Topic IV.2: Tensor Applications

Discrete Topics in Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2012/13

Topic IV.2: Tensor Applications

- **1. Tucker2 Decompositions and RESCAL**
 - 1.1. Tucker2 and equivalent factors
 - **1.2. The RESCAL algorithm**
- 2. Recap of the course
- **3. Feedback from Essay III**

Tucker2 Decompositions and RESCAL

- Recall: Tucker3 decomposition decomposes a 3-way tensor into smaller core tensor and three factor matrices
- Tucker2 decomposition decomposes a 3-way tensor into a core tensor and **two** factor matrices
 - If the original tensor was of size *N*-by-*M*-by-*K*, the core is of size *I*-by-*J*-by-*K* (or *M*-by-*I*-by-*J* or *I*-by-*M*-by-*J*)
 - Equivalently, Tucker2 is Tucker3 with one factor matrix replaced with an identity matrix

More on Tucker2

- Tucker2 can be presented slice-wise: $\mathbf{X}_k = \mathbf{A}\mathbf{G}_k\mathbf{B}^T$ for each k
 - $-\mathbf{X}_k$ is the *k*th (frontal) slice of X
 - $-\mathbf{G}_k$ is the *k*th (frontal) slice of the core tensor \mathcal{G}
 - -A and B are the factor matrices
- In matricized form

 $\mathbf{X}_{(1)} = \mathbf{A}\mathbf{G}_{(1)}(\mathbf{I}_K \otimes \mathbf{B})^T$

 $-\chi$ is *N*-by-*M*-by-*K*

What if B = A?

- Assume our tensor's two modes represent same entities
 - -E.g. tensor is subject-relation-object, with subjects and objects from the same set of entities (e.g. humans)
 - Sender-topic-receiver with senders and receivers in the same set of people
- We can model this by restricting the two factor matrices to be the same
 - -"Flow of information"
 - If we assign a dimension into a factor in one mode, that assignment holds also in the other mode

The RESCAL Problem

• Given an N-by-N-by-M tensor X and rank R, find an *N*-by-*R* factor matrix **A** and *R*-by-*R*-by-*M* core tensor G such that they minimize $\|\mathbf{A}\|_{F}^{2} + \sum_{m=1}^{M} \|\mathbf{G}_{m}\|_{F}^{2}$ $\sum_{n=1} \left\| \mathbf{X}_m - \mathbf{A} \mathbf{G}_m \mathbf{A}^T \right\|_F^2$ Squared error Regularizer Regularization Notational convenience coefficient

Nickel, Tresp & Kriegel 2011, 2012

T IV.2-6

The RESCAL Algorithm

- Iterative updates
 - In updating A for AG_mA^T , we temporarily consider A and A^T different matrices, and only update A
- **Updating A**: We stack the frontal slices of the data side-by-side and solve the resulting matrix problem
 - $-\mathbf{Y} \approx \mathbf{A}\mathbf{H}(\mathbf{I}_{2M} \otimes \mathbf{A}^T)$
 - $\mathbf{Y} = (\mathbf{X}_1, \mathbf{X}_1^T, \mathbf{X}_2, \mathbf{X}_2^T, \dots, \mathbf{X}_M, \mathbf{X}_M^T)$
 - $\mathbf{H} = (\mathbf{G}_1, \, \mathbf{G}_1^T, \, \mathbf{G}_2, \, \mathbf{G}_2^T, \, \dots, \, \mathbf{G}_M, \, \mathbf{G}_M^T)$
 - The gradient of this is

$$\mathbf{H}((\mathbf{I}\otimes\mathbf{A}^{\prime T}\mathbf{A}^{\prime})\mathbf{H}^{T}\mathbf{A}^{T} - (\mathbf{I}\otimes\mathbf{A}^{\prime T})\mathbf{Y}^{T}) + \lambda\mathbf{A}^{T}$$

 \bullet Here A' is the version of A kept constant

Update Rules Continued

• Setting the gradient to zero, we get update rule

$$\mathbf{A} \leftarrow \left(\sum_{m=1}^{M} \mathbf{X}_m \mathbf{A} \mathbf{G}_m^T + \mathbf{X}_m^T \mathbf{A} \mathbf{G}_m\right) \left(\sum_{m=1}^{M} \mathbf{B}_m + \mathbf{C}_m + \lambda \mathbf{I}\right)^{-1}$$

-Here $\mathbf{B}_m = \mathbf{G}_m \mathbf{A}^T \mathbf{A} \mathbf{G}_m^T$ and $\mathbf{C}_m = \mathbf{G}_m^T \mathbf{A}^T \mathbf{A} \mathbf{G}_m$

• Updating G: Writing X_m and G_m as vectors, we get optimization task

 $\|\operatorname{vec}(\mathbf{X}_m) - (\mathbf{A} \otimes \mathbf{A})\operatorname{vec}(\mathbf{G}_m)\| + \lambda \|\operatorname{vec}(\mathbf{G}_m)\|$

-Regularized linear regression

$$\mathbf{G}_m \leftarrow (\mathbf{Z}^T \mathbf{Z} + \lambda \mathbf{I})^{-1} \mathbf{Z} \mathtt{vec}(\mathbf{X}_m)$$

• $\mathbf{Z} = \mathbf{A} \otimes \mathbf{A}$

A Bit on Complexity

- $\mathbf{Z} = \mathbf{A} \otimes \mathbf{A}$ can be huge
 - The most expensive computation is $(\mathbf{Z}^T\mathbf{Z} + \lambda \mathbf{I}) 1$
 - The same computation works for every frontal slice of X
 - If there's no regularization at G, then this becomes $(\mathbf{Z}^T \mathbf{Z})^{-1} = ((\mathbf{A} \otimes \mathbf{A})^T (\mathbf{A} \otimes \mathbf{A}))^{-1} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A} \otimes (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}$
 - Only needs the inverse of *R*-by-*R* matrix $\mathbf{A}^T \mathbf{A}$
- We can use the QR matrix decomposition
 - -A = QR, where Q is orthogonal and R is upper triangular
 - We get $\mathbf{X}_m \mathbf{A}\mathbf{G}_m\mathbf{A}^T = \mathbf{X}_m \mathbf{Q}\mathbf{R}\mathbf{G}_m\mathbf{R}^T\mathbf{Q}^T$
 - $= \mathbf{Q}^T \mathbf{X}_m \mathbf{Q} \mathbf{R} \mathbf{G}_m \mathbf{R}^T$
 - Now **R** is only *R*-by-*R*

Application of RESCAL

- Tensor factorizations like RESCAL can be used for link prediction
 - –Non-zero elements mean observed links
 - -Zero elements mean unobserved
- The factorization will give us a representation of the original tensor where some of the zero elements will be represented with values above some threshold *t*
 - -These elements are predicted as missing links
 - This can be evaluated using training data
- Problem: Multiplying the factors back is very expensive operation

Recap of the Course

- Discrete topics in data mining
 - -A.k.a. "What Pauli likes to talk about in DM"
 - The modules of the course are not strongly connected
 - But some connections exist...
- Aim: high-level view of the ideas
 Not too much details (too little details?)
- Few selected papers on each topic -Not necessarily the "best" papers
 - -Very subjective selections process
- Essays instead of home works
 - -Good (?) training for reading and writing

Intro

- Data mining, in a broad sense, is the set of techniques for analyzing and understanding data. (Zaki & Meira) – Is data mining voodoo science?
- Data mining is also a methodological science
 The development of the tools to do data mining
 C.f. statistics

Topic I: Pattern Set Mining

- What are patterns?
 - -Frequent itemsets? Others?
- The flood of itemsets
 - -Closed itemsets
 - No item can be added without changing the support
 - -Maximal itemsets
 - No item can be added without becoming infrequent
 - -Non-derivable itemsets
 - The support can't be computed from subsets support

Tiling problems

- Minimum tiling. Given *X*, find the least number of tiles (*r*,*c*) such that
 - -For all (i,j) s.t. $x_{ij} = 1$, there exists at least one pair (r,c) such that $i \in r$ and $j \in c$ (i.e. $x_{ij} \in X(r,c)$)

• $i \in \mathbf{r}$ if exists j s.t. $r_j = i$

- Maximum *k*-tiling. Given *X* and integer *k*, find *k* tiles (*r*, *c*) such that
 - The number of elements $x_{ij} = 1$ that do belong in at least one X(r,c) is maximized

Geometric Tiles

- There are 2^{*n*}2^{*m*} possible combinatorial submatrices in an *n*-by-*m* matrix
 - If we look for density, we cannot look just monochromatic areas
- A geometric (density) tile is a tile with continuous row and column indices^{Teksti}
 - It can be described given two corners ²⁵
 - Or specific corner plus width and height 150
 - -Only n^2m^2 possible
- We also allow a hierarchy of tiles
 - -A sub-tile must be completely within its parent

Tiles That Overlap Within Parents

Tatti & Vreeken 2012

The MDL Principle and Data Mining

- The MDL principle can be used to combat *overfitting*
 - -Overfitting: model explains the training data too well and doesn't generalize to unseen data
 - -MDL presents a natural penalty to too complex models
- The MDL principle can be used to *select* the output
 - Among many possible sets of results (models), select the one that compresses the data best
 - -Note: we must explain the *whole* data
 - E.g. MDL does not allow lossy compression
 - But we can circumvent this by having a lossy model and a correction term (error)

Example of a Final Code Table

Code Table

Topic II: Graph Mining

- Graphs are everywhere
 - Analysing them is important
- Measures of centrality
 - Degree centrality
 - Eccentricity centrality
 - Closeness centrality
 - Betweenness centrality
 - Prestige
 - PageRank
- Random graph models
 - Erdős–Renyi
 - Watts–Strogats
 - Barabási–Albert

Frequent Subgraph Mining

- Given a set *D* of *n* graphs and a minimum support parameter *minsup*, find all connected graphs that are subgraph isomorphic to at least *minsup* graphs in *D*
 - -Enormously complex problem
 - For graphs that have *m* vertices there are
 2^{O(m²)} subgraphs (not all are connected)
 - If we have *s* labels for vertices and edges we have • $O\left((2s)^{O(m^2)}\right)$ labelings of the different graphs
 - -Counting the support means solving multiple NP-hard problems

The AGM Algorithm

- Start with frequent graphs of 1 vertex
- while there are frequent graphs left
 - Join two frequent (*k*–1)-vertex graphs
 - -Check the resulting graphs subgraphs are frequent
 - If not, **continue**
 - -Compute the canonical form of the graph
 - If this canonical form has already been studied, continue
 - -Compare the canonical form with the canonical forms of the *k*-vertex subgraphs of the graphs in *D*
 - If the graph is frequent, keep, otherwise discard
- return all frequent subgraphs

The gSpan Algorithm

- gSpan:
 - -for each frequent 1-edge graphs
 - call subgrm to grow all nodes in the code tree rooted in this 1-edge graph
 - remove this edge from the graph
- subgrm
 - -if the code is not canonical, return
 - -Add this graph to the set of frequent graphs
 - -Create each super-graph with one more edge and compute its frequency
 - -call subgrm with each frequent super-graph

More Coherent Story

Topic consistent over transitions

Shahaf & Guestrin 2010 T IV.2-24

session Web Mining tailed Example

April 16-20, 201

Shahaf, Guestrin & Horvitz 2012a

Topic III: Significance Testing

- The bread-and-butter of statistics
- Are my finding significant?

-How to test this in data mining?

The Main Idea

- Let $O_{k,s}$ be the number of observed *k*-itemsets of support at least *s*
 - Let $\hat{O}_{k,s}$ be the random variable corresponding to that in a random dataset
- **Theorem.** There exists a level s_{\min} such that if $s \ge s_{\min}$, $\hat{O}_{k,s}$ is approximated well by Poisson distribution
 - With this, we can compute the *p*-values easily
 - No need for data samples (almost...)
 - -Only works with large-enough support levels
 - Rare events

WWW. PHDCOMICS. COM

- A **swap box** of *D* is a 2-by-2 combinatorial submatrix that is either *diagonal* or *anti-diagonal*
- A **swap** turns diagonal swap box into anti-diagonal, or vice versa
- Theorem [Ryser '57]. If $A, B \in M(r, c)$, then A is reachable from B with a finite number of swaps

Example Markov chain

$$P = \left(\begin{array}{rrrr} 0 & 9/10 & 1/10 \\ 3/10 & 1/10 & 6/10 \\ 1/2 & 1/2 & 0 \end{array}\right)$$

The Metropolis Algorithm

- The Metropolis algorithm is a general technique to transform any irreducible Markov chain into a time-reversible chain with a required stationary distribution

 A Markov chain is *time-reversible* if π_iP_{ij} = π_jP_{ji}
- Let N(x), N, and M be as in previous slide, and let $\pi = (\pi_1, \pi_2, ..., \pi_n)$ be the desired stationary distribution. -Let $\mathbf{P}_{xy} = \begin{cases} 1/M \min\{1, \pi_y/\pi_x\} & \text{if } x \neq y \text{ and } y \in N(x), \\ 0 & \text{if } x \neq y \text{ and } y \notin N(x), \\ 1 - \sum_{y \neq x} \mathbf{P}_{xy} & \text{if } x = y. \end{cases}$

- If the chain is aperiodic and irreducible, the stationary distribution is the desired one

Local Changes

- One-element changes
 - -Replace a value
 - -Add another value
- Four-element changes
 - -Rotate
 - If a = a' and b = b', equals to swap
 - –Mask
 - Preserves row and column sums

Rotate

Mask

Finding the MaxEnt Distribution

• Finding the MaxEnt distribution is a convex program with linear constraints

$$\max_{\Pr(\mathbf{x})} -\sum_{\mathbf{x}} \Pr(\mathbf{x}) \log \Pr(\mathbf{x})$$

s.t.
$$\sum_{\mathbf{x}} \Pr(\mathbf{x}) f_i(\mathbf{x}) = d_i \quad \text{for all } i$$
$$\sum_{\mathbf{x}} \Pr(\mathbf{x}) = 1$$

• Can be solved, e.g., using the Lagrange multipliers

Example

minimize
$$f(x,y) = x^2y$$

subject to $g(x,y) = x^2 + y^2 =$
 $L(x,y,\lambda) = x^2y + \lambda(x^2 + y^2 - 3)$
 $\frac{\partial L}{\partial x} = 2xy + 2\lambda x = 0$
 $\frac{\partial L}{\partial y} = x^2 + 2\lambda y = 0$
 $\frac{\partial L}{\partial \lambda} = x^2 + y^2 - 3 = 0$

Solution: $x = \pm \sqrt{2}, y = -1$

MaxEnt Models for Tiling

• The Tiling problem

-Binary data, aim to find fully monochromatic submatrices

• Constraints: the *expected* row and column margins

$$\sum_{\mathbf{D}\in\{0,1\}^{n\times m}} \Pr(\mathbf{D}) \left(\sum_{j=1}^{m} d_{ij}\right) = r_i$$
$$\sum_{\mathbf{D}\in\{0,1\}^{n\times m}} \Pr(\mathbf{D}) \left(\sum_{i=1}^{n} d_{ij}\right) = c_j$$

–Note that these are in the correct form

De Bie 2010

Preserving Means and Variances

- To preserve row and column means and variances, we need to constraint
 - -Row and column sums
 - -Row and column sums-of-squares
- After solving the MaxEnt equation, we again get that the MaxEnt distribution for **D** is a product of probabilities for *dij*
 - $-\Pr(d_{ij}) \sim \mathcal{N}\left(-\frac{\lambda_i^r + \lambda_j^c}{2(\mu_i^r + \mu_j^c)}, \left(2(\mu_i^r + \mu_j^c)\right)^{-1/2}\right)$
 - λs are Lagrange multipliers associated with the constraints on sums
 - μs are Lagrange multipliers associated with the constraints on sums-of-squares

Topic IV: Tensors

• Tensors are cool.

Feedback on Topic III Essays

- Generally, quality's still high
- MaxEnt seemed to cause problems to you
 - -Very briefly discussed
 - Sometimes mixed with other approaches using maximum entropy
- Both swap-based and MaxEnt-based methods can handle numerical data
 - -Constraining row and column margins makes only sense if row and column margins make sense

Exam Information

- 19 February (Tuesday)
- Oral exam
- Room 021 at MPII building (E1.4)
- Time frame: 10 am 6 pm
 - If you have constraints within this time frame, send me email
 - -About 20 min per student
- I will ask questions on one or two topic areas
 You can veto one proposed topic are—but only one