
Information Retrieval & Data Mining
Universität des Saarlandes, Saarbrücken
Winter Semester 2013/14

X.1–3-

Chapter X: Graph Mining

1

IR&DM ’13/14 21 January 2014 X.1–3-

Chapter X: Graph Mining
1. Introduction to Graph Mining
2. Centrality and Other Graph Properties
3. Frequent Subgraph Mining

3.1. Graphs and Isomorphism
3.2. Canonical Codes
3.3. gSpan

4. Graph Clustering
4.1. Clustering as Graph Cutting
4.2. Spectral Clustering
4.3. Markov Clustering

2

ZM Ch. 4, 11, 16

IR&DM ’13/14 21 January 2014 X.1–3-

Chapter X.1: Introduction
1. Why Graphs?
2. What are Graphs?
3. What to do with Graphs?

3

IR&DM ’13/14 X.1–3-21 January 2014

Why Graphs?
• Many real-world data sets are in the forms of graphs
– Social networks
–Hyperlinks
– Protein–protein interaction
–XML parse trees
–…

• Many of these graphs are enormous
–Humans cannot understand ⇒ task for data mining!

4

IR&DM ’13/14 X.1–3-21 January 2014

What are Graphs?
• A graph is a pair (V, E ⊆ V2)
–Elements in V are vertices or nodes of the graph
– Pairs (v, u) in E are edges or arcs of the graph
• Pairs can be either ordered or unordered for directed graphs or

undirected graphs, respectively

• The graphs can be labelled
–Vertices can have labeling L(v)
–Edges can have labeling L(v, u)

• A tree is a rooted, connected, and acyclic graph
• Graphs can be represented using adjacency matrices
– |V|×|V| matrix A with (A)ij = 1 if (vi, vj) ∈ E

5

IR&DM ’13/14 X.1–3-21 January 2014

Eccentricity, Radius & Diameter
• The distance d(vi, vj) between two vertices is the

(weighted) length of the shortest path between them
• The eccentricity of a vertex vi, e(vi), is its maximum

distance to any other vertex, maxj{d(vi, vj)}
• The radius of a connected graph, r(G), is the minimum

eccentricity of any vertex, mini{e(vi)}
• The diameter of a connected graph, d(G), is the

maximum eccentricity of any vertex,
maxi{e(vi)} = maxi,j{d(vi, vj)}
– The effective diameter of a graph is smallest number that is

larger than the eccentricity of a large fraction of the vertices in
the graph

6

IR&DM ’13/14 X.1–3-21 January 2014

Clustering Coefficient
• The clustering coefficient of vertex vi, C(vi), tells

how clique-like the neighbourhood of vi is
–Let ni be the number of neighbours of vi and mi the number

of edges between the neighbours of vi (vi excluded)

–Well-defined only for vi with at least two neighbours
• For others, let C(vi) = 0

• The clustering coefficient of the graph is the average
clustering coefficient of the vertices:
C(G) = n–1ΣiC(vi)

7

C(vi) = mi/

✓
ni

2

◆
=

2mi

ni(ni �1)

IR&DM ’13/14 X.1–3-21 January 2014

What to do with Graphs?
• There are many interesting data one can mine from

graphs and sets of graphs
–Cliques of friends from social networks
–Hubs and authorities from link graphs
–Who is the centre of the Hollywood
– Subgraphs that appear frequently in a set of graphs
–Areas with higher inter-connectivity than intra-connectivity
–…

• Graph mining is perhaps the most popular topic in
contemporary data mining research
–Though not necessary called as such…

8

This week

IR&DM ’13/14 21 January 2014 X.1–3-

Chapter X.2: Centrality and Other
Graph Properties

1. Centrality
2. Graph Properties

9

ZM Ch. 4

IR&DM ’13/14 X.1–3-21 January 2014

Centrality
• Six degrees of Kevin Bacon
– ”Every actor is related to Kevin

Bacon by no more than 6 hops”
–Kevin Bacon has acted with many,

that have acted with many others,
that have acted with many others…

• That makes Kevin Bacon a
centre of the co-acting graph
–Although he’s not the centre: the

average distance to him is 2.998
but to Harvey Keitel it is only
2.848

10

http://oracleofbacon.org

http://oracleofbacon.org
http://oracleofbacon.org

IR&DM ’13/14 X.1–3-21 January 2014

Degree and Eccentricity Centrality
• Centrality is a function c: V → ℝ that induces a total

order in V
–The higher the centrality of a vertex, the more important it

is
• In degree centrality c(vi) = d(vi), the degree of the

vertex
• In eccentricity centrality the least eccentric vertex is

the most central one, c(vi) = 1/e(vi)
–The lest eccentric vertex is central
–The most eccentric vertex is peripheral

11

IR&DM ’13/14 X.1–3-21 January 2014

Closeness Centrality
• In closeness centrality the vertex with least distance

to all other vertices is the centre

• In eccentricity centrality we aim to minimize the
maximum distance
• In closeness centrality we aim to minimize the

average distance
–This is the distance used to measure the centre of

Hollywood

12

c(vi) =

Â
j

d(vi,v j)

!�1

IR&DM ’13/14 X.1–3-21 January 2014

Betweenness Centrality
• The betweenness centrality measures the number of

shortest paths that travel through vi

–Measures the “monitoring” role of the vertex
– “All roads lead to Rome”

• Let ηjk be the number of shortest paths between vj and
vk and let ηjk(vi) be the number of those that include vi

–Let γjk(vi) = ηjk(vi)/ηjk

–Betweenness centrality is defined as

13

c(vi) = Â
j 6=i

Â
k 6=i
k> j

g jk

IR&DM ’13/14 X.1–3-21 January 2014

Prestige
• In prestige, the vertex is more central if it has many

incoming edges from other vertices of high prestige
–A is the adjacency matrix of the directed graph G
– p is n-dimensional vector giving the prestige of the vertices
– p = ATp
– Starting from an initial prestige vector p0, we get
pk = ATpk–1 = AT(ATpk–2) = (AT)2pk–2 = (AT)3pk–3 = …
 = (AT)kp0

• Vector p converges to the dominant eigenvector of AT

–Under some assumptions
• N.B. PageRank is based on (normalized) prestige

14

IR&DM ’13/14 X.1–3-21 January 2014

Graph Properties
• Several real-world graphs exhibit certain

characteristics
– Studying what these are and explaining why they appear is

an important area of network research
• As data miners, we need to understand the

consequences of these characteristics
– Finding a result that can be explained merely by one of

these characteristics is not interesting
• We also want to model graphs with these

characteristics

15

IR&DM ’13/14 X.1–3-21 January 2014

Small-World Property
• A graph G is said to exhibit a small-world property

if its average path length scales logarithmically,
µL ∝ log n
–The six degrees of Kevin Bacon is based on this property
–Also the Erdős number
•How far a mathematician is from Hungarian combinatorist Paul

Erdős
•A radius of a large, connected mathematical co-authorship

network (268K authors) is 12 and diameter 23

16

IR&DM ’13/14 X.1–3-21 January 2014

Scale-Free Property
• The degree distribution of a graph is the distribution

of its vertex degrees
–How many vertices with degree 1, how many with degree 2,

etc.
– f(k) is the number of edges with degree k

• A graph is said to exhibit scale-free property if
f(k) ∝ k–γ

– So-called power-law distribution
–Majority of vertices have small degrees, few have very high

degrees
– Scale-free: f(ck) = α(ck)–γ = (αc–γ)k–γ ∝ k–γ

17

IR&DM ’13/14 X.1–3-21 January 2014

Example: WWW Links

18

IRDM WS 2007 5-6

Web Structure: Power-Law Degrees
(Scale-Free Network)

• power-law distributed degrees: P[degree=k] ~ (1/k)�
with � � 2.1 for indegrees and � � 2.7 for outdegrees

Study of Web Graph (Broder et al. 2000)

Broder et al. Graph structure in the web. WWW’00

s = 2.09 s = 2.72

In-degree Out-degree

IR&DM ’13/14 X.1–3-21 January 2014

Clustering Effect
• A graph exhibits clustering effect if the distribution

of average clustering coefficient (per degree) follow
the power law
– If C(k) is the average clustering coefficient of all vertices of

degree k, then C(k) ∝ k–γ

• The vertices with small degrees are part of highly
clustered areas (high clustering coefficient) while
“hub vertices” have smaller clustering coefficients

19

IR&DM ’13/14 21 January 2014 X.1–3-

Chapter X.3: Frequent Subgraph
Mining
1. Graphs and Isomorphism

1.1. Definitions
1.2. Support of a subgraph

2. Canonical Codes
3. gSPAN Algorithm
4. Easier Problems

20

ZM Ch. 11

IR&DM ’13/14 X.1–3-21 January 2014

Graphs and Isomorphism
• Graph (V’, E’) is the subgraph of graph (V, E) if
–V’ ⊆ V
–E’ ⊆ E

• Note that subgraphs don’t have to be connected
–Today we consider only connected subgraphs

• To check whether a graph is a subgraph of other is
trivial
–But in most real-world applications there are no direct

subgraphs
–Two graphs might be similar even if their vertex sets are

disjoint

21

IR&DM ’13/14 X.1–3-21 January 2014

Graph Isomorphism
• Graphs G = (V, E) and G’ = (V’, E’) are isomorphic if

there exists a bijective function φ: V → V’ such that
– (u, v) ∈ E if and only if (φ(u), φ(v)) ∈ E’
– L(v) = L(φ(v)) for all v ∈ V
– L(u, v) = L(φ(u), φ(v)) for all (u, v) ∈ E

• Graph G’ is subgraph isomorphic to G if there exists
a subgraph of G which is isomorphic to G’
• No polynomial-time algorithm is known for

determining if G and G’ are isomorphic
• Determining if G’ is subgraph isomorphic to G is NP-

hard
22

IR&DM ’13/14 X.1–3-21 January 2014

Equivalence and Canonical Graphs
• Isomorphism defines an equivalence class
– id: V → V, id(v) = v shows G is isomorphic to itself
– If G is isomorphic to G’ via φ, then G’ is isomorphic to G

via φ–1

– If G is isomorphic to H via φ and H to I via χ, then G is
isomorphic to I via φ○χ

• A canonization of a graph G, canon(G) produces
another graph C such that if H is a graph that is
isomorphic to G, canon(G) = canon(H)
–Two graphs are isomorphic if and only if their canonical

versions are the same

23

IR&DM ’13/14 X.1–3-21 January 2014

An Example of Isomorphic Graphs

24

a
b

c
a

b a

IR&DM ’13/14 X.1–3-21 January 2014

An Example of Isomorphic Graphs

25

a

b

c

a

b
a

IR&DM ’13/14 X.1–3-21 January 2014

An Example of Isomorphic Graphs

26

a b

c
a

b a

a

b

c

a

b
a

IR&DM ’13/14 X.1–3-21 January 2014

Frequent Subgraph Mining
• Given a set D of n graphs and a minimum support

parameter minsup, find all connected graphs that are
subgraph isomorphic to at least minsup graphs in D
–Enormously complex problem
– For graphs that have m vertices there are
• subgraphs (not all are connected)

– If we have s labels for vertices and edges we have
• labelings of the different graphs

–Counting the support means solving multiple NP-hard
problems

27

2O(m2)

O
⇣
(2s)O(m2)

⌘

IR&DM ’13/14 X.1–3-21 January 2014

An Example

28

ab

c

a

b

a

a

b

a

c

a

b

a

IR&DM ’13/14 X.1–3-21 January 2014

Canonical Codes
• We can improve the running time of frequent

subgraph mining by either
–Making the frequency check faster
•Lots of efforts in faster isomorphism checking but only little

progress
–Creating less candidates that need to be checked
•Level-wise algorithms (like AGM) generate huge numbers of

candidates
•Each must be checked with for isomorphism with others

• The gSpan (graph-based Substructure pattern mining)
algorithm replaces the level-wise approach with a
depth-first approach

29

Yan & Han 2002; Z&M Ch. 11

IR&DM ’13/14 X.1–3-21 January 2014

Depth-First Spanning Tree
• A depth-first spanning (DFS) tree of a graph G
– Is a connected tree
–Contains all the vertices of G
– Is build in depth-first order
• Selection between the siblings is e.g. based on the vertex index

• Edges of the DFS tree are forward edges
• Edges not in the DFS tree are backward edges
• A rightmost path in the DFS tree is the path travels

from the root to the rightmost vertex by always taking
the rightmost child (last-added)

30

IR&DM ’13/14 X.1–3-21 January 2014

An Example

31

a

d

c

c

a

b

b

a

v1

v6

v4

v5

v2

v3

v7

v8

IR&DM ’13/14 X.1–3-21 January 2014

The DFS Tree

32

a

a

a

v1

v6v4

v5

v2

v3 v7

v8

dc

c

b

b

IR&DM ’13/14 X.1–3-21 January 2014

Generating Candidates from DFS Tree

33

• Given graph G, we extend it only from the vertices in
the rightmost path
–We can add backwards edges from the rightmost vertex to

some other vertex in the rightmost path
–We can add a forward edge from any vertex in the rightmost

path
•This increases the number of vertices by 1

• The order of generating the candidates is
– First backward extensions
• First to root, then to root’s child, …

–Then forward extensions
• First from the leaf, then from leaf’s father, …

IR&DM ’13/14 X.1–3-21 January 2014

An Example

34

a

a

a

v1

v6v4

v5

v2

v3 v7

v8

dc

c

b

b

IR&DM ’13/14 X.1–3-21 January 2014

DFS Codes and their Orders

35

• A DFS code is a sequence of tuples of type
⟨vi, vj, L(vi), L(vj), L(vi,vj)⟩
– Tuples are given in DFS order
•Backwards edges are listed before forward edges
•Vertices are numbered in DFS order

• A DFS code is canonical if it is the smallest of the
codes in the ordering
– ⟨vi, vj, L(vi), L(vj), L(vi,vj)⟩ < ⟨vx, vy, L(vx), L(vy), L(vx,vy)⟩ if
• ⟨vi, vj⟩ <e ⟨vx, vy⟩; or
• ⟨vi, vj⟩=⟨vx, vy⟩ and ⟨L(vi), L(vj), L(vi, vj)⟩ <l ⟨L(vx), L(vy), L(vx, vy)⟩

– The ordering of the label tuples is the lexicographical
ordering

IR&DM ’13/14 X.1–3-21 January 2014

Ordering the Edges
• Let eij = ⟨vi, vj⟩ and exy = ⟨vx, vy⟩

• eij <e exy if
– If eij and exy are forward edges, then
• j < y; or
• j = y and i > x

– If eij and exy are backward edges, then
• i < x; or
• i = x and j < y

– If eij is forward and exy is backward, then i < y
– If eij is backward and exy is forward, then j ≤ x

36

IR&DM ’13/14 X.1–3-21 January 2014

Example

37

CHAPTER 11. GRAPH PATTERN MINING 286

v1 a

G1

v2 a

v3 a v4 b

q

r r

r

v1 a

G2

v2 a

v3 b v4 a

q

r r

r

v1 a

G3

v2 a v4 b

v3 a

q

r

r

r

t11 = ⟨v1, v2, a, a, q⟩
t12 = ⟨v2, v3, a, a, r⟩
t13 = ⟨v3, v1, a, a, r⟩
t14 = ⟨v2, v4, a, b, r⟩

t21 = ⟨v1, v2, a, a, q⟩
t22 = ⟨v2, v3, a, b, r⟩
t23 = ⟨v2, v4, a, a, r⟩
t24 = ⟨v4, v1, a, a, r⟩

t31 = ⟨v1, v2, a, a, q⟩
t32 = ⟨v2, v3, a, a, r⟩
t33 = ⟨v3, v1, a, a, r⟩
t34 = ⟨v1, v4, a, b, r⟩

Figure 11.6: Canonical DFS Code. G1 is canonical, whereas G2 and G3 are non-
canonical. Vertex label set ΣV = {a, b}, and edge label set ΣE = {q, r}.

Here <e is an ordering on the edges and <l is an ordering on the vertex and edge
labels. The label order <l is the standard lexicographic order on the vertex and edge
labels. For example the label tuple ⟨a, a, r⟩ <l ⟨a, b, q⟩ since if we compare the two
tuples in an element-wise manner, we find that L(vj) = a < b = L(vy).

The edge order <e is more involved. Let eij = ⟨vi, vj⟩ and exy = ⟨vx, vy⟩. We
write eij <e exy if the following conditions are met:

i) If eij and exy are both forward edges, then a) j < y or, b) j = y and i > x.

ii) If eij and exy are both backward edges, then a) i < x or b) i = x and j < y.

iii) If eij is a forward and exy is a backward edge, then i < y.

iv) If eij is a backward and exy is a forward edge, then j ≤ x.

Given the DFS codes for any two graphs, we can compare them tuple by tuple
to check which is smaller.

Example 11.2: For example, consider the DFS codes for the three graphs shown
in Figure 11.6. Comparing G1 and G2, we find that t11 = t21, but t12 < t22, since
⟨a, a, r⟩ <l ⟨a, b, r⟩. Comparing G1 with G3, we find that the first three tuples
are equal in both graphs, but t14 < t34, since ⟨v2, v4⟩ <e ⟨v1, v4⟩. Applying the
rules for edge ordering <e, we find that condition i) applies, and vj = v4 = vy but

DRAFT @ 2012-09-19 21:46. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other
standard distribution channels, that no unauthorized distribution shall be allowed, and that the
reader may make one copy only for personal on-screen use.

First rows are identicalIn second row, G2 is bigger in labels’ orderLast rows are forward edges and 4 = 4 but 2 > 1 ⇒ G1 is smallest

IR&DM ’13/14 X.1–3-21 January 2014

The gSPAN Algorithm

38

• The general idea:
–Use the DFS codes to create candidates
•Extend only canonical and frequent candidates

• There can be very, very many extensions
–And we need to see them all, and all of their isomorphisms,

to count the support

IR&DM ’13/14 X.1–3-21 January 2014

Building the Candidates

39

• The candidates are build in a DFS code tree
–A DFS code a is an ancestor of DFS code b if a is a proper

prefix of b
–The siblings in the tree follow the DFS code order

• A graph can be frequent only if all of the graphs
representing its ancestors in the DFS tree are frequent
• The DFS tree contains all the canonical codes for all

the subgraphs of the graphs in the data
–But not all of the vertices in the code tree correspond to

canonical codes
• We will (implicitly) traverse this tree

IR&DM ’13/14 X.1–3-21 January 2014

The Algorithm
• gSpan:
– for each frequent 1-edge graphs
• call subgrm to grow all nodes in the code tree rooted in this
1-edge graph
• remove this edge from the graph

• subgrm
– if the code is not canonical, return
–Add this graph to the set of frequent graphs
– Create each super-graph with one more edge and compute its

frequency
– call subgrm with each frequent super-graph’s canonical

representation

40

IR&DM ’13/14 X.1–3-21 January 2014

How to compute the frequency?
• gSPAN merges extension generation and support

computation
• For each graph in the data base
– gSPAN computes all the isomorphisms of the current

candidate
•Can mean solving NP-complete problems…

– For all isomorphisms, gSPAN computes all backward and
forward extensions
•These extensions are stored together with the graph they appear

in

• The support of each extension is the number of times
we’ve stored it

41

IR&DM ’13/14 X.1–3-21 January 2014

How to check the canonicity?
• Given a DFS code of an extension, we need to check

if the code is canonical
• This can be done by re-creating the code
–At every step, choose the smallest of the right-most path

extensions of the current code in the graph corresponding to
the extension

• If at any step we get a code that is smaller than the
suffix of the extension’s code, we can’t have a
canonical code
– If after k steps we arrive to the extensions code, the code

was canonical

42

IR&DM ’13/14 X.1–3-21 January 2014

Easier Problems
• Much of the complexity of subgraph mining lies in

the isomorphism
• But for some types of graphs isomorphism is easy
–Different types of trees
•Ordered and unordered
•Rooted and unrooted

–Graphs where every node has a distinct label

43

