Organizational matters

* Remember to register for final exam 1n HISPOS

e [ecture on 27 November 1s cancelled

— Schedule 1s pushed one week down
—The DL for Topic IV’s essay 1s still 12 February

 Essay topics are given two weeks before




Month Day Lecture topic

October

November

December

January

February

16 Intro
23 T | intro: Pattern set mining
30T I.1: Tiling
6 T l.2: MDL-based itemset mining
13 T Il intro: Graph mining
20T 1.1
27 No lecture
4TI1.2
11 No lecture
18 T Ill intro: Assessing the significance
25 No lecture, Christmas break
1 No lecture, Christmas break
8TII.1
15T IIl.2
22 T IV intro
29T IVA
5T IV.2
12
19 Exam

Essay
Warm-up essay

Warm-up essay DL
T | essay, w-u feedback

T | essay DL

T Il essay, T | feedback

T Il essay DL

T Il essay, T |l feedback

T Ill essay DL
T IV essay, T Ill feedback

T IV essay DL
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Topic 1.1: Tiling Databases

Discrete Topics 1n Data Mining

Universitiat des Saarlandes, Saarbriicken
Winter Semester 2012/13




T L1 Tiling Databases

1. Background: Sets of Patterns

2. 0/1 Combinatorial Tiles
2.1. What & Why

2.2. The Set Cover Problem
2.3. Finding the Tilings

3. Tiles as Density Estimates
3.1. Combinatorial and Geometric Tiles

3.2. An Algorithm for Finding Geometric Tiles
3.3. A Bit of Art History
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Background: Sets of Patterns

* There are too many frequent itemsets and they
contain repeated information

—Every subset of a frequent 1itemset 1s a frequent 1temset

* Closed, maximal, and non-derivable itemsets try to
remove the redundancy in information

— They might still yield to many almost-same 1temsets

* Tiling addresses this problem by evaluating the set of
itemsets with respect to the data they were found




Example

A frequent itemset
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Example

Both are closed (and
possibly maximal)
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All

Both-are closed (and
possibly maximal)
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Example

A rather good explanation
of the full data

Perhaps we want to
All remove the
Both-are closed (and redundancy

possibly maximal) B

Area we don’-[- covar y A N
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0/1 Combinatorial Tiles

* Let X be an n-by-m binary matrix (e.g. transaction data)

— Let r be a p-dimensional vector of row indices (1 <r; < n)

— Let ¢ be a g-dimensional vector of column indices (1 <c¢; < m)
— The p-by-q combinatorial submatrix induced by r and c 1s

X’T1C1 Xf1C2 XT1C3 chq
XT2C1 XTQ C> XTQ C3 T XTQC q

X(r,c) = X13c1 X1m3c0 Xric; Xricq

ercl er Co er C3 t ercq
— X(r,c) 1s monochromatic 1f all of 1ts values have the same value
(0 or 1 for binary matrices)
* [f X(r,c) 1s monochromatic 1, 1t (and (#,c) pair) 1s called a
combinatorial tile
Geerts, Goethals & Mielikdinen 2004




Tiling problems

* Minimum tiling. Given X, find the least number of
tiles (r,c) such that

—For all (i,j) s.t. x;; = 1, there exists at least one pair (r,c¢) such
thatiErandj € c (1.€. x; € X(r,c))

eicrifexistsjst.ri=i
* Maximum A-tiling. Given X and integer £, find £ tiles
(r, ¢) such that

— The number of elements x;; = 1 that do belong 1n at least one
X(r,c) 1s maximized
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Example
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Example
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Tiling and itemsets

 Each tile defines an 1itemset and a set of transactions
where the itemset appears

— Minimum tiling: each recorded transaction—1tem pair must
appear 1in some tile

—Maximum -tiling: maximize the number of transaction—
item pairs appearing on selected tiles

* [temsets are local patterns, but tiling 1s global




The Set Cover Problem

* A set system 1s a pair (U, S), where U (universe) 1s a

(finite) set of elements and S a collection of subsets of

U, SC 2% such that | Jg. S =U

e Set Cover. Given a set system (U, S), find the
smallest subcollection C C S such that | J-.~-C=U

e Max k-Cover. Given (U, S) and an integer £, find £

sets of S (in collection C) such that |UceC| is
maximized.




Algorithm for Set Cover

1. while U 1s not empty
2. Select the § € S that has largest |S N U]

3. Add Sto C
4. Set U— U\ S

S. return C

e This greedy algorithm achieves log(n) approximation
for the Set Cover

— This 1s best possible unless P = NP

e Stopping after k sets gives e/(e — 1) approximation of
Max k-Cover




From Set Cover to Tiling

* We can use the set cover algorithm if we can reduce
the tiling problem to a set covering problem

—Let X be the 0/1 data matrix we want to tile
—Let U have one element foreach 1 n X, U= {u; : x;j =1}

—Let S have one set for each possible tile iIn X

* For each S € S, we have row and column index vectors » and ¢

such that X(r, ¢) 1s monochromatic 1
e Then §={u;:iErandj € c}

* Now an optimum set covering gives us an optimum
minimum tiling

— Same for max k-covering and maximum A-tiling




Job Done?

* The number of possible tiles 1s exponential with
respect to the size of the data base

— Generating the set system takes exponential time
— Running the algorithm takes exponential time
— And 1f I’'m going to spend exponential time, I can as well
just find the optimum solution
* How to solve this?

— Reduce the number of tiles you consider

— Find the tile to add without having to know all the tiles
explicitly




Reducing the Number of Tiles

* We don’t need to consider all possible tiles

—If 71 and 73 are tiles such that 77 C T2, we only need to
consider 7>

— We only need to consider maximal tiles (that are not subtiles
of any other tile)

* Maximal tiles are those induced by closed itemsets

— Adding new rows would require us to remove columns and
VICE Versa

* But there still are (potentially) exponential number of
closed itemset. ..




Considering only Implicit Tiles

* Assume an oracle that, given a binary matrix and a
tiling thereof, returns 1n polynomial time the tile that
covers most of the 1s 1in the matrix not yet covered by
the given tiling
—If we have such oracle, we can execute the greedy algorithm

in polynomial time

 If we don’t have the oracle, but we can approximate
the tile within some factor R(n), we can approximate
the set cover within R(n)log(n)




A Practical Algorithm

* Replace the oracle with a large tile mining algorithm
that takes into account the already-covered area
— Finds only maximal tiles (closed 1temsets)

— Similar to ECLAT & CHARM

— Cannot use downwards closedness property directly
 Area of a tile 1s not downwards closed

— Can still compute upper bounds on the maximum area of a
super-tile of the given tile

— Details left for reader

* Gives a practical algorithm for finding the minimum
tiling and maximum k-tiling




Tiles as Density Estimates

e A tile must be monochromatic 1
— But real-world data often has noise
— Noise breaks tiles

* Areas with lots of zeros can be interesting, as well
— And areas of zeros within areas of ones

* We can consider tiles as areas of certain density
— Density should be different in neighbouring areas
— Within tiles, there can be sub-areas of different density
—These are called density tiles

* Thus density tiles can be seen as density patterns in
the data




Example

Gionis, Mannila & Seppanen 2004
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Example

Very sparsearea

4 /(

i Y 4 1 -

Gionis, Mannila & Seppanen 2004

DTDM, WS 12/13 30 October 2012



Geometric Tiles

* There are 2"2™ possible combinatorial submatrices in
an n-by-m matrix
—If we look for density, we cannot look just monochromatic
arcas

* A geometric (density) tile 1s a tile with continuous
row and column indices

—1It can be described given two corners =g @mEEL] |

Bl o S RO R
* Or specific corner plus width and height ,, | B=== | |- | -

¥ | FTel Catatd el " ' 0 .
e : SRR : LR Lt R
ConL "L P R R R I L A [ ey S anesy T L . 3
100 [ s 3 : SR SR e JE R e e vl R 8
" . [ I .
1 -

— Only n’m? possible

s04.

* We also allow a hierarchy of tiles = .

— A sub-tile must be completely within its parent




Mining the Geometric Density Tiles

* The goal for density tile mining is non-obvious
— A single density tile can cover the whole data
— What 1s the error induced by a tiling?
— How many tiles? How many sub-tiles?

* General 1dea: use the tiling to give a likelihood of the
data

— Likelihood 1s the probability of the data given the density
tiling
 Zero on a dense tile 1s improbable, as 1s one on a sparse tile
* Bound the complexity using some model-order
selection method




The Likelithood of the Data

* Let x; be an element of the data and t a tile with
density p

—If T has no sub-tile that covers x;;, then the likelihood
q(t; i,j) of X 18 p

— Otherwise, 1f x;; € T° C 1, likelihood of x;; 1s computed with
tile T’
* Most specific tile defines the likelihood

* The likelihood of the whole data given 7 1s

LX|1)= [] q(wij)u(1—q(ti )
(i,j)eT

— The likelihood of the whole data 1s computed using a root
tile




How Many Tiles?
* We can get perfect likelihood

— But the model would be too complex

* Balance between the complexity of the model and the
likelihood

* For example, Bayesian Information Criterion (BIC)

—Minimize kxlog(nm) — 2log(L(X | 1))
* k 1s the number of sub-tiles

— The first part explains how complex tiling we have and the
second part 1s twice the log likelithood




How to Find Tilings

* Randomized greedy algorithm for one tile:

— Draw a random rectangle
(a, b)x(c,d)=1(,j))ra<i<band c <j < dj

— Try to expand and shrink 1t to all directions
*E.g. (a, b)X(c, d+ 1), (a, b)*(c, d+ 2), (a, b)*(c,

d+3), ...

— Out of all tried rectangles, select the one with highest likelihood

e If this 1s better than the likelihood of the original
this as a new original rectangle, and start expand

| rectangle, choose
ing and shrinking it

— Stop when the likelihood cannot be improved
or shrinks

| using €xpansions

* For tilings, find tiles one-by-one and stop when BIC

stops decreasing

Gionis, Mannila & Seppanen 2004




St1j] — An Algorithm and a Movement

3
i

Piet Mondrian: Composition Il in Red, Blue, and Yellow, 1930
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Tiles That Overlap Within Parents

No overlap

Overlap
within
parent

Tatt1 & Vreeken 2012
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Tile Trees

Tatt1 & Vreeken 2012



The Minimum Description Length
Principle (MDL)

* Another tool for model (order) selection

* The model that compresses the data best is the best

* Two-part MDL: To compress the data, we need to
explain the model and the data given the model

—L(M) + L(D | M)
— Here: model 1s the tiling and we need to explain how to
reconstruct the data given the tiling

* The more homogeneous the tiles, the easier the latter part

e More on MDL next week...




The Styjl Algorithm

* Goal: Find a tree of tiles (where tiles can overlap
within their parent) that minimizes the description
length of the data

* A greedy algorithm that adds tiles one-by-one

— Can find a single, optimal tile to add 1n

O(nm

min(zn,m))

—Uses MDL to decide the size of the tree

— Basec
given

- on a [inear-time algorithm to decide the optimal tile
the columns of it

Tatt1 & Vreeken 2012



From Geometric to Combinatorial

* We only know how to find geometric density tiles
— What about combinatorial density tiles?

* Given a combinatorial tile, we can always re-order
rows and columns to yield geometric tile

— Not always possible for all tiles 1n a tiling sitmultaneously

* We can try to find an ordering a priori, and then find
the geometric tiles 1n 1t




Spectral Ordering

* Order the rows of X as follows:
— Compute ¥ = XX’ (symmetric and positive semidefinite)

— Let D be a diagonal matrix with the sums of ¥’s rows on 1its
diagonal

—Let L be the Laplacian ot Y: L=D -Y

— Compute the second eigenvector of L (the Fiedler vector) f
* Intuitively, similar rows have similar values in f

— Order the rows based on their values 1n f
* Columns are ordered analogously
* Here, similarity 1s measured using dot product

— Other similarity measures are possible
Gionis, Mannila & Seppanen 2004
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