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Organizational matters
• Remember to register for final exam in HISPOS
• Lecture on 27 November is cancelled
– Schedule is pushed one week down
–The DL for Topic IV’s essay is still 12 February
•Essay topics are given two weeks before
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Month Day Lecture topic Essay
October 16 Intro Warm-up essay

23 T I intro: Pattern set mining
30 T I.1: Tiling Warm-up essay DL

November 6 T I.2: MDL-based itemset mining T I essay, w-u feedback
13 T II intro: Graph mining
20 T II.1 T I essay DL
27 No lecture

December 4 T II.2 T II essay, T I feedback
11 No lecture
18 T III intro: Assessing the significance T II essay DL
25 No lecture, Christmas break

January 1 No lecture, Christmas break
8 T III.1 T III essay, T II feedback

15 T III.2
22 T IV intro T III essay DL
29 T IV.1 T IV essay, T III feedback

February 5 T IV.2
12 T IV essay DL
19 Exam
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Topic I.1: Tiling Databases
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T I.1 Tiling Databases
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1. Background: Sets of Patterns
2. 0/1 Combinatorial Tiles

2.1. What & Why
2.2. The Set Cover Problem
2.3. Finding the Tilings

3. Tiles as Density Estimates
3.1. Combinatorial and Geometric Tiles
3.2. An Algorithm for Finding Geometric Tiles
3.3. A Bit of Art History
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Background: Sets of Patterns
• There are too many frequent itemsets and they 

contain repeated information
–Every subset of a frequent itemset is a frequent itemset

• Closed, maximal, and non-derivable itemsets try to 
remove the redundancy in information
–They might still yield to many almost-same itemsets

• Tiling addresses this problem by evaluating the set of 
itemsets with respect to the data they were found
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Example
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A frequent itemset
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A rather good explanation 
of the full data 
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0/1 Combinatorial Tiles
• Let X be an n-by-m binary matrix (e.g. transaction data)
– Let r be a p-dimensional vector of row indices (1 ≤ ri ≤ n) 
– Let c be a q-dimensional vector of column indices (1 ≤cj ≤ m)
– The p-by-q combinatorial submatrix induced by r and c is

– X(r,c) is monochromatic if all of its values have the same value  
(0 or 1 for binary matrices)
• If X(r,c) is monochromatic 1, it (and (r,c) pair) is called a 

combinatorial tile
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X(r, c) =

0
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Geerts, Goethals & Mielikäinen 2004
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Tiling problems
• Minimum tiling. Given X, find the least number of 

tiles (r,c) such that
– For all (i,j) s.t. xij = 1, there exists at least one pair (r,c) such 

that i ∈ r and j ∈ c (i.e. xij ∈ X(r,c))
• i ∈ r if exists j s.t. rj = i

• Maximum k-tiling. Given X and integer k, find k tiles 
(r, c) such that
–The number of elements xij = 1 that do belong in at least one 
X(r,c) is maximized

8
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Tiling and itemsets
• Each tile defines an itemset and a set of transactions 

where the itemset appears
–Minimum tiling: each recorded transaction–item pair must 

appear in some tile
–Maximum k-tiling: maximize the number of transaction–

item pairs appearing on selected tiles
• Itemsets are local patterns, but tiling is global

10
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The Set Cover Problem
• A set system is a pair (U, S), where U (universe) is a 

(finite) set of elements and S a collection of subsets of 
U, S ⊆ 2U, such that 

• Set Cover. Given a set system (U, S), find the 
smallest subcollection C ⊆ S such that 

• Max k-Cover. Given (U, S) and an integer k, find k 
sets of S (in collection C) such that                 is 
maximized.

11
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Algorithm for Set Cover
1. while U is not empty

2. Select the S ∈ S that has largest |S ∩ U|

3. Add S to C
4. Set U ← U \ S

5. return C 

•This greedy algorithm achieves log(n) approximation 
for the Set Cover
– This is best possible unless P = NP

•Stopping after k sets gives e/(e – 1) approximation of 
Max k-Cover

12
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From Set Cover to Tiling
• We can use the set cover algorithm if we can reduce 

the tiling problem to a set covering problem
–Let X be the 0/1 data matrix we want to tile
–Let U have one element for each 1 in X, U = {uij : xij = 1}

–Let S have one set for each possible tile in X

• For each S ∈ S, we have row and column index vectors r and c 
such that X(r, c) is monochromatic 1
•Then S = {uij : i ∈ r and j ∈ c}

• Now an optimum set covering gives us an optimum 
minimum tiling
– Same for max k-covering and maximum k-tiling

13
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Job Done?
• The number of possible tiles is exponential with 

respect to the size of the data base
–Generating the set system takes exponential time
–Running the algorithm takes exponential time
–And if I’m going to spend exponential time, I can as well 

just find the optimum solution
• How to solve this?
–Reduce the number of tiles you consider
– Find the tile to add without having to know all the tiles 

explicitly

14
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Reducing the Number of Tiles
• We don’t need to consider all possible tiles
– If T1 and T2 are tiles such that T1 ⊂ T2, we only need to 

consider T2

–We only need to consider maximal tiles (that are not subtiles 
of any other tile)

• Maximal tiles are those induced by closed itemsets
–Adding new rows would require us to remove columns and 

vice versa
• But there still are (potentially) exponential number of 

closed itemset…
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Considering only Implicit Tiles
• Assume an oracle that, given a binary matrix and a 

tiling thereof, returns in polynomial time the tile that 
covers most of the 1s in the matrix not yet covered by 
the given tiling
– If we have such oracle, we can execute the greedy algorithm 

in polynomial time
• If we don’t have the oracle, but we can approximate 

the tile within some factor R(n), we can approximate 
the set cover within R(n)log(n)

16
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A Practical Algorithm
• Replace the oracle with a large tile mining algorithm 

that takes into account the already-covered area
– Finds only maximal tiles (closed itemsets)
– Similar to ECLAT & CHARM
–Cannot use downwards closedness property directly
•Area of a tile is not downwards closed

–Can still compute upper bounds on the maximum area of a 
super-tile of the given tile
–Details left for reader

• Gives a practical algorithm for finding the minimum 
tiling and maximum k-tiling

17
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Tiles as Density Estimates
• A tile must be monochromatic 1
–But real-world data often has noise
–Noise breaks tiles

• Areas with lots of zeros can be interesting, as well
–And areas of zeros within areas of ones

• We can consider tiles as areas of certain density 
–Density should be different in neighbouring areas
–Within tiles, there can be sub-areas of different density
–These are called density tiles

• Thus density tiles can be seen as density patterns in 
the data

18
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174 Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen

Fig. 1. Hierarchical tiling obtained for one of the data sets, Paleo2. The darkness of each rect-
angle depicts the associated probability.

hierarchical tile for which τ0 covers the whole set X × Y defines a probability model
for the set1.

There are two types of tiles. If the rows and columns are ordered and X and Y
are ranges on those orderings, then the tile is geometric; if X and Y are arbitrary sub-
sets then the tile is combinatorial. Given a data set with n rows and m columns, there
are Θ(n2m2) possible geometric basic tiles, but Θ(2n2m) possible combinatorial ba-
sic tiles. Thus combinatorial tiles are a much stronger concept, and finding the best
combinatorial tiles is much harder than finding the best geometric tiles.

In this paper we first give a simple randomized algorithm for finding geometric tiles.
We show that the algorithm finds with high probability the tiles in the data. We then
move to the question of finding combinatorial tiles. Our main tool is spectral ordering,
based on eigenvector techniques [9]. We prove that using spectral ordering methods one
can find orderings on which good combinatorial tiles become geometric. We evaluate
the algorithms on real data, and indicate how the tiling model gives accurate and inter-
pretable results. The rest of the paper is organized as follows. In Section 2 we define
formally the problem of hierarchical tiling, and in Section 3 we describe our algorithms.
We present our experiments in Section 4, and in Section 5 we discuss the related work.
Finally, Section 6 is a short conclusion.

2 Problem Description

The input to the problem consists of a 0–1 data matrix A with m rows R and n columns
C. For row i and column j, the (i, j) entry of A is denoted by A(i, j).

Rectangles. As we already mentioned, we distinguish between combinatorial and geo-
metric rectangles. A combinatorial rectangle rc(A, X, Y ) of the matrix A, defined for

1 Our model can easily be extended to the case where each basic tile has a probability param-
eter for each column in Y ; this leads the model to the direction of subspace clustering. For
simplicity of exposition we use the formulation of one parameter per basic tile.

Gionis, Mannila & Seppänen 2004
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Geometric Tiles

20

• There are 2n2m possible combinatorial submatrices in 
an n-by-m matrix
– If we look for density, we cannot look just monochromatic 

areas
• A geometric (density) tile is a tile with continuous 

row and column indices
– It can be described given two corners
•Or specific corner plus width and height

–Only n2m2 possible
• We also allow a hierarchy of tiles
–A sub-tile must be completely within its parent
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Mining the Geometric Density Tiles
• The goal for density tile mining is non-obvious
–A single density tile can cover the whole data
–What is the error induced by a tiling?
–How many tiles? How many sub-tiles?

• General idea: use the tiling to give a likelihood of the 
data
–Likelihood is the probability of the data given the density 

tiling
•Zero on a dense tile is improbable, as is one on a sparse tile

• Bound the complexity using some model-order 
selection method

21



DTDM, WS 12/13 30 October 2012 T I.1-

The Likelihood of the Data
• Let xij be an element of the data and τ a tile with 

density p
– If τ has no sub-tile that covers xij, then the likelihood 

q(τ; i,j) of xij is p
–Otherwise, if xij ∈ τ’ ⊂ τ, likelihood of xij is computed with 

tile τ’
•Most specific tile defines the likelihood

• The likelihood of the whole data given τ is

–The likelihood of the whole data is computed using a root 
tile

22

L(X | t) = ’
(i, j)2t

q(t; i, j)x

i j(1�q(t; i, j))1�x
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How Many Tiles?
• We can get perfect likelihood
–But the model would be too complex

• Balance between the complexity of the model and the 
likelihood
• For example, Bayesian Information Criterion (BIC)
–Minimize k×log(nm) – 2log(L(X | τ))
• k is the number of sub-tiles

–The first part explains how complex tiling we have and the 
second part is twice the log likelihood

23
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How to Find Tilings
• Randomized greedy algorithm for one tile:
–Draw a random rectangle 

(a, b)×(c, d) = {(i, j) : a ≤ i ≤ b and c ≤ j ≤ d}
– Try to expand and shrink it to all directions
• E.g. (a, b)×(c, d + 1), (a, b)×(c, d + 2), (a, b)×(c, d + 3), …

–Out of all tried rectangles, select the one with highest likelihood
• If this is better than the likelihood of the original rectangle, choose 

this as a new original rectangle, and start expanding and shrinking it
– Stop when the likelihood cannot be improved using expansions 

or shrinks
• For tilings, find tiles one-by-one and stop when BIC 

stops decreasing

24

Gionis, Mannila & Seppänen 2004
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Stijl – An Algorithm and a Movement
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Piet Mondrian: Composition II in Red, Blue, and Yellow, 1930
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Tiles That Overlap Within Parents
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22 N. Tatti and J. Vreeken

(a) Composition

(b) Paleo (transposed)

Fig. 4. Results of Stijl on (a) Composition and (b) Paleo, with (top) the disjoint
hierarchical tiling, and (bottom) the tiling allowing overlap within the same parent tile.
For Paleo we do not show individual 1s. Darker tiles correspond to higher frequency.

requiring fewer tiles to do capture the structure of the data. By allowing over-
lap, the search space is expanded, and hence more computation is required: on
average, in our experiments, twice as much.

On these datasets, the current Stijl implementation requires from seconds
up to a few hours of runtime. By its iterative any-time nature, users, however,
can already start to explore models while in the background further refinements
are calculated.

Qualitative Analysis. Next, we investigate the discovered models in more
detail. To this end, we first use the Paleo data as by its modest size it is easily
visually representable. In Figure 4(b) we show the result of Stijl on this data,
with the top figure the result of allowing only disjoint tiles, and in the bottom
figure when allowing overlap. Darker toned tiles correspond to more dense areas
of the data. For clarity, we here do not show the individual 1s (as we did in
Fig. 2, which corresponds to the bottom plot of Fig. 4(b)).

The first thing we note, is that the two results are quite alike. The model with
overlap, however, is a bit simpler and ‘cleaner’: the relatively dense areas are of
the data are easier to spot for this model, than for the disjoint one. Second, it
uses the hierarchical property as intended: in the top right corner, for instance,
we see a dense, dark-grey tile within a lighter tinted square, within a very sparse
tile. While for reasons of space we can only show these examples, these are
observations that hold in general—by which it may come at no surprise that by
allowing overlap we obtain better MDL scores.

Next, we inspect the results on Abstracts. This sparse dataset has no natural
order by itself, and when we apply SVD to order it, we find most of the 1s
are located in the top-left corner of the data. When we apply Stijl, we see
it correctly reconstructs this structure. Due to lack of space, however, we do
not give the visual representation. Instead, we investigate the most dense tile,
which covers the top-left corner. We find that it includes frequent words that are

No overlap

Overlap 
within 
parent

Tatti & Vreeken 2012
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Tile Trees
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Fig. 1. Toy example of a tiled database, and the corresponding tile tree structure

parents. Next, as an example on real data, consider Figure 2, in which we show
the tiling our algorithm discovered on paleontological data. Very easily read, us-
ing only 14 tiles, the tiling shows which regions of the data are relatively dense
(dark), as well as where relatively few 1s are found (light).

Clearly, we aim to mine descriptions that are succinct, non-redundant, and
neither overly complex nor simplistic. We therefore formalise the problem in
terms of the Minimum Description Length (MDL) principle [9], by which we can
automatically identify the model that best describes the data, without having
to set any parameters. For mining good models, we introduce Stijl, a heuristic
any-time algorithm that iteratively greedily finds the optimal subtile and adds
it to the current tiling. A major result of this paper is that we show that we can
find such optimal subtiles in only Θ(NM min(N,M)), as opposed to Θ(N2M2)
when done naively [8].

We are not the first to study the problem of hierarchical tiling. The problem
was first introduced by Gionis et al. [8], whom proposed a randomised approach
as an alternative to the naive approach. Our FindTile procedure, on the other
hand, is deterministic and identifies optimal subtiles. Moreover, our MDL for-
malisation requires no scaling parameters, making the method parameter-free.

These differences aside, both methods assume an order on the rows and
columns of the data; as for such data, a subtile can be straightforwardly defined
by a ‘from’ and ‘to’ selection query. As such, we exploit that the data is ordered,
as this allows us to generate more easily understandable and easily visually rep-
resentable models for the data. Although many datasets naturally exhibit such

Fig. 2. Tiling of the Paleo dataset. See Fig. 4(b) for a cleaned version without 1s
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Tatti & Vreeken 2012
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The Minimum Description Length 
Principle (MDL)

28

• Another tool for model (order) selection
• The model that compresses the data best is the best
• Two-part MDL: To compress the data, we need to 

explain the model and the data given the model
– L(M) + L(D | M)
–Here: model is the tiling and we need to explain how to 

reconstruct the data given the tiling
•The more homogeneous the tiles, the easier the latter part

• More on MDL next week…
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The Stijl Algorithm
• Goal: Find a tree of tiles (where tiles can overlap 

within their parent) that minimizes the description 
length of the data
• A greedy algorithm that adds tiles one-by-one
–Can find a single, optimal tile to add in 

O(nm min(n,m))
–Uses MDL to decide the size of the tree
–Based on a linear-time algorithm to decide the optimal tile 

given the columns of it

29
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From Geometric to Combinatorial
• We only know how to find geometric density tiles
–What about combinatorial density tiles?

• Given a combinatorial tile, we can always re-order 
rows and columns to yield geometric tile
–Not always possible for all tiles in a tiling simultaneously

• We can try to find an ordering a priori, and then find 
the geometric tiles in it

30
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Spectral Ordering
• Order the rows of X as follows:
–Compute Y = XXT (symmetric and positive semidefinite)
–Let D be a diagonal matrix with the sums of Y’s rows on its 

diagonal
–Let L be the Laplacian of Y: L = D – Y
–Compute the second eigenvector of L (the Fiedler vector) f
• Intuitively, similar rows have similar values in f

–Order the rows based on their values in f
• Columns are ordered analogously
• Here, similarity is measured using dot product
–Other similarity measures are possible

31
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