Chapter X: Graph Mining "\l

1. Introduction to Graph Mining
2. Centrality and Other Graph Properties

3. Frequent Subgraph Mining
3.1. Graphs and Isomorphism
3.2. Canonical Codes
3.3. gSpan

4. Graph Clustering
4.1. Where do Graphs Come From?
4.2. Clustering as Graph Cutting
4.3. Spectral Clustering

4.4. Markov Clustering
ZM Ch. 4,11, 16

IR&DM °13/14 23 January 2014 X.4-1

Chapter X.4: Graph Clustering il

1. Where do Graphs Come From?

1.1. Similarity and adjacency matrices

2. Clustering as Graph Cuts
2.1. Even more matrices
2.2. Finding approximate cuts

3. Spectral Clustering
4. Markov Clustering

/M Ch. 16, von Luxburg: A4 tutorial on spectral clustering, 2007

IR&DM °13/14 23 Januar y 2014 X.4-2

Where do Graphs Come From?

* We can have data 1n a graph form

L|nkedﬁ MaPS "J ' nen x‘“‘ﬂ'P\\ 079 \Ne wore

—E.g. the clusters of our
social networks 5

* Or we can map existing
data to a graph

— Data points become
vertices

®

@

— Add an edge 1f two data points
are similar

* Edge weights can also tell about similarity

Similarity and adjacency matrices

* A similarity matrix 1s an n-by-n non-negative,
symmetric matrix
— The opposite of the distance matrix

* Recall that a weighted adjacency matrix 1s an n-by-n
non-negative, symmetric matrix

— For weighted, undirected graphs

* S0, we can think every similarity matrix as an
adjacency matrix of some weighted, undirected graph

— This graph will be complete (a clique)

* Further, we can use any similarity measure between
two points as an edge weight

Getting non-complete graphs

* Using complete graphs can be a waste of resources

—For clustering, we don’t really care about pairs of elements
that are very dissimilar

* We can remove the edges between dissimilar pairs of
vertices
— Zero weight

* Alternatively, we can adjust the weights to diminish
dissimilar points
— The Gaussian kernel 1s popular for this

v _ y.|2
o Xi = X
Wij = exp 53

Getting non-complete graphs (2)
e How to decide when vertices are too dissimilar?

* In e-neighbour graphs we add an edge between two
vertices that are within distance ¢ to each other

— Usually the resulting graph 1s considered unweighted as all
weights would be roughly similar

* In fA-nearest neighbour graphs we connect two
vertices 1f one 1s within the &£ nearest neighbours of
the other
— In mutual i-nearest neighbour graph we only connect

two vertices 1f they’re both 1n each other’s k nearest
neighbours

Which similarity graph?

* With e-graphs choosing the parameter 1s hard

— No single correct answer 1f different clusters have different
internal similarities

* k-nearest neighbours can connect points with different
similarities
— But far-away high density regions become unconnected

* The mutual k-nearest neighbours 1s somewhat 1n
between

— Good for detecting clusters with different densities

 General recommendation: start with A-NN
— Others 1f data supports that

Example graph

[R&DM °13/14

<in7 e Wgy)
e‘ 2 ’ﬁ:gii’i,)' \ ¢ g
N eihsg gy
CEAWAL |
A A RN
"'./.A?”"\‘"A\\ \ 2\
A, Iy ey NN
\‘:'4‘ T\ A\ ‘ /> .,,“ '.{"’:’A“‘ ...I_‘\ \‘/\\\
\ N i ‘, .4“\""’7.\ Iﬁ
‘ ',"‘F“ "‘rﬁ./‘““‘;i’.
‘.’g“ 11— -<\—v“_'

Q)
N e/

Q
) ()
1) ="7 S AW NN
‘\\\§.v‘!‘\‘}'/’q =0 i
AN S AN (R Y
NTIAAZRERE AN TN
NSRS ﬂwgl\ T § |
REE e Doz avss 2o A0
R = 7 5~
MATER = AT N

A/sess
\.§? "

= PRV ¢

ZM Fig. 16.1

X.4-8

23 January 2014

Clustering as Graph Cuts

* A cut of a connected graph G = (V, E) divides the set of
vertices mnto two partitions .S and V'\ § and removes the
edges between them

— Cut can be expressed by giving the set S
— Or by giving the cut set, 1.e. edges with exactly one end 1n §,
F={(v,u)e L |{v,u} NS =1}
» Graph cut clusters graph’s vertices into two clusters

— Subsequent cuts 1n the components give us a hierarchical
clustering

* A k~way cut cuts the graph into & disjoint set of vertices
Ci, Co, ..., Cr and removes the edges between them

What 1s a good cut?

* Just any cut won’t cut 1t

* In minimum cut the goal 1s to find any set of vertices
such that cutting them from the rest of the graph
requires removing the least number of edges

— Least sum of weights for weighted graphs
— The extension to multiway cuts 1s straightforward

* The minimum cut can be found in polynomial time

— The max-tflow min-cut theorem

 But minimum cut isn’t very good for clustering
purposes

What cuts would cut 1t? (1)

* The minimum cut usually just removes one vertex
from the graph

— Not very appealing clustering

— We want to penalize the cut for imbalanced cluster sizes

* In ratio cut, the goal 1s to minimize the ratio of the
weight of the edges 1n the cut set and the size of the
clusters C;

—Let W(A,B) = 2jca. jeB Wij
* w;; 1S the weight of edge (i, /)
k

RatioCut = Z
i=1

W(C;,V\ C)
|Ci |

What cuts would cut 1t? (2)

* The volume of a set of vertices A4 1s the weight of all
edges connected to A4

—vol(A) =W(A,V) = ZieA,jeV Wij

* In normalized cut we measure the size of C; not by
|Ci| but by vol(C3)

NormalizedCut

:i W(Ci,V\C)

[R&DM ’13/14 23 January 2014 X.4-12

Even More Matrices

* The (weighted) adjacency matrix A4 has the weight of
edge (i, j) at position a;;

* The degree matrix 4 of a graph 1s a diagonal n-by-n
matrix with the (weighted) degree of vertex i at
position 4;; = d;

—Aii = di =) aij

* The normalized adjacency matrix M 1s the
adjacency matrix where 1n every row i all values are
divided by d;

—Every row sums up to 1
—-M=A4"4

Graph Laplacians

* The Laplacian matrix L of a graph 1s the adjacency
matrix subtracted from the degree matrix

2zl Al,j —di2 vt —dain)
—az 1 iz a2 e —aon
L=A-A-=
—an,1 —Any2 c Xjzn An,j)

* The Laplacian 1s symmetric and positive semi-
definite

— Undirected graphs

— Has n real, non-negative, orthogonal eigenvalues
MZAZA32...2 =0

The normalized, symmetric Laplacian

* The normalized, symmetric Laplacian matrix L of

a graph 1s defined as
(2Ljz141,j aip .. __9un
Vdid, Vdid, Vdid,
o azi Zj¢2 asz,j o __axn
A2 A=1/2 — _ A=112 g4A=1/2 _ | Vdod, Vdyrd, Vdyd,
___An,1 __A4n,2 o Zjin An,j
\ Vd,.d, d,d; dndp

— Also positive semi-definite

* The normalized, asymmetric Laplacian L4 1s
Li=AL

Clusterings and matrices redux

* Recall that we can express a clustering using a binary
cluster assignment matrix

— Each row has exactly one non-zero

e [et the i-th column of this matrix be ¢;

— Clusters are disjoint so ¢if¢; = 0
— Cluster has c¢;’c; = ||ci||* elements

* We can get the vol(C;) and W(C;, V) using ¢;’s
— VOZ(Ci) — ZjeCi dj — ?:1 ?:1 CirArSCiS — CZTACi

—W(Ci,Cy) = 2Lrec; Lsec; Qrs = ciTACi
—W(C;,V\Cy) =W(C;,V) - W(C;,C;) =c¢; (A— A)e;

= CZTLCi

Cuts using matrices

W(C i V\C i) / -
RatioCut = Z (C ‘\)
i=1 i

k

NormalizedCut = Z
i=1

W(C;,V\C;) [/ .
vol(C;)

Finding approximate cuts

* Re-writing the objective functions doesn’t make them
any casier

— But the complexity comes from the fact that we have to
have binary clustering assignments

e Relax!

— Let ¢;’s take any real value
* Relaxed RatioCut now looks like

Jre (C) Zk:ciTLCi Zk:(.)TL(°
T A el Sl le: |

i=1

) — Zk: uiTLu,-
i=1

—u; = ci/||ci|| 1.e. the unit vector 1n the direction of ¢;

Solving the relaxed version

e We want to minimize the function J, over u;’s
— We have a constraint that u;'u; = 1

 To solve, derive w.r.t. u;’s and find the roots

— Add Lagrange multipliers to incorporate the constraints:
k

k
s,
o ZuiTLui Z/li(l—uiTu,-) =0

t\i=1 i—1

 Hence, Lu; = Aiu;
—u; 1s an eigenvector of L corresponding to the eigenvalue A;

Which eigenvectors to choose
* We know that Lu; = Au;

—Hence A; = ui’Lu;
* As we’re minimizing the sum of u;’Lu;’s we should

choose the u;’s corresponding to the £ smallest
eigenvalues

—They are our relaxed cluster indicators

* Note that we know that A, = 0 and that the
corresponding eigenvector is (v~ 12, n12, ..., n71/?)
—No help on clustering...

Normalized cut and choice of Laplacians

* For normalized cut similar procedure shows that we

should select the k£ smallest eigenvectors of L instead
of L

— Or we can use the asymmetric Laplacian L?

e Which one we should choose?

— Both ratio and normalized cut aim at minimizing intra-
cluster similarity

— But only normalized cut considers inter-cluster similarity
= Either LS or L¢

* The asymmetric Laplacian is better

— With symmetric one further normalization 1s needed

Spectral clustering

* To do the clustering, we need to move our real-valued
eigenvectors u; to binary cluster indicator vectors

* First, create a matrix U with u;’s as 1ts columns
— Optionally, normalize the rows to sum up to 1
* Esp. if using L*
* Cluster the rows of this matrix using A-means
— Or, 1n principle, any other clustering algorithm
* Solving the eigenvectors is O(n°) in general or O(n?)
if the similarity graph has as many edges as vertices

— The k-means on the U matrix takes O(tnk?)
e 1 1s the number of iterations in A-means

Spectral clustering pseudo-code

Assume connected graph

Algorithm 16.1: Spectral Clustering Algorithm

SPECTRAL CLUSTERING (D, k):

Compute the similarity matrix A € R"*"

if ratio cut then B «+ L

else if normalized cut then B < L° or L*

Solve Bu; = \ju; fori=n,....n—k+ 1, where A\, < A\, 1 < < A\
U « (un Up—-1 - un—k—l—l)

Y < normalize rows of U using (16.19)

C «+ {C4,...,C;} via K-means on Y

N O Ok 0N =

Example

ZM Figures 16.1 and 16.4

[R&DM °13/14

A==,
37N
M@Mm&:}:

ENRY
AN

NS ALK 1
N N
CANEEREIRS 1\\/ N

A

A

N S\ S R X (A AN o A
N~ NIRRT K ‘V 7

- \\A‘\" NN DRSENINIZANALN

SN\

23 January 2014

X.4-24

[s spectral clustering optimal?

» Spectral clustering 1s not always a good
approximation of the graph cuts

—In so-called cockroach graphs, spectral clustering always
horizontally, when optimal 1s to cut vertically

— Approximation ratio of O(n)

Optimal

Spectral

Markov Clustering

* A random walk on a graph that 1s 1n vertex v should
visit other vertices from v’s cluster more probably
than vertices 1n other clusters

— Transition probabilities are the edge weights, 1.e. similarity
counts

* Normalized adjacency matrix M = A4 gives
transition probabilities for a Markov chain

—M'= MxMx.. XM gives the probabilities to move from
node i to node j 1n 7 steps

—For i and j to be 1n the same cluster, these probabilities
should be high versus what they are 1f i and j are 1in different
clusters

Transition probability inflation

* The probabilities in M! might not make the
differences obvious enough

* We can 1nflate the probabilities by applying to every
element of M the inflation operator

(m;j)")
Zgzl (mia)r i

— This increases larger probabilities and reduces smaller ones

T(M,r) :(

Markov clustering algorithm

* Compute M! «— A4
— Add self-edges to A4 1f they don’t exist
° repeat
—M! — M-'xM
—M' — T(M',r)
 until successive M”’s don’t change much

—E.g. Frobenius 1s below a given threshold

* return clusters induced by M’

How to get the clusters

* M' 1induces a weighted, directed graph G

— Weight for edge (i, j) 1s the current transition probability from i
to j

* In this graph, a vertex i 1s called attractor 1f 1t has a self-
loop with positive probability
— N.B. expects very small probabilities to be rounded to zero

 Attractor j attracts i if edge (i, j) has non-zero probability

* The number of clusters 1s the number of strongly
connected components of attractors in G

— These are the 1nitial clusters

* Other vertices are attached to all clusters they can reach

Some notes

* The inflation parameter » implicitly defines the
number of clusters

— Higher » = more clusters
* The convergence criterion can also have some effects
* Time complexity 1s O(tn®)

— o 1s the exponent for matrix multiplication

* In practice o = 3 for full matrices and o = 2 for sparse matrices
* Matrix M’ usually becomes sparse quickly

Summary

* Frequent subgraph mining can find recurring patterns
in graph data
— Enormously complex problem = exact algorithms can’t be
fast

— But graphs are not usually very big even if there are many of
them

» Graph clustering 1s much like other clustering
— Any clusterable data can be turned into similarity graph

— Spectral clustering uses well-known linear algebra
* But this doesn’t necessarily make 1t a good clustering algorithm

— Markov clustering doesn’t need the number of clusters
* But does need the number of clusters

