most expensive computation is (ZTZ + λI) – 1

–The same computation works for every frontal slice of X 

– If there’s no regularization at G, then this becomes
(ZTZ)–1 = ((A⊗A)T(A⊗A))–1 = (ATA)–1A⊗(ATA)–1A  
•Only needs the inverse of R-by-R matrix ATA  

• We can use the QR matrix decomposition 
–A = QR, where Q is orthogonal and R is upper triangular
–We get Xm – AGmAT = Xm – QRGmRTQT 

= QTXmQ – RGmRT 
•Now R is only R-by-R  
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More on Computational Complexity
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O(pNR) O(NR2)

O(R3)

QR of A: O(NR2)
Projection QTXmQ: O(pNR2)

O(pR3)

λ = 0: O(p3)
λ ≠ 0: O(p5)

p = number of 
non-zeros in X
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Application of RESCAL
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• Tensor factorizations like RESCAL can be used for 
link prediction
–Non-zero elements mean observed links
–Zero elements mean unobserved

• The factorization will give us a representation of the 
original tensor where some of the zero elements will 
be represented with values above some threshold t
–These elements are predicted as missing links
–This can be evaluated using training data

• Problem: Multiplying the factors back is very 
expensive operation
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Recap of the Course
• Discrete topics in data mining
–A.k.a. “What Pauli likes to talk about in DM”
–The modules of the course are not strongly connected
•But some connections exist…

• Aim: high-level view of the ideas
–Not too much details (too little details?)

• Few selected papers on each topic
–Not necessarily the “best” papers
–Very subjective selections process 

• Essays instead of home works
–Good (?) training for reading and writing

12



DTDM, WS 12/13 5 February 2013 T IV.2-

Intro
• Data mining, in a broad sense, is the set of techniques 

for analyzing and understanding data. (Zaki & Meira)
– Is data mining voodoo science?

• Data mining is also a methodological science 
–The development of the tools to do data mining
–C.f. statistics
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Topic I: Pattern Set Mining
• What are patterns?
– Frequent itemsets? Others?

• The flood of itemsets
–Closed itemsets
•No item can be added without changing the support

–Maximal itemsets
•No item can be added without becoming infrequent

–Non-derivable itemsets
•The support can’t be computed from subsets support
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Tiling problems
• Minimum tiling. Given X, find the least number of 

tiles (r,c) such that
– For all (i,j) s.t. xij = 1, there exists at least one pair (r,c) such 

that i ∈ r and j ∈ c (i.e. xij ∈ X(r,c))
• i ∈ r if exists j s.t. rj = i

• Maximum k-tiling. Given X and integer k, find k tiles 
(r, c) such that
–The number of elements xij = 1 that do belong in at least one 
X(r,c) is maximized

15



DTDM, WS 12/13 5 February 2013 T IV.2-

Geometric Tiles

16

• There are 2n2m possible combinatorial submatrices in 
an n-by-m matrix
– If we look for density, we cannot look just monochromatic 

areas
• A geometric (density) tile is a tile with continuous 

row and column indices
– It can be described given two corners
•Or specific corner plus width and height

–Only n2m2 possible
• We also allow a hierarchy of tiles
–A sub-tile must be completely within its parent

174 Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen

Fig. 1. Hierarchical tiling obtained for one of the data sets, Paleo2. The darkness of each rect-
angle depicts the associated probability.

hierarchical tile for which τ0 covers the whole set X × Y defines a probability model
for the set1.

There are two types of tiles. If the rows and columns are ordered and X and Y
are ranges on those orderings, then the tile is geometric; if X and Y are arbitrary sub-
sets then the tile is combinatorial. Given a data set with n rows and m columns, there
are Θ(n2m2) possible geometric basic tiles, but Θ(2n2m) possible combinatorial ba-
sic tiles. Thus combinatorial tiles are a much stronger concept, and finding the best
combinatorial tiles is much harder than finding the best geometric tiles.

In this paper we first give a simple randomized algorithm for finding geometric tiles.
We show that the algorithm finds with high probability the tiles in the data. We then
move to the question of finding combinatorial tiles. Our main tool is spectral ordering,
based on eigenvector techniques [9]. We prove that using spectral ordering methods one
can find orderings on which good combinatorial tiles become geometric. We evaluate
the algorithms on real data, and indicate how the tiling model gives accurate and inter-
pretable results. The rest of the paper is organized as follows. In Section 2 we define
formally the problem of hierarchical tiling, and in Section 3 we describe our algorithms.
We present our experiments in Section 4, and in Section 5 we discuss the related work.
Finally, Section 6 is a short conclusion.

2 Problem Description

The input to the problem consists of a 0–1 data matrix A with m rows R and n columns
C. For row i and column j, the (i, j) entry of A is denoted by A(i, j).

Rectangles. As we already mentioned, we distinguish between combinatorial and geo-
metric rectangles. A combinatorial rectangle rc(A, X, Y ) of the matrix A, defined for

1 Our model can easily be extended to the case where each basic tile has a probability param-
eter for each column in Y ; this leads the model to the direction of subspace clustering. For
simplicity of exposition we use the formulation of one parameter per basic tile.

Teksti
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Tiles That Overlap Within Parents

17

22 N. Tatti and J. Vreeken

(a) Composition

(b) Paleo (transposed)

Fig. 4. Results of Stijl on (a) Composition and (b) Paleo, with (top) the disjoint
hierarchical tiling, and (bottom) the tiling allowing overlap within the same parent tile.
For Paleo we do not show individual 1s. Darker tiles correspond to higher frequency.

requiring fewer tiles to do capture the structure of the data. By allowing over-
lap, the search space is expanded, and hence more computation is required: on
average, in our experiments, twice as much.

On these datasets, the current Stijl implementation requires from seconds
up to a few hours of runtime. By its iterative any-time nature, users, however,
can already start to explore models while in the background further refinements
are calculated.

Qualitative Analysis. Next, we investigate the discovered models in more
detail. To this end, we first use the Paleo data as by its modest size it is easily
visually representable. In Figure 4(b) we show the result of Stijl on this data,
with the top figure the result of allowing only disjoint tiles, and in the bottom
figure when allowing overlap. Darker toned tiles correspond to more dense areas
of the data. For clarity, we here do not show the individual 1s (as we did in
Fig. 2, which corresponds to the bottom plot of Fig. 4(b)).

The first thing we note, is that the two results are quite alike. The model with
overlap, however, is a bit simpler and ‘cleaner’: the relatively dense areas are of
the data are easier to spot for this model, than for the disjoint one. Second, it
uses the hierarchical property as intended: in the top right corner, for instance,
we see a dense, dark-grey tile within a lighter tinted square, within a very sparse
tile. While for reasons of space we can only show these examples, these are
observations that hold in general—by which it may come at no surprise that by
allowing overlap we obtain better MDL scores.

Next, we inspect the results on Abstracts. This sparse dataset has no natural
order by itself, and when we apply SVD to order it, we find most of the 1s
are located in the top-left corner of the data. When we apply Stijl, we see
it correctly reconstructs this structure. Due to lack of space, however, we do
not give the visual representation. Instead, we investigate the most dense tile,
which covers the top-left corner. We find that it includes frequent words that are

No overlap

Overlap 
within 
parent

Tatti & Vreeken 2012
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The MDL Principle and Data Mining
• The MDL principle can be used to combat overfitting
–Overfitting: model explains the training data too well and 

doesn’t generalize to unseen data
–MDL presents a natural penalty to too complex models

• The MDL principle can be used to select the output
–Among many possible sets of results (models), select the 

one that compresses the data best
–Note: we must explain the whole data
•E.g. MDL does not allow lossy compression
•But we can circumvent this by having a lossy model and a 

correction term (error)
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Example of a Final Code Table

19
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Topic II: Graph Mining

20

• Graphs are everywhere
– Analysing them is important

• Measures of centrality
– Degree centrality
– Eccentricity centrality
– Closeness centrality
– Betweenness centrality
– Prestige
– PageRank

• Random graph models
– Erdős–Renyi
– Watts–Strogats
– Barabási–Albert
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Frequent Subgraph Mining
• Given a set D of n graphs and a minimum support 

parameter minsup, find all connected graphs that are 
subgraph isomorphic to at least minsup graphs in D
–Enormously complex problem
– For graphs that have m vertices there are
•             subgraphs (not all are connected)

– If we have s labels for vertices and edges we have
•                          labelings of the different graphs

–Counting the support means solving multiple NP-hard 
problems

21
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The AGM Algorithm
• Start with frequent graphs of 1 vertex
• while there are frequent graphs left
– Join two frequent (k–1)-vertex graphs
–Check the resulting graphs subgraphs are frequent
• If not, continue

–Compute the canonical form of the graph
• If this canonical form has already been studied, continue

–Compare the canonical form with the canonical forms of the 
k-vertex subgraphs of the graphs in D
• If the graph is frequent, keep, otherwise discard 

• return all frequent subgraphs
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The gSpan Algorithm
• gSpan:
– for each frequent 1-edge graphs
•call subgrm to grow all nodes in the code tree rooted in 
this 1-edge graph
• remove this edge from the graph

• subgrm
– if the code is not canonical, return
–Add this graph to the set of frequent graphs
–Create each super-graph with one more edge and compute 

its frequency
– call subgrm with each frequent super-graph

23
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More Coherent Story

24

Topic consistent over transitions

Shahaf & Guestrin 2010
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More Detailed Example

25

Figure 5: An example of our results (condensed to fit space). This map was computed for the query ‘Gree* debt’.

The main storylines discuss the austerity plans, the riots, and the role of Germany and the IMF in the crisis.

this graph to find a set of chains which maximize coverage,
subject to map size constraints.

Problem 3.4. Given G coherence graph, find paths p1...pK

s.t. Cover(docs(
S

i pi)) is maximized, and |docs(pi)|  l.

This problem is NP-hard, which necessitates resorting to ap-
proximation methods. First, let us pretend that we can enu-
merate all paths of G that contain up to l documents. Then,
we can take advantage of the submodularity of Cover(·):

Definition 3.5 (Submodularity). Function f is sub-
modular if for all A, B ⇢ V and v 2 V we have f(A[{v})�
f(A) � f(B [ {v})� f(B) whenever A ✓ B.

In other words, f is submodular if it exhibits the property
of diminishing returns. Intuitively, Cover(·) is submodular
since reading some article v after already reading articles
A provides more coverage than reading v after reading a
superset of A [6].

Although maximizing submodular functions is still NP-
hard, we can exploit the classic result of [13], which shows
that the greedy algorithm achieves a (1� 1

e ) approximation.
In other words, we run K iterations of the greedy algorithm.
In each iteration, we evaluate the incremental coverage of
each candidate path p, given the paths which have been
chosen in previous iterations:

IncCover(p|M) = Cover(p [M)� Cover(M)

That is, the additional cover gained from p if we already
have articles of M. We pick the best path and add it to M.

Let us revisit our assumption: unfortunately, enumerat-
ing all candidate paths is generally infeasible. Instead, we
propose a di↵erent approach: suppose we knew the max-
coverage path for each pair of fixed endpoints, documents
di and dj . Then, we could modify the greedy algorithm to
greedily pick a path amongst these paths only. Since there
are only O(|D|2) such pairs, greedy is feasible.

Computing the max-coverage path between two endpoints
is still a hard problem. In order to solve it, we formulate our
problem in terms of orienteering. Orienteering problems are
motivated by maximizing some function of the nodes visited
during a tour, subject to a budget on the tour length.

Problem 3.6 (Orienteering). Given an edge-weighted
directed graph G = (V, E, len) and a pair of nodes s, t, find
an s-t walk of length at most B that maximizes a given func-
tion f : 2V ! R+ of the set of nodes visited by the walk.

We set all edge lengths to 1. We want a path containing
at most l articles; since each vertex of G corresponds to m
articles, and the overlap is m � 1, we set the budget B to
be l �m. In addition, we want f to reflect the incremental
coverage of path p given the current map, so we define

f(p) = IncCover(p|M)

We adapt the submodular orienteering algorithms of [4]
to our problem. This is a quasipolynomial time recursive
greedy algorithm. Most importantly, it yields an ↵ = O(log OPT )
approximation. We combine the greedy algorithm with sub-
modular orienteering. At each round, we compute approx-
imate best-paths between every two documents (given the
chains which have been selected in previous iterations) us-
ing submodular orienteering. We then greedily pick the best
one amongst them for the map. The algorithm achieves a
1� 1

e↵ approximation.
The main bottleneck in our algorithm is the need to re-

evaluate a large number of candidates. However, many of
those re-evaluations are unnecessary, since the incremental
coverage of a chain can only decrease as our map grows
larger. Therefore, we use CELF [11], which provides the
same approximation guarantees, but uses lazy evaluations,
often leading to dramatic speedups.

3.3 Increasing connectivity
We now know how to find a high-coverage, coherent map

M0. Our final step is to increase connectivity without sac-
rificing (more than an ✏-fraction of) coverage.

In order to increase connectivity, we apply a local-search
technique. At iteration i, we consider each path p 2 ⇧i�1.
We hold the rest of the map fixed, and try to replace p by p0

that increases connectivity and does not decrease coverage.
At the end of the iteration, we pick the best move and apply
it, resulting in Mi.

In order to find good candidates to replace a path p, we
consider the map without p, Mi�1 \ p. We re-use the tech-

WWW 2012 – Session: Web Mining April 16–20, 2012, Lyon, France
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Shahaf, Guestrin & Horvitz 2012a
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Topic III: Significance Testing

26

• The bread-and-butter of statistics
• Are my finding significant?
–How to test this in data mining?
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The Main Idea
• Let Ok,s be the number of observed k-itemsets of 

support at least s 
–Let Ôk,s be the random variable corresponding to that in a 

random dataset
• Theorem. There exists a level smin such that if 

s ≥ smin, Ôk,s is approximated well by Poisson 
distribution
–With this, we can compute the p-values easily
•No need for data samples (almost…)

–Only works with large-enough support levels
•Rare events

27
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Swaps

• A swap box of D is a 2-by-2 combinatorial sub-
matrix that is either diagonal or anti-diagonal 
• A swap turns diagonal swap box into anti-diagonal, or 

vice versa
• Theorem [Ryser ’57]. If A, B ∈ M(r, c), then A is 

reachable from B with a finite number of swaps

29

Assessing Data Mining Results via Swap Randomization • 14:3

Fig. 1. A swap in a 0–1 matrix.

as a condition on the null hypothesis. We assess the results of a data mining
algorithm as significant and interesting if they are highly unlikely to be ob-
served in a random dataset that has the same row and column margins. Using
swap randomization we now can answer questions of the following type: Does
the observed structure convey any information that is unexpected, given the
margins?

Swap randomization is an extension of traditional randomization methods.
For instance, a chi-square test for assessing the significance of frequent itemsets
is a method based on studying the distribution of datasets where the column
margins are fixed, but the row margins are allowed to vary. Similarly, methods
that randomize the target value in prediction tasks keep the column margins
fixed (e.g., Megiddo and Srikant [1998]), but impose no constraint on the row
margins. These techniques are designed for assessing the significance of indi-
vidual patterns or models, and are not appropriate for assessing complex results
of data mining such as clustering or pattern sets. Swap randomization preserves
both row and column margins, and takes into account the global structure of
the dataset. A motivating example for why it is important to maintain both
column and row margins is given in the next section.

Swap randomization has been considered in various applications. An
overview is presented in a survey paper by Cobb and Chen [2003]. A very use-
ful discussion on using Markov chain models in statistical inference is Besag
[2004], where the case of 0–1 data is used as an example. The problem of creat-
ing 0–1 datasets with given row and column margins is of theoretical interest in
itself; see, among others Bezáková et al. [2006] and Dyer [2003]. Closely related
is the problem of generating contingency tables with fixed margins, which has
been studied in statistics (such as Chen et al. [2005]). In general, a large body
of research is devoted to randomization methods [Good 2000].

Our contributions in this article are twofold: (i) We describe the algorithmic
aspects of swap randomization when applied to large datasets, and (ii) we show
how this method can be applied in the data mining setting. In more detail, we
give a description of several different ways of generating random matrices with
given margins and discuss their performance. Swap randomizations are effi-
cient and can be applied to reasonably large datasets, as our experiments show.
We give extensive empirical results showing that some well-known datasets
appear to have very few interesting patterns or cluster centers, while other
datasets have a lot of structure.

The rest of this work is organized as follows. In Section 2 we present an
overview of the swap randomization method, and in Section 3 we discuss the
applications of the approach to specific data mining tasks. Section 4 describes

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 3, Article 14, Publication date: December 2007.



DTDM, WS 12/13 5 February 2013 T IV.2-

Example Markov chain

30
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The Metropolis Algorithm
• The Metropolis algorithm is a general technique to 

transform any irreducible Markov chain into a time-
reversible chain with a required stationary distribution
–A Markov chain is time-reversible if πiPij = πjPji 

• Let N(x), N, and M be as in previous slide, and let π = 
(π1, π2, …, πn) be the desired stationary distribution.
–Let

– If the chain is aperiodic and irreducible, the stationary 
distribution is the desired one

31
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Local Changes
• One-element changes
–Replace a value
–Add another value

• Four-element changes
–Rotate
• If a = a’ and b = b’, equals to

swap
–Mask
• Preserves row and column sums

32

214 Statistical Analysis and Data Mining, Vol. 2 (2009)
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i . . . +aa . . .
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(b) Add value.

Fig. 2 Three simple local modifications based on value replace-
ment (Change and Resample) and value addition (Add). Each
change only one element at a time.

j1 j2
...

...
i1 . . . a . . . b . . ....

...
i2 . . . b′ . . . a′ . . ....

...

j1 j2
...

...
i1 . . . b′ . . . a . . ....

...
i2 . . . a′ . . . b . . ....

...

Fig. 3 An example of local modification Rotate. The four
elements shown are rotated and the rest of the matrix is kept
fixed. If a = a′ and b = b′, then the row and column statistics do
not change.

are depicted in Figure 2. Note that in each case the sym-
metry of the proposal distribution is obtained.

4.3.2. Swap Rotation: Rotate

The next local modification, Rotate, is a generalization
of binary swaps. The idea of swapping matrix elements
as a randomization technique has a long history [4]. Here
we use a concept of swap rotations as shown in Figure 3,
which degenerates to conventional swaps in the case of
binary data. At each step, we randomly choose from the
current matrix four elements a, b, a′, and b′, located at
the intersections of two rows i1 and i2 and two columns
j1 and j2. A new matrix is produced by rotating those
four elements clockwise, while keeping the other elements
unchanged. Again, it is clear that the proposal distribution
is symmetric.

The smaller the difference between (a, b) and (a′, b′), the
smaller the change in the row and column statistics will be.
If a = a′ and b = b′, the row and column statistics do not
change at all, corresponding to binary swaps. In Section 4.4
we will introduce a method called SwapDiscretized which
utilizes this property.

4.3.3. Addition Mask: Mask

Our next modification, Mask, preserves the row and
column sums exactly. As with swap rotation, a new matrix
is created from the current one by selecting rows i1, i2 and
columns j1, j2 at random, and adding the mask presented
in Figure 4 to the four intersection elements. The value α

j1 j2
...

...
i1 . . . . . . . . ....

...
i2 . . . −a . . . +a

+a −a

. . ....
...

Fig. 4 An example of local modification Mask. The addition
mask preserves the row and column sums.

is drawn uniformly at random from the range [−s, s]. In
the experiments, we use parameter value s = 0.1.

4.4. Discrete Swaps

We will see that maintaining the difference measure
E(Â, A) is troublesome. Therefore, we also consider a vari-
ant based on discretization that avoids keeping track of the
difference in the distributions. Denote by Class(x, N) the
function that discretizes x ∈ [0, 1] into a value in 1, . . . , N .
We use the discretization where the range [0, 1] is divided
into N intervals of equal length, thus, Class(x, N) =
min($Nx%, N − 1).

The method SwapDiscretized is based on rotations (recall
Figure 3). At each step, the method samples indices i1, i2
of rows and j1, j2 of columns. Given the number C of
classes for values in columns and the number R of classes
for values in rows, the rotation is accepted if

Class(Âi1j1 , C) = Class(Âi2j2, C) and

Class(Âi1j2, R) = Class(Âi2j1, R).

This guarantees that the distributions of the discretized
values in the rows and columns do not change.

The restrictions that Âi1j1 and Âi2j2 belong to the same
column class as well as Âi1j2 and Âi2j1 to the same
row class can decrease the acceptance rate dramatically.
However, we can select Âi1j1 and Âi2j2 belonging to the
same column class in constant time. This is possible if we
keep track of where the elements in each class are located.
First, we randomly select an element Âi1j1 from the matrix,
and after that, we randomly select Âi2j2 that belongs to the
same class as Âi1j1 . The pseudocode of this approach is
presented in Algorithm 2.

Note that at each step the next state can be the current
state, i.e., there are self-loops in the state space.

4.5. Obtaining Exchangeable Samples

Subsequent samples produced by the Metropolis algo-
rithm are dependent, unless the number of steps taken
between the samples is at least the mixing time. It is very
hard to estimate this quantity in any application. We use
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Fig. 2 Three simple local modifications based on value replace-
ment (Change and Resample) and value addition (Add). Each
change only one element at a time.

j1 j2
...

...
i1 . . . a . . . b . . ....

...
i2 . . . b′ . . . a′ . . ....

...

j1 j2
...

...
i1 . . . b′ . . . a . . ....

...
i2 . . . a′ . . . b . . ....

...

Fig. 3 An example of local modification Rotate. The four
elements shown are rotated and the rest of the matrix is kept
fixed. If a = a′ and b = b′, then the row and column statistics do
not change.

are depicted in Figure 2. Note that in each case the sym-
metry of the proposal distribution is obtained.

4.3.2. Swap Rotation: Rotate

The next local modification, Rotate, is a generalization
of binary swaps. The idea of swapping matrix elements
as a randomization technique has a long history [4]. Here
we use a concept of swap rotations as shown in Figure 3,
which degenerates to conventional swaps in the case of
binary data. At each step, we randomly choose from the
current matrix four elements a, b, a′, and b′, located at
the intersections of two rows i1 and i2 and two columns
j1 and j2. A new matrix is produced by rotating those
four elements clockwise, while keeping the other elements
unchanged. Again, it is clear that the proposal distribution
is symmetric.

The smaller the difference between (a, b) and (a′, b′), the
smaller the change in the row and column statistics will be.
If a = a′ and b = b′, the row and column statistics do not
change at all, corresponding to binary swaps. In Section 4.4
we will introduce a method called SwapDiscretized which
utilizes this property.

4.3.3. Addition Mask: Mask

Our next modification, Mask, preserves the row and
column sums exactly. As with swap rotation, a new matrix
is created from the current one by selecting rows i1, i2 and
columns j1, j2 at random, and adding the mask presented
in Figure 4 to the four intersection elements. The value α

j1 j2
...

...
i1 . . . . . . . . ....

...
i2 . . . −a . . . +a

+a −a

. . ....
...

Fig. 4 An example of local modification Mask. The addition
mask preserves the row and column sums.

is drawn uniformly at random from the range [−s, s]. In
the experiments, we use parameter value s = 0.1.

4.4. Discrete Swaps

We will see that maintaining the difference measure
E(Â, A) is troublesome. Therefore, we also consider a vari-
ant based on discretization that avoids keeping track of the
difference in the distributions. Denote by Class(x, N) the
function that discretizes x ∈ [0, 1] into a value in 1, . . . , N .
We use the discretization where the range [0, 1] is divided
into N intervals of equal length, thus, Class(x, N) =
min($Nx%, N − 1).

The method SwapDiscretized is based on rotations (recall
Figure 3). At each step, the method samples indices i1, i2
of rows and j1, j2 of columns. Given the number C of
classes for values in columns and the number R of classes
for values in rows, the rotation is accepted if

Class(Âi1j1 , C) = Class(Âi2j2, C) and

Class(Âi1j2, R) = Class(Âi2j1, R).

This guarantees that the distributions of the discretized
values in the rows and columns do not change.

The restrictions that Âi1j1 and Âi2j2 belong to the same
column class as well as Âi1j2 and Âi2j1 to the same
row class can decrease the acceptance rate dramatically.
However, we can select Âi1j1 and Âi2j2 belonging to the
same column class in constant time. This is possible if we
keep track of where the elements in each class are located.
First, we randomly select an element Âi1j1 from the matrix,
and after that, we randomly select Âi2j2 that belongs to the
same class as Âi1j1 . The pseudocode of this approach is
presented in Algorithm 2.

Note that at each step the next state can be the current
state, i.e., there are self-loops in the state space.

4.5. Obtaining Exchangeable Samples

Subsequent samples produced by the Metropolis algo-
rithm are dependent, unless the number of steps taken
between the samples is at least the mixing time. It is very
hard to estimate this quantity in any application. We use
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Finding the MaxEnt Distribution
• Finding the MaxEnt distribution is a convex program 

with linear constraints

• Can be solved, e.g., using the Lagrange multipliers
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Example

34

 minimize f(x,y) = x2y
subject to g(x,y) = x2 + y2 = 3

L(x,y,λ) = x2y + λ(x2 + y2 – 3)

Solution: x = ±√2, y = –1
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MaxEnt Models for Tiling
• The Tiling problem
–Binary data, aim to find fully monochromatic submatrices

• Constraints: the expected row and column margins

–Note that these are in the correct form
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Preserving Means and Variances
• To preserve row and column means and variances, we 

need to constraint 
–Row and column sums
–Row and column sums-of-squares

• After solving the MaxEnt equation, we again get that 
the MaxEnt distribution for D is a product of 
probabilities for dij   
– Pr(dij) ~ 
• λs are Lagrange multipliers associated with the constraints on 

sums
• µs are Lagrange multipliers associated with the constraints on 

sums-of-squares
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Topic IV: Tensors
• Tensors are cool.
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Feedback on Topic III Essays
• Generally, quality’s still high
• MaxEnt seemed to cause problems to you
–Very briefly discussed
– Sometimes mixed with other approaches using maximum 

entropy
• Both swap-based and MaxEnt-based methods can 

handle numerical data
–Constraining row and column margins makes only sense if 

row and column margins make sense
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Exam Information
• 19 February (Tuesday)
• Oral exam
• Room 021 at MPII building (E1.4)
• Time frame: 10 am – 6 pm
– If you have constraints within this time frame, send me 

email 
–About 20 min per student

• I will ask questions on one or two topic areas
–You can veto one proposed topic are—but only one
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