Name:
Matriculation Number:
Tutorial Group: A □ B □ C □ D □ E □

<table>
<thead>
<tr>
<th>Question</th>
<th>1 (5 Points)</th>
<th>2 (5 Points)</th>
<th>3 (5 Points)</th>
<th>4 (5 Points)</th>
<th>Total (20 points)</th>
</tr>
</thead>
</table>

Score:

General instructions:

- The written test contains 4 questions and is scheduled for 45 minutes. The maximum amount of points you can earn is 20.
- Please verify if your exam consists of 12 pages with 4 questions printed legibly, else contact the examiner immediately.
- No electronic devices (calculator, notebook, tablet, PDA, cell phone) are allowed.
- Answers without sufficient details are void (e.g.: you can’t just say “yes” or “no” as the answer).
- Last page consists of material that you may use to solve the questions. You may detach the last page for your convenience.
- You will be provided additional working sheets if necessary. Make sure to return them along with your solution sheet.
- Please provide your ID card when asked by the examiner.
- Please fill in name, matriculation number (student registration number) and tutor group in the form above and return the solution sheets into the provided box.
- Please sign below.

Student’s Signature

First Short Test 12 November 2013.
LINEAR ALGEBRA

Problem 1. Consider the following matrix A,

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

a) Consider the first and second column of A,

$\vec{a}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$

$\vec{a}_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$.

Compute the Euclidean (that is, L_2) norm of these two vectors. [2 points]

b) Compute the dot product $\vec{a}_1 \cdot \vec{a}_2$. [1 point]

c) Is A invertible? If yes, give its inverse. If not, explain why. [2 points]

d) Let I be the 2-by-2 identity matrix and let

$\vec{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Compute

$$AIAII(A^T)^2IAIAIA^T\vec{v}.$$ [1 point]

Solution
Problem 2. Let A be a 500-by-100 matrix and let $A = U\Sigma V^T$ be its SVD.

a) What are the sizes (numbers of rows and columns) of U, Σ, and V? [1 point]

b) How many non-zeros can matrix Σ have at most? [1 point]

c) Is matrix A invertible? Explain why/why not. [1 point]

d) Assume that $\text{rank}(A) = 100$ and consider the matrix $\tilde{A}^+ = (A^T A)^{-1} A^T$ (you can assume that the inverse exists). Prove that \tilde{A}^+ is the pseudo-inverse of A. You can use the fact that $V\Sigma U^T$ is the pseudo-inverse of A, that $(XY)^T = Y^T X^T$ for all matrices X and Y for which the product is well-defined, and that $(XY)^{-1} = Y^{-1} X^{-1}$ if X and Y are invertible. [2 points]

Solution
Problem 3. Let X and Y be two discrete random variables such that X takes values from \{1, 2, 3, 4\} and Y takes values from \{3, 6, 12\}. Let their joint mass function $f_{X,Y}$ be as follows:

$$
\begin{array}{c|cccc}
 & 1 & 2 & 3 & 4 \\
\hline
 3 & 1/6 & 0 & 1/12 & 1/12 \\
 6 & 1/6 & 1/12 & 1/12 & 1/12 \\
 12 & 0 & 0 & 1/12 & 1/12 \\
\end{array}
$$

a) What is the marginal distribution of Y? [1 point]

b) What is the expected value of Y, $E[Y]$? [1 point]

c) What is the conditional expectation of Y given X, $E[Y \mid X]$? [2 points]

d) Let A be a random variable with $E[A] = 4$ and let B be a random variable with $E[B] = 6$. Let C be a random variable defined as $2(A + B) - 20$. What is $E[C]$? [1 point]

Solution
STATISTICAL INFERENCE

Problem 4. Suppose we have the following sample of 20 response times from a search engine

\[X = \{10, 9, 1, 8, 2, 7, 3, 6, 4, 5, 2, 3, 4, 1, 5, 8, 2, 10, 5, 7, 3, 4, 6, 5\} \]

(a) What are the sample mean \(\bar{X} \) and the sample variance \(S^2 \)? [1 point]

(b) What is the 95% confidence interval of \(\bar{X} \) (assuming \(\sigma^2 = 1.44 \))? [2 points]

(c) Is there strong evidence to reject the null hypothesis \(H_0 : \mu = 5.5 \) (assuming \(\hat{s} = 0.25 \))? [2 points]

Solution
ADDITIONAL MATERIAL

Linear algebra

• Identity matrix: n-by-n matrix I such that $I_{ij} = 1$ iff $i = j$ and $I_{ij} = 0$ otherwise
• Product with identity matrix: $AI = IA = A$ for all n-by-n matrices A
• Matrix inverse: $A^{-1}A = AA^{-1} = I$
• Transpose identities: $(A^T)^T = A$ for all A; $(AB)^T = B^TA^T$ when the product is well-defined
• Inverse of a product: $(AB)^{-1} = B^{-1}A^{-1}$ if A and B are invertible
• Inverse of orthogonal matrices: $A^T = A^{-1}$ iff A is orthogonal

Probability & Statistics:

• Bayes’ Theorem: $P[A|B] = \frac{P[B|A]P[A]}{P[B]}$
• Law of Total Probability: $P[B] = \sum_{i=1}^{n} P[B|A_i]P[A_i]$ for disjoint events A_i with $\sum_{i}^{n} P[A_i] = 1$
• Expectation: $E[X] = \sum_{k=1}^{\infty} k f_X(k)$ and Variance: $Var[X] = E[X^2] - E[X]^2$ for a discrete RV X with density function f_X
• Markov inequality: $P[X \geq t] \leq \frac{E[X]}{t}$ for $t \geq 0$ and a non-neg. RV X
• Chebyshev inequality: $P[|X - E[X]| \geq t] \leq \frac{Var[X]}{t^2}$ for $t > 0$ and a non-neg. RV X
• Sample Mean: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and Sample Variance: $S_X^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$
• For an estimator $\hat{\theta}$ of parameter θ over i.i.d. samples $\{X_1, X_2, ..., X_i, ..., X_n\}$,
 - If $E[X_i] = \mu$, then $E[\hat{\theta}_n] = \mu$
 - If $Var[X_i] = \sigma^2$, then $Var[\hat{\theta}_n] = \frac{\sigma^2}{n}$
 - Standard Error: $se(\hat{\theta}) = \sqrt{Var[\hat{\theta}_n]}$
 - Mean Squared Error: $MSE[\hat{\theta}_n] = (E[\hat{\theta}_n] - \theta)^2 + Var[\hat{\theta}_n]$
Standard Normal Distribution $\rightarrow z$

Numerical entries represent the probability that a standard normal random variable is between $-\infty$ and z where $z = (x - \mu)/\sigma$.

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

<table>
<thead>
<tr>
<th>df</th>
<th>$\chi^2_{0.05}$</th>
<th>$\chi^2_{0.025}$</th>
<th>$\chi^2_{0.01}$</th>
<th>$\chi^2_{0.005}$</th>
<th>$\chi^2_{0.001}$</th>
<th>$\chi^2_{0.0005}$</th>
<th>$\chi^2_{0.0001}$</th>
<th>$\chi^2_{0.00005}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.001</td>
<td>0.016</td>
<td>3.841</td>
<td>6.635</td>
<td>10.828</td>
<td>15.086</td>
<td>20.090</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.020</td>
<td>0.051</td>
<td>2.706</td>
<td>4.605</td>
<td>6.635</td>
<td>9.236</td>
<td>12.592</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.115</td>
<td>0.216</td>
<td>5.784</td>
<td>9.236</td>
<td>12.592</td>
<td>16.209</td>
<td>21.606</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.554</td>
<td>1.006</td>
<td>9.236</td>
<td>12.592</td>
<td>16.209</td>
<td>22.458</td>
<td>29.779</td>
</tr>
<tr>
<td>5</td>
<td>0.000</td>
<td>1.464</td>
<td>1.830</td>
<td>13.277</td>
<td>18.480</td>
<td>24.691</td>
<td>32.991</td>
<td>43.177</td>
</tr>
<tr>
<td>6</td>
<td>0.000</td>
<td>2.687</td>
<td>2.635</td>
<td>17.711</td>
<td>24.195</td>
<td>32.991</td>
<td>43.177</td>
<td>56.317</td>
</tr>
<tr>
<td>7</td>
<td>0.000</td>
<td>4.120</td>
<td>3.665</td>
<td>22.885</td>
<td>30.078</td>
<td>41.668</td>
<td>53.597</td>
<td>71.592</td>
</tr>
<tr>
<td>8</td>
<td>0.000</td>
<td>5.850</td>
<td>5.025</td>
<td>28.952</td>
<td>36.355</td>
<td>51.888</td>
<td>65.618</td>
<td>89.775</td>
</tr>
<tr>
<td>9</td>
<td>0.000</td>
<td>7.801</td>
<td>6.595</td>
<td>35.797</td>
<td>42.922</td>
<td>63.662</td>
<td>80.752</td>
<td>110.159</td>
</tr>
<tr>
<td>10</td>
<td>0.000</td>
<td>9.934</td>
<td>8.337</td>
<td>43.215</td>
<td>50.238</td>
<td>77.790</td>
<td>97.854</td>
<td>133.386</td>
</tr>
<tr>
<td>11</td>
<td>0.000</td>
<td>12.195</td>
<td>10.185</td>
<td>51.337</td>
<td>58.347</td>
<td>93.883</td>
<td>116.000</td>
<td>160.092</td>
</tr>
<tr>
<td>12</td>
<td>0.000</td>
<td>14.555</td>
<td>12.106</td>
<td>60.151</td>
<td>67.249</td>
<td>112.020</td>
<td>136.490</td>
<td>189.686</td>
</tr>
<tr>
<td>13</td>
<td>0.000</td>
<td>17.007</td>
<td>14.105</td>
<td>69.679</td>
<td>76.914</td>
<td>131.477</td>
<td>159.180</td>
<td>222.162</td>
</tr>
<tr>
<td>14</td>
<td>0.000</td>
<td>19.545</td>
<td>16.182</td>
<td>80.009</td>
<td>87.380</td>
<td>152.041</td>
<td>183.010</td>
<td>257.528</td>
</tr>
<tr>
<td>15</td>
<td>0.000</td>
<td>22.167</td>
<td>18.240</td>
<td>90.162</td>
<td>98.683</td>
<td>173.684</td>
<td>208.080</td>
<td>295.880</td>
</tr>
<tr>
<td>16</td>
<td>0.000</td>
<td>24.872</td>
<td>20.374</td>
<td>100.197</td>
<td>110.866</td>
<td>196.393</td>
<td>234.320</td>
<td>336.220</td>
</tr>
<tr>
<td>17</td>
<td>0.000</td>
<td>27.656</td>
<td>22.585</td>
<td>110.135</td>
<td>123.935</td>
<td>220.177</td>
<td>261.730</td>
<td>378.550</td>
</tr>
<tr>
<td>18</td>
<td>0.000</td>
<td>30.517</td>
<td>24.875</td>
<td>120.076</td>
<td>137.912</td>
<td>245.041</td>
<td>290.290</td>
<td>422.870</td>
</tr>
<tr>
<td>19</td>
<td>0.000</td>
<td>33.447</td>
<td>27.245</td>
<td>130.030</td>
<td>152.899</td>
<td>270.984</td>
<td>320.000</td>
<td>468.200</td>
</tr>
<tr>
<td>20</td>
<td>0.000</td>
<td>36.445</td>
<td>29.692</td>
<td>140.006</td>
<td>168.908</td>
<td>308.012</td>
<td>350.850</td>
<td>514.530</td>
</tr>
<tr>
<td>30</td>
<td>0.000</td>
<td>60.489</td>
<td>56.224</td>
<td>260.012</td>
<td>418.330</td>
<td>887.364</td>
<td>876.290</td>
<td>1373.590</td>
</tr>
<tr>
<td>40</td>
<td>0.000</td>
<td>103.524</td>
<td>125.444</td>
<td>500.026</td>
<td>954.818</td>
<td>2433.442</td>
<td>2433.442</td>
<td>4747.382</td>
</tr>
</tbody>
</table>