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Where do Graphs Come From?
• We can have data in a graph form
–E.g. the clusters of our

social networks
• Or we can map existing

data to a graph
–Data points become 

vertices
–Add an edge if two data points

are similar
•Edge weights can also tell about similarity
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Similarity and adjacency matrices
• A similarity matrix is an n-by-n non-negative, 

symmetric matrix
–The opposite of the distance matrix

• Recall that a weighted adjacency matrix is an n-by-n 
non-negative, symmetric matrix 
– For weighted, undirected graphs

• So, we can think every similarity matrix as an 
adjacency matrix of some weighted, undirected graph
–This graph will be complete (a clique)

• Further, we can use any similarity measure between 
two points as an edge weight

4



IR&DM ’13/14 X.4-23 January 2014

Getting non-complete graphs
• Using complete graphs can be a waste of resources
– For clustering, we don’t really care about pairs of elements 

that are very dissimilar
• We can remove the edges between dissimilar pairs of 

vertices
–Zero weight

• Alternatively, we can adjust the weights to diminish 
dissimilar points
–The Gaussian kernel is popular for this
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Getting non-complete graphs (2)
• How to decide when vertices are too dissimilar?
• In ε-neighbour graphs we add an edge between two 

vertices that are within distance ε to each other
–Usually the resulting graph is considered unweighted as all 

weights would be roughly similar
• In k-nearest neighbour graphs we connect two 

vertices if one is within the k nearest neighbours of 
the other
– In mutual k-nearest neighbour graph we only connect 

two vertices if they’re both in each other’s k nearest 
neighbours

6



IR&DM ’13/14 X.4-23 January 2014

Which similarity graph?
• With ε-graphs choosing the parameter is hard
–No single correct answer if different clusters have different 

internal similarities
• k-nearest neighbours can connect points with different 

similarities
–But far-away high density regions become unconnected

• The mutual k-nearest neighbours is somewhat in 
between
–Good for detecting clusters with different densities

• General recommendation: start with k-NN
–Others if data supports that
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Example graph
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Further, the similarity matrix A gives the weight on each edge, i.e., aij denotes the
weight of the edge (xi,xj). If all affinities are zero or one, then A represents the
regular adjacency relationship between the vertices.

For a vertex xi, let di denote the degree of the vertex, defined as

di =
n∑

j=1

aij

Define the degree matrix ∆ of graph G as the n× n diagonal matrix

∆ =

⎛

⎜⎜⎜⎝

d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

∑n
j=1 a1j 0 · · · 0
0

∑n
j=1 a2j · · · 0

...
...

. . .
...

0 0 · · ·
∑n

j=1 anj

⎞

⎟⎟⎟⎠

∆ can be compactly written as ∆(i, i) = di for all 1 ≤ i ≤ n.

Figure 16.1: Iris Similarity Graph
ZM Fig. 16.1
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Clustering as Graph Cuts
• A cut of a connected graph G = (V, E) divides the set of 

vertices into two partitions S and V \ S and removes the 
edges between them
–Cut can be expressed by giving the set S 
–Or by giving the cut set, i.e. edges with exactly one end in S, 

F= {(v, u) ∈ E : |{v, u} ∩ S| = 1}

• Graph cut clusters graph’s vertices into two clusters
– Subsequent cuts in the components give us a hierarchical 

clustering
• A k-way cut cuts the graph into k disjoint set of vertices 

C1, C2, …, Ck and removes the edges between them

9
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What is a good cut?
• Just any cut won’t cut it
• In minimum cut the goal is to find any set of vertices 

such that cutting them from the rest of the graph 
requires removing the least number of edges
–Least sum of weights for weighted graphs
–The extension to multiway cuts is straightforward

• The minimum cut can be found in polynomial time
–The max-flow min-cut theorem

• But minimum cut isn’t very good for clustering 
purposes

10
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What cuts would cut it? (1)
• The minimum cut usually just removes one vertex 

from the graph
–Not very appealing clustering
–We want to penalize the cut for imbalanced cluster sizes

• In ratio cut, the goal is to minimize the ratio of the 
weight of the edges in the cut set and the size of the 
clusters Ci 
–Let 
•wij is the weight of edge (i, j)

11

W (A,B) =
P

i2A, j2B wi j

RatioCut =

kX

i=1

W (Ci ,V \ Ci )

|Ci |
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What cuts would cut it? (2)
• The volume of a set of vertices A is the weight of all 

edges connected to A 
–  

• In normalized cut we measure the size of Ci not by 
|Ci| but by vol(Ci)   

12

vol (A) = W (A,V ) =
P

i2A, j2V wi j

NormalizedCut =

kX

i=1

W (Ci ,V \ Ci )

vol (Ci )

Finding optimal RatioCut or NormalizedCut is 
NP-hard
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Even More Matrices
• The (weighted) adjacency matrix A has the weight of 

edge (i, j) at position aij 
• The degree matrix Δ of a graph is a diagonal n-by-n 

matrix with the (weighted) degree of vertex i at 
position Δii = di 
–Δii = di = ∑j aij 

• The normalized adjacency matrix M is the 
adjacency matrix where in every row i all values are 
divided by di 
–Every row sums up to 1
–M = Δ–1A  

13
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Graph Laplacians
• The Laplacian matrix L of a graph is the adjacency 

matrix subtracted from the degree matrix

• The Laplacian is symmetric and positive semi-
definite
–Undirected graphs
–Has n real, non-negative, orthogonal eigenvalues
λ1 ≥ λ2 ≥ λ3 ≥ … ≥ λn ≥ 0
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The normalized, symmetric Laplacian
• The normalized, symmetric Laplacian matrix Ls of 

a graph is defined as

–Also positive semi-definite
• The normalized, asymmetric Laplacian La is
La = Δ–1L
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Clusterings and matrices redux
• Recall that we can express a clustering using a binary 

cluster assignment matrix
–Each row has exactly one non-zero

• Let the i-th column of this matrix be ci 
–Clusters are disjoint so ciTcj = 0
–Cluster has ciTci = ||ci||2 elements

• We can get the vol(Ci) and W(Ci, V) using ci’s
–  
–   
–   

16

vol (Ci ) =
P

j2Ci
d j =

Pn
r=1
Pn

s=1 cir�r scis = cTi �ci
W (Ci ,Ci ) =

P
r2Ci

P
s2Ci

ar s = cTi Aci
W (Ci ,V \ Ci ) = W (Ci ,V ) �W (Ci ,Ci ) = cTi (� � A)ci

= cTi Lci



NormalizedCut =

kX

i=1

W (Ci ,V \ Ci )

vol (Ci )
=

kX

i=1

cTi Lci

cTi �ci
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Cuts using matrices
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RatioCut =

kX

i=1

W (Ci ,V \ Ci )

|Ci |
=

kX

i=1

cTi Lci

kci k2
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Finding approximate cuts

18

• Re-writing the objective functions doesn’t make them 
any easier
–But the complexity comes from the fact that we have to 

have binary clustering assignments
• Relax!
–Let ci’s take any real value

• Relaxed RatioCut now looks like

– ui = ci/||ci|| i.e. the unit vector in the direction of ci 

Jrc (C) =
kX

i=1

cTi Lci

kci k2
=

kX

i=1

 
ci
kci k

!T
L

 
ci
kci k

!
=

kX

i=1

uT
i Lui
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Solving the relaxed version
• We want to minimize the function Jrc over ui’s
–We have a constraint that uiTui = 1

• To solve, derive w.r.t. ui’s and find the roots
–Add Lagrange multipliers to incorporate the constraints:

• Hence, Lui = λiui 
– ui is an eigenvector of L corresponding to the eigenvalue λi 

19
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Which eigenvectors to choose
• We know that Lui = λiui 
–Hence λi = uiTLui 

• As we’re minimizing the sum of uiTLui’s we should 
choose the ui’s corresponding to the k smallest 
eigenvalues
–They are our relaxed cluster indicators

• Note that we know that λn = 0 and that the 
corresponding eigenvector is (n–1/2, n–1/2, …, n–1/2)
–No help on clustering...

20
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Normalized cut and choice of Laplacians
• For normalized cut similar procedure shows that we 

should select the k smallest eigenvectors of Ls instead 
of L 
–Or we can use the asymmetric Laplacian La 

• Which one we should choose?
–Both ratio and normalized cut aim at minimizing intra-

cluster similarity
–But only normalized cut considers inter-cluster similarity
⇒ Either Ls or La 

• The asymmetric Laplacian is better
–With symmetric one further normalization is needed

21
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Spectral clustering
• To do the clustering, we need to move our real-valued 

eigenvectors ui to binary cluster indicator vectors
• First, create a matrix U with ui’s as its columns
–Optionally, normalize the rows to sum up to 1 
•Esp. if using Ls 

• Cluster the rows of this matrix using k-means 
–Or, in principle, any other clustering algorithm

• Solving the eigenvectors is O(n3) in general or O(n2) 
if the similarity graph has as many edges as vertices
–The k-means on the U matrix takes O(tnk2) 
• t is the number of iterations in k-means

22
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Spectral clustering pseudo-code

23
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where λi =
cTi Lci
cTi ∆ci

is the eigenvalue corresponding to the i-th eigenvector ci of the

asymmetric Laplacian matrix La. To minimize the normalized cut objective we
therefore choose the k smallest eigenvalues of La, namely, 0 = λn ≤ · · · ≤ λn−k+1.

To derive the clustering, for La, we can use the corresponding eigenvectors
un, · · · ,un−k+1, with ci = ui representing the real-valued cluster indicator vectors.
However, note that for La, we have cn = un = 1√

n
1. Furthermore, for the normal-

ized symmetric Laplacian Ls, the real-valued cluster indicator vectors are given as
ci = ∆−1/2ui, which again implies that cn = 1√

n
1. This means that the eigenvector

un corresponding to the smallest eigenvalue λn = 0 does not contain any useful
information for clustering.

16.2.2 Spectral Clustering Algorithm

Algorithm 16.1: Spectral Clustering Algorithm

Spectral Clustering (D, k):
Compute the similarity matrix A ∈ Rn×n

1

if ratio cut then B← L2

else if normalized cut then B← Ls or La
3

Solve Bui = λiui for i = n, . . . , n− k + 1, where λn ≤ λn−1 ≤ · · · ≤ λn−k+14

U←
(
un un−1 · · · un−k+1

)
5

Y ← normalize rows of U using (16.19)6

C ← {C1, . . . , Ck} via K-means on Y7

Algorithm 16.1 gives the pseudo-code for the spectral clustering approach. We
assume that the underlying graph is connected. The method takes a dataset D as
input, and computes the similarity matrix A. Alternatively, the matrix A may be
directly input as well. Depending on the objective function, we choose the corre-
sponding matrix B. For instance, for normalized cut B is chosen to be either Ls

or La, whereas for ratio cut we choose B = L. Next, we compute the k smallest
eigenvalues and eigenvectors of B. However, the main problem we face is that the
eigenvectors ui are not binary, and thus it is not immediately clear how we can as-
sign points to clusters. One solution to this problem is to treat the n× k matrix of
eigenvectors as a new data matrix

U =

⎛

⎝
| | |
un un−1 · · · un−k+1

| | |

⎞

⎠ =

⎛

⎜⎜⎝

un,1 un−1,1 · · · un−k+1,1

un2 un−1,2 · · · un−k+1,2

| | · · · |
un,n un−1,n · · · un−k+1,n

⎞

⎟⎟⎠ (16.18)

Assume connected graph
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Example

24
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Further, the similarity matrix A gives the weight on each edge, i.e., aij denotes the
weight of the edge (xi,xj). If all affinities are zero or one, then A represents the
regular adjacency relationship between the vertices.

For a vertex xi, let di denote the degree of the vertex, defined as

di =
n∑

j=1

aij

Define the degree matrix ∆ of graph G as the n× n diagonal matrix

∆ =

⎛

⎜⎜⎜⎝

d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

∑n
j=1 a1j 0 · · · 0
0

∑n
j=1 a2j · · · 0

...
...

. . .
...

0 0 · · ·
∑n

j=1 anj

⎞

⎟⎟⎟⎠

∆ can be compactly written as ∆(i, i) = di for all 1 ≤ i ≤ n.

Figure 16.1: Iris Similarity Graph
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For instance the first point is computed as

y1 =
1√

(−0.378)2 + (−0.2262)
(−0.378,−0.226)T = (−0.859,−0.513)T

Figure 16.3 plots the new dataset Y. Clustering the points into k = 2 groups
using K-means yields the two clusters C1 = {1, 2, 3, 4} and C2 = {5, 6, 7}.

Figure 16.4: Normalized Cut on Iris Graph

iris-setosa iris-virginica iris-versicolor

C1 (triangle) 50 0 4
C2 (square) 0 36 0
C3 (circle) 0 14 46

Table 16.1: Contingency Table: Clusters versus Iris Types

Example 16.8: We apply spectral clustering on the Iris graph in Figure 16.1;
we used the normalized cut objective with the asymmetric Laplacian matrix La.

ZM Figures 16.1 and 16.4
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Is spectral clustering optimal?

25

• Spectral clustering is not always a good 
approximation of the graph cuts
– In so-called cockroach graphs, spectral clustering always 

horizontally, when optimal is to cut vertically
–Approximation ratio of O(n) 

v1 vk+1 v2k

v2k+1 v3k

vk

v3k+1 v4k

Optimal

Spectral
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Markov Clustering
• A random walk on a graph that is in vertex v should 

visit other vertices from v’s cluster more probably 
than vertices in other clusters
–Transition probabilities are the edge weights, i.e. similarity 

counts
• Normalized adjacency matrix M = Δ–1A gives 

transition probabilities for a Markov chain
–Mt = M×M×…×M gives the probabilities to move from 

node i to node j in t steps
– For i and j to be in the same cluster, these probabilities 

should be high versus what they are if i and j are in different 
clusters

26
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Transition probability inflation
• The probabilities in Mt might not make the 

differences obvious enough
• We can inflate the probabilities by applying to every 

element of M the inflation operator 

–This increases larger probabilities and reduces smaller ones

27

⌥(M ,r) =
 

(mi j )rPn
a=1(mia )r

!

i j
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Markov clustering algorithm
• Compute M1 ← Δ–1A 
–Add self-edges to A if they don’t exist

• repeat
–Mt ← Mt–1×M
–Mt ← 

• until successive Mt’s don’t change much
–E.g. Frobenius is below a given threshold

• return clusters induced by Mt 

28
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How to get the clusters
• Mt induces a weighted, directed graph G 
–Weight for edge (i, j) is the current transition probability from i 

to j 
• In this graph, a vertex i is called attractor if it has a self-

loop with positive probability
– N.B. expects very small probabilities to be rounded to zero

• Attractor j attracts i if edge (i, j) has non-zero probability
• The number of clusters is the number of strongly 

connected components of attractors in G
– These are the initial clusters 

• Other vertices are attached to all clusters they can reach

29
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Some notes
• The inflation parameter r implicitly defines the 

number of clusters
–Higher r ⇒ more clusters

• The convergence criterion can also have some effects
• Time complexity is O(tnω)
–ω is the exponent for matrix multiplication
• In practice ω = 3 for full matrices and ω = 2 for sparse matrices
•Matrix Mt usually becomes sparse quickly
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Summary
• Frequent subgraph mining can find recurring patterns 

in graph data
–Enormously complex problem ⇒ exact algorithms can’t be 

fast
–But graphs are not usually very big even if there are many of 

them
• Graph clustering is much like other clustering
–Any clusterable data can be turned into similarity graph
– Spectral clustering uses well-known linear algebra
•But this doesn’t necessarily make it a good clustering algorithm

–Markov clustering doesn’t need the number of clusters
•But does need the number of clusters
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