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Chapter X.1: Introduction
1. Why Graphs?
2. What are Graphs?
3. What to do with Graphs?
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Why Graphs?
• Many real-world data sets are in the forms of graphs 
– Social networks
–Hyperlinks
– Protein–protein interaction
–XML parse trees
–…

• Many of these graphs are enormous
–Humans cannot understand ⇒ task for data mining!
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What are Graphs?
• A graph is a pair (V, E ⊆ V2)
–Elements in V are vertices or nodes of the graph
– Pairs (v, u) in E are edges or arcs of the graph
• Pairs can be either ordered or unordered for directed graphs or 

undirected graphs, respectively

• The graphs can be labelled
–Vertices can have labeling L(v)
–Edges can have labeling L(v, u)

• A tree is a rooted, connected, and acyclic graph
• Graphs can be represented using adjacency matrices
– |V|×|V| matrix A with (A)ij = 1 if (vi, vj) ∈ E  
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Eccentricity, Radius & Diameter
• The distance d(vi, vj) between two vertices is the 

(weighted) length of the shortest path between them
• The eccentricity of a vertex vi, e(vi), is its maximum 

distance to any other vertex, maxj{d(vi, vj)}
• The radius of a connected graph, r(G), is the minimum 

eccentricity of any vertex, mini{e(vi)}
• The diameter of a connected graph, d(G), is the 

maximum eccentricity of any vertex, 
maxi{e(vi)} = maxi,j{d(vi, vj)}
– The effective diameter of a graph is smallest number that is 

larger than the eccentricity of a large fraction of the vertices in 
the graph
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Clustering Coefficient
• The clustering coefficient of vertex vi, C(vi), tells 

how clique-like the neighbourhood of vi is
–Let ni be the number of neighbours of vi and mi the number 

of edges between the neighbours of vi (vi excluded)

–Well-defined only for vi with at least two neighbours
• For others, let C(vi) = 0

• The clustering coefficient of the graph is the average 
clustering coefficient of the vertices: 
C(G) = n–1ΣiC(vi)
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What to do with Graphs?
• There are many interesting data one can mine from 

graphs and sets of graphs
–Cliques of friends from social networks
–Hubs and authorities from link graphs
–Who is the centre of the Hollywood
– Subgraphs that appear frequently in a set of graphs
–Areas with higher inter-connectivity than intra-connectivity
–…

• Graph mining is perhaps the most popular topic in 
contemporary data mining research
–Though not necessary called as such…
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Chapter X.2: Centrality and Other 
Graph Properties

1. Centrality
2. Graph Properties
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Centrality
• Six degrees of Kevin Bacon
– ”Every actor is related to Kevin 

Bacon by no more than 6 hops”
–Kevin Bacon has acted with many,

that have acted with many others,
that have acted with many others…

• That makes Kevin Bacon a
centre of the co-acting graph
–Although he’s not the centre: the

average distance to him is 2.998
but to Harvey Keitel it is only
2.848
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Degree and Eccentricity Centrality
• Centrality is a function c: V → ℝ that induces a total 

order in V
–The higher the centrality of a vertex, the more important it 

is
• In degree centrality c(vi) = d(vi), the degree of the 

vertex
• In eccentricity centrality the least eccentric vertex is 

the most central one, c(vi) = 1/e(vi)
–The lest eccentric vertex is central 
–The most eccentric vertex is peripheral
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Closeness Centrality
• In closeness centrality the vertex with least distance 

to all other vertices is the centre

• In eccentricity centrality we aim to minimize the 
maximum distance
• In closeness centrality we aim to minimize the 

average distance
–This is the distance used to measure the centre of 

Hollywood
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Betweenness Centrality
• The betweenness centrality measures the number of 

shortest paths that travel through vi

–Measures the “monitoring” role of the vertex
– “All roads lead to Rome”

• Let ηjk be the number of shortest paths between vj and 
vk and let ηjk(vi) be the number of those that include vi

–Let γjk(vi) = ηjk(vi)/ηjk

–Betweenness centrality is defined as  
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Prestige
• In prestige, the vertex is more central if it has many 

incoming edges from other vertices of high prestige
–A is the adjacency matrix of the directed graph G 
– p is n-dimensional vector giving the prestige of the vertices
– p = ATp
– Starting from an initial prestige vector p0, we get
pk = ATpk–1 = AT(ATpk–2) = (AT)2pk–2 = (AT)3pk–3 = … 
    = (AT)kp0

• Vector p converges to the dominant eigenvector of AT

–Under some assumptions
• N.B. PageRank is based on (normalized) prestige
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Graph Properties
• Several real-world graphs exhibit certain 

characteristics
– Studying what these are and explaining why they appear is 

an important area of network research
• As data miners, we need to understand the 

consequences of these characteristics
– Finding a result that can be explained merely by one of 

these characteristics is not interesting
• We also want to model graphs with these 

characteristics
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Small-World Property
• A graph G is said to exhibit a small-world property 

if its average path length scales logarithmically,
µL ∝ log n
–The six degrees of Kevin Bacon is based on this property
–Also the Erdős number
•How far a mathematician is from Hungarian combinatorist Paul 

Erdős
•A radius of a large, connected mathematical co-authorship 

network (268K authors) is 12 and diameter 23
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Scale-Free Property
• The degree distribution of a graph is the distribution 

of its vertex degrees 
–How many vertices with degree 1, how many with degree 2, 

etc.
– f(k) is the number of edges with degree k

• A graph is said to exhibit scale-free property if 
f(k) ∝ k–γ

– So-called power-law distribution
–Majority of vertices have small degrees, few have very high 

degrees
– Scale-free: f(ck) = α(ck)–γ = (αc–γ)k–γ ∝ k–γ
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Example: WWW Links
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IRDM  WS 2007 5-6

Web Structure: Power-Law Degrees
(Scale-Free Network)

• power-law distributed degrees: P[degree=k] ~ (1/k)�
with � � 2.1 for indegrees and � � 2.7 for outdegrees

Study of Web Graph (Broder et al. 2000)

Broder et al. Graph structure in the web. WWW’00

s = 2.09 s = 2.72

In-degree Out-degree
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Clustering Effect
• A graph exhibits clustering effect if the distribution 

of average clustering coefficient (per degree) follow 
the power law
– If C(k) is the average clustering coefficient of all vertices of 

degree k, then C(k) ∝ k–γ

• The vertices with small degrees are part of highly 
clustered areas (high clustering coefficient) while 
“hub vertices” have smaller clustering coefficients
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Chapter X.3: Frequent Subgraph 
Mining
1. Graphs and Isomorphism

1.1. Definitions
1.2. Support of a subgraph

2. Canonical Codes
3. gSPAN Algorithm
4. Easier Problems
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Graphs and Isomorphism
• Graph (V’, E’) is the subgraph of graph (V, E) if 
–V’ ⊆ V 
–E’ ⊆ E 

• Note that subgraphs don’t have to be connected
–Today we consider only connected subgraphs  

• To check whether a graph is a subgraph of other is 
trivial
–But in most real-world applications there are no direct 

subgraphs
–Two graphs might be similar even if their vertex sets are 

disjoint
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Graph Isomorphism
• Graphs G = (V, E) and G’ = (V’, E’) are isomorphic if 

there exists a bijective function φ: V → V’ such that
– (u, v) ∈ E if and only if (φ(u), φ(v)) ∈ E’
– L(v) = L(φ(v)) for all v ∈ V
– L(u, v) = L(φ(u), φ(v)) for all (u, v) ∈ E

• Graph G’ is subgraph isomorphic to G if there exists 
a subgraph of G which is isomorphic to G’
• No polynomial-time algorithm is known for 

determining if G and G’ are isomorphic
• Determining if G’ is subgraph isomorphic to G is NP-

hard
22
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Equivalence and Canonical Graphs
• Isomorphism defines an equivalence class
– id: V → V, id(v) = v shows G is isomorphic to itself
– If G is isomorphic to G’ via φ, then G’ is isomorphic to G 

via φ–1

– If G is isomorphic to H via φ and H to I via χ, then G is 
isomorphic to I via φ○χ

• A canonization of a graph G, canon(G) produces 
another graph C such that if H is a graph that is 
isomorphic to G, canon(G) = canon(H)
–Two graphs are isomorphic if and only if their canonical 

versions are the same
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An Example of Isomorphic Graphs
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An Example of Isomorphic Graphs
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An Example of Isomorphic Graphs
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Frequent Subgraph Mining
• Given a set D of n graphs and a minimum support 

parameter minsup, find all connected graphs that are 
subgraph isomorphic to at least minsup graphs in D
–Enormously complex problem
– For graphs that have m vertices there are
•             subgraphs (not all are connected)

– If we have s labels for vertices and edges we have
•                          labelings of the different graphs

–Counting the support means solving multiple NP-hard 
problems
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An Example
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Canonical Codes
• We can improve the running time of frequent 

subgraph mining by either
–Making the frequency check faster
•Lots of efforts in faster isomorphism checking but only little 

progress
–Creating less candidates that need to be checked
•Level-wise algorithms (like AGM) generate huge numbers of 

candidates
•Each must be checked with for isomorphism with others

• The gSpan (graph-based Substructure pattern mining) 
algorithm replaces the level-wise approach with a 
depth-first approach

29
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Depth-First Spanning Tree
• A depth-first spanning (DFS) tree of a graph G
– Is a connected tree
–Contains all the vertices of G
– Is build in depth-first order
• Selection between the siblings is e.g. based on the vertex index

• Edges of the DFS tree are forward edges 
• Edges not in the DFS tree are backward edges
• A rightmost path in the DFS tree is the path travels 

from the root to the rightmost vertex by always taking 
the rightmost child (last-added)
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An Example
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The DFS Tree
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Generating Candidates from DFS Tree

33

• Given graph G, we extend it only from the vertices in 
the rightmost path
–We can add backwards edges from the rightmost vertex to 

some other vertex in the rightmost path
–We can add a forward edge from any vertex in the rightmost 

path
•This increases the number of vertices by 1

• The order of generating the candidates is
– First backward extensions
• First to root, then to root’s child, …

–Then forward extensions
• First from the leaf, then from leaf’s father, …
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An Example
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DFS Codes and their Orders

35

• A DFS code is a sequence of tuples of type 
⟨vi, vj, L(vi), L(vj), L(vi,vj)⟩
– Tuples are given in DFS order
•Backwards edges are listed before forward edges
•Vertices are numbered in DFS order

• A DFS code is canonical if it is the smallest of the 
codes in the ordering
– ⟨vi, vj, L(vi), L(vj), L(vi,vj)⟩ < ⟨vx, vy, L(vx), L(vy), L(vx,vy)⟩ if
• ⟨vi, vj⟩ <e ⟨vx, vy⟩; or
• ⟨vi, vj⟩=⟨vx, vy⟩ and ⟨L(vi), L(vj), L(vi, vj)⟩ <l ⟨L(vx), L(vy), L(vx, vy)⟩

– The ordering of the label tuples is the lexicographical 
ordering
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Ordering the Edges
• Let eij = ⟨vi, vj⟩ and exy = ⟨vx, vy⟩

• eij <e exy if
– If eij and exy are forward edges, then 
• j < y; or 
• j = y and i > x

– If eij and exy are backward edges, then 
• i < x; or 
• i = x and j < y

– If eij is forward and exy is backward, then i < y
– If eij is backward and exy is forward, then j ≤ x

36
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Example

37

CHAPTER 11. GRAPH PATTERN MINING 286
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q
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t11 = ⟨v1, v2, a, a, q⟩
t12 = ⟨v2, v3, a, a, r⟩
t13 = ⟨v3, v1, a, a, r⟩
t14 = ⟨v2, v4, a, b, r⟩

t21 = ⟨v1, v2, a, a, q⟩
t22 = ⟨v2, v3, a, b, r⟩
t23 = ⟨v2, v4, a, a, r⟩
t24 = ⟨v4, v1, a, a, r⟩

t31 = ⟨v1, v2, a, a, q⟩
t32 = ⟨v2, v3, a, a, r⟩
t33 = ⟨v3, v1, a, a, r⟩
t34 = ⟨v1, v4, a, b, r⟩

Figure 11.6: Canonical DFS Code. G1 is canonical, whereas G2 and G3 are non-
canonical. Vertex label set ΣV = {a, b}, and edge label set ΣE = {q, r}.

Here <e is an ordering on the edges and <l is an ordering on the vertex and edge
labels. The label order <l is the standard lexicographic order on the vertex and edge
labels. For example the label tuple ⟨a, a, r⟩ <l ⟨a, b, q⟩ since if we compare the two
tuples in an element-wise manner, we find that L(vj) = a < b = L(vy).

The edge order <e is more involved. Let eij = ⟨vi, vj⟩ and exy = ⟨vx, vy⟩. We
write eij <e exy if the following conditions are met:

i) If eij and exy are both forward edges, then a) j < y or, b) j = y and i > x.

ii) If eij and exy are both backward edges, then a) i < x or b) i = x and j < y.

iii) If eij is a forward and exy is a backward edge, then i < y.

iv) If eij is a backward and exy is a forward edge, then j ≤ x.

Given the DFS codes for any two graphs, we can compare them tuple by tuple
to check which is smaller.

Example 11.2: For example, consider the DFS codes for the three graphs shown
in Figure 11.6. Comparing G1 and G2, we find that t11 = t21, but t12 < t22, since
⟨a, a, r⟩ <l ⟨a, b, r⟩. Comparing G1 with G3, we find that the first three tuples
are equal in both graphs, but t14 < t34, since ⟨v2, v4⟩ <e ⟨v1, v4⟩. Applying the
rules for edge ordering <e, we find that condition i) applies, and vj = v4 = vy but

DRAFT @ 2012-09-19 21:46. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other
standard distribution channels, that no unauthorized distribution shall be allowed, and that the
reader may make one copy only for personal on-screen use.

First rows are identicalIn second row, G2 is bigger in labels’ orderLast rows are forward edges and 4 = 4 but 2 > 1 ⇒ G1 is smallest
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The gSPAN Algorithm

38

• The general idea:
–Use the DFS codes to create candidates
•Extend only canonical and frequent candidates

• There can be very, very many extensions
–And we need to see them all, and all of their isomorphisms, 

to count the support
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Building the Candidates
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• The candidates are build in a DFS code tree
–A DFS code a is an ancestor of DFS code b if a is a proper 

prefix of b
–The siblings in the tree follow the DFS code order

• A graph can be frequent only if all of the graphs 
representing its ancestors in the DFS tree are frequent
• The DFS tree contains all the canonical codes for all 

the subgraphs of the graphs in the data
–But not all of the vertices in the code tree correspond to 

canonical codes
• We will (implicitly) traverse this tree
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The Algorithm
• gSpan:
– for each frequent 1-edge graphs
• call subgrm to grow all nodes in the code tree rooted in this 
1-edge graph
• remove this edge from the graph

• subgrm
– if the code is not canonical, return
–Add this graph to the set of frequent graphs
– Create each super-graph with one more edge and compute its 

frequency
– call subgrm with each frequent super-graph’s canonical 

representation
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How to compute the frequency?
• gSPAN merges extension generation and support 

computation
• For each graph in the data base
– gSPAN computes all the isomorphisms of the current 

candidate
•Can mean solving NP-complete problems…

– For all isomorphisms, gSPAN computes all backward and 
forward extensions
•These extensions are stored together with the graph they appear 

in

• The support of each extension is the number of times 
we’ve stored it
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How to check the canonicity?
• Given a DFS code of an extension, we need to check 

if the code is canonical
• This can be done by re-creating the code
–At every step, choose the smallest of the right-most path 

extensions of the current code in the graph corresponding to 
the extension

• If at any step we get a code that is smaller than the 
suffix of the extension’s code, we can’t have a 
canonical code
– If after k steps we arrive to the extensions code, the code 

was canonical
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Easier Problems
• Much of the complexity of subgraph mining lies in 

the isomorphism
• But for some types of graphs isomorphism is easy
–Different types of trees
•Ordered and unordered
•Rooted and unrooted

–Graphs where every node has a distinct label
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