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Chapter II: Background 
Mathematics
1. Linear Algebra

Matrices, vectors, and related concepts
2. Probability Theory and Statistical Inference

Events, probabilities, random variables, and limit 
theorems; likehoods and estimators

3. Confidence Intervals, Hypothesis Testing and 
Regression

Confidence intervals, statistical tests, linear regression 
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Chapter II.1: Linear Algebra
1. Matrices and vectors

1.1. Definitions
1.2. Basic algebraic operations

2. Basic concepts
2.1. Orthogonality and linear independence
2.2. Rank, invertibility, and pseudo-inverse

3. Fundamental decompositions
3.1. Eigendecomposition
3.2. Singular value decomposition
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Matrices and vectors
• A vector is 
– a 1D array of numbers
– a geometric entity with magnitude and direction

• The norm of the vector defines its magnitude
–Euclidean (L2) norm:

– Lp norm (1 ≤ p ≤ ∞)

• The direction is
the angle
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A womb

Rectangular arrays of numbers

“Rectangular arrays” known in ancient China (rod calculus, estimated
as early as 300BC)

0

BBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

CCCCCCA

Term “matrix” coined by J.J. Sylvester
in 1850

9 / 27

A rectangular array 
of numbers
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Systems of linear equations can be written as matrices

3x + 2y + z = 39

2x + 3y + z = 34

x + 2y + 3z = 26

!

0

@
3 2 1 39
2 3 1 34
1 2 3 26

1

A

and then be solved using linear algebra methods
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Linear maps

Linear maps from R3 to R
f1(x , y , z) = 3x + 2y + z

f2(x , y , z) = 2x + 3y + z

f3(x , y , z) = x + 2y + 3z

f4(x , y , z) = x

Linear map f1 written as a matrix

�
3 2 1

�
0

@
x
y
z

1

A = f1(x , y , z)

Linear map from R3 to R4
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1 2 3
1 0 0

1
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x y

�3.84 �2.21
�3.33 �2.19
�2.55 �1.47
�2.46 �1.25
�1.49 �0.76
�1.67 �0.39
�1.3 �0.59
...

...
1.59 0.78
1.53 1.02
1.45 1.26
1.86 1.18
2.04 0.96
2.42 1.24
2.32 2.03
2.9 1.35

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

A set of data points
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Vectors in IR&DM

7

• All above meanings of matrices and vectors (and 
more) are important ways to understand them
–Different intuitions provide different insights

• In IR&DM, the most important one is the vector 
space model
–A document in a vocabulary of n terms is represented as an 

n-dimensional vector
–A customer transaction in a supermarket selling n items is 

represented as an n-dimensional vector



IR&DM, WS'13/14 22 October 2013 II.1-

Vectors in IR&DM

7

• All above meanings of matrices and vectors (and 
more) are important ways to understand them
–Different intuitions provide different insights
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Matrices in IR&DM

8

Objects and attributes

Anna, Bob, and Charlie went shopping
Anna bought butter and bread
Bob bought butter, bread, and beer
Charlie bought bread and beer

0

@

Bread Butter Beer

Anna 1 1 0
Bob 1 1 1
Charlie 0 1 1

1

A

Customer transactions

0

@

Data Matrix Mining

Book 1 5 0 3
Book 2 0 0 7
Book 3 4 6 5

1

A

Document-term matrix

0

@

Avatar The Matrix Up

Alice 4 2
Bob 3 2
Charlie 5 3

1

A

Incomplete rating matrix

0

@

Jan Jun Sep

Saarbrücken 1 11 10
Helsinki 6.5 10.9 8.7
Cape Town 15.7 7.8 8.7

1

A

Cities and monthly temperatures

Many di↵erent kinds of data fit this object-attribute viewpoint.

14 / 27
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Basic operations on vectors

9

• A transpose vT transposes a row vector into a column 
vector and vice versa
• If v, w ∈ ℝn, v + w is a vector with (v + w)i = vi + wi

• For vector v and scalar α, (αv)i = αvi  
• A dot product of two vectors v, w ∈ ℝn is

–A.k.a. scalar product or inner product
–Alternative notations: ⟨v, w⟩, vTw (for column vectors), vwT 

(for row vectors)
– In Euclidean space  v · w = kvk kwk cos ✓

v · w = Pn
i=1 viwi
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Basic operations on matrices
• Matrix transpose AT has the rows of A as its columns 
• If A and B are n-by-m matrices, then A + B is an 

n-by-m matrix with (A + B)ij = mij + nij 
• If A is n-by-k and B is k-by-m, then AB is an n-by-m 

matrix with 

–The inner dimension (k) must agree
–Vector outer product vwT (for column vectors) is the 

matrix product of n-by-1 and 1-by-m matrices

10

(AB)i j =
kX

`=1

ai`b` j
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Intuition for matrix multiplication
• Element (AB)ij is the inner product of row i of A and 

column j of B

11
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Intuition for matrix multiplication
• Element (AB)ij is the inner product of row i of A and 

column j of B
• Column j of AB is the linear combination of columns 

of A with the coefficients coming from column j of B
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Intuition for matrix multiplication
• Element (AB)ij is the inner product of row i of A and 

column j of B
• Column j of AB is the linear combination of columns 

of A with the coefficients coming from column j of B
• Matrix AB is a sum of k matrices alblT obtained by 

multiplying the l-th column of A with the l-th row of 
B

11
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Ring of n-by-n matrices
• Square matrices of same size form a ring 
–Operations are addition, subtraction, and multiplication
–The identity for addition and subtraction (0) is the all-zeros 

matrix 0 
–Multiplication doesn’t always have an inverse (division)
–Multiplication isn’t commutative (AB ≠ BA in general)
–The identity for multiplication is the identity matrix I with 

1s on the main diagonal and 0s elsewhere
• (I)ij = 1 iff i = j; (I)ij = 0 otherwise

• With these limitations, we can do algebra on matrices 
as with real numbers

12
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Matrices as linear mappings
• An n-by-m matrix A is a linear mapping from 

m-dimensional vector space to n-dimensional vector 
space
–A(x) = Ax, 
–The transpose AT is a mapping from n-dimensional to 

m-dimensional vector space
•Typically it does not hold that if y = Ax, then x = ATy 

• If A is n-by-m and B is m-by-k, then for the 
concatenated product (A ￮ B)(x) = A(Bx) = (AB)x 

13

(Ax)i =
Pm

j=1 ai j x j
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Types of matrices
• Diagonal n-by-n matrix
– Identity matrix In is a diagonal 

n-by-n matrix with 1s in diagonal

• Upper triangular matrix
–Lower triangular is the transpose
– If diagonal is full of 0s, matrix is

strictly triangular
• Permutation matrix
–Each row and column has exactly one 1, rest are 0

• Symmetric matrix: M = MT 

14

0

BBBBB@

x1,1 0 0 0
0 x2,2 0 · · · 0
0 0 x3,3 0

...
. . .

0 0 0 xn,n

1

CCCCCA

0

BBBBB@

x1,1 x1,2 x1,3 x1,n

0 x2,2 x2,3 · · · x2,n

0 0 x3,3 x3,n
...

. . .
0 0 0 xn,n

1

CCCCCA
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Matrix distances and norms
• Frobenius norm ||X||F = (∑i,j xij2)1/2

–Corresponds to Euclidean norm of vectors
• Sum of absolute values |X| = ∑i,j |xij|
–Corresponds to L1-norm of vectors

• The above elementwise norms are sometimes 
(imprecisely) called L2 and L1 norms
–Matrix L1 and L2 norms are something different altogether

• Operator norm ||X||p = maxy≠0 ||Xy||p/||y||p
–Largest norm of an image of a unit norm vector
– ||X||2 ≤ ||X||F ≤ √(rank(X)) ||X||2

15
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Basic concepts
• Two vectors x and y are orthogonal if their inner 

product 〈x, y〉 is 0
–Vectors are orthonormal if they have unit norm, ||x||=||y||=1
– In Euclidean space, this means that ||x|| ||y|| cos θ = 0 which 

happens iff cos θ = 0 which means x and y are perpendicular 
to each other  

• A square matrix X is orthogonal if its rows and 
columns are orthonormal
–An n-by-m matrix X is row-orthogonal if n < m and its rows 

are orthogonal and column-orthogonal if n > m and its 
columns are orthogonal

16
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Linear independency
• Vector v ∈ ℝn is linearly dependent from a set of 

vectors W = {wi ∈ ℝn : i = 1, …, m} if there exists a 
set of coefficients αi such that
– If v is not linearly dependent, it is linearly independent 
–That is, v can’t be expressed as a linear combination of the 

vectors in W 

• A set of vectors V = {vi ∈ ℝn : i = 1, …, m} is 
linearly independent if vi is linearly independent 
from V \ {vi} for all i  

17

v =
Pm

i=1 ↵iwi
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Matrix rank
• The column rank of an n-by-m matrix M is the 

number of linearly independent columns of M 
• The row rank is the number of linearly independent 

rows of M 
• The Schein rank of M is the least integer k such that 

M = AB for some n-by-k matrix A and k-by-m matrix 
B
–Equivalently, the least k such that M is a sum of k vector 

outer products
• All these ranks are equivalent!

18
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The matrix inverse
• The inverse of a matrix M is the unique matrix N for 

which MN = NM = I 
–The inverse is denoted by M–1 

• M has an inverse (is invertible) iff
–M is square (n-by-n)
–The rank of M is n (full rank)

• Non-square matrices can have left or right inverses
–MR = I or LA = I 

• If M is orthogonal, then (and only then) M–1 = MT

–That is, MMT = MTM = I 

19



IR&DM, WS'13/14 22 October 2013 II.1-

The matrix pseudo-inverse
• The Moore–Penrose pseudo-inverse of an n-by-m 

matrix M is an m-by-n matrix M+ for which
–MM+M = M           (MM+ doesn’t have to be identity)
–M+MM+ = M+        (M+M doesn’t have to be identity)
– (MM+)T = MM+     (MM+ is symmetric)
– (M+M)T = M+M     (M+M is symmetric)

• If the rank of M is m (full column rank, n ≥ m), then
M+ = (MTM)–1MT 
– If the rank of M is n (n ≤ m), then M+ = MT(MMT)–1 
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Fundamental decompositions
• A matrix decomposition (or factorization) presents 

an n-by-m matrix A as a product of two (or more) 
factor matrices 
–A = BC 

• For approximate decompositions, A ≈ BC 
• The size of the decomposition is the inner dimension 

of B and C 
–Number of columns in B and number of rows in C 
– For exact decompositions, the size is no less than the rank 

of the matrix
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Eigenvalues and eigenvectors
• If X is an n-by-n matrix and v is a vector such that 

Xv = λv for some scalar λ, then
– λ is an eigenvalue of X
– v is an eigenvector of X associated to λ

• That is, eigenvectors are those vectors v for which Xv 
only changes their magnitude, not direction 
– It is possible to exactly reverse the direction
–The change in magnitude is the eigenvalue

• If v is an eigenvector of X and α is a scalar, then αv is 
also an eigenvector with the same eigenvalue
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Properties of eigenvalues
• Multiple linearly independent eigenvectors can be 

associated with the same eigenvalue
–The algebraic multiplicity of the eigenvalue

• Every n-by-n matrix has n eigenvectors and n 
eigenvalues (counting the multiplicity)
–But some of these can be complex numbers

• If a matrix is symmetric, then all its eigenvalues are 
real
• Matrix is invertible iff all its eigenvalues are non-zero
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Eigendecomposition
• The (real-valued) eigendecomposition of an n-by-n 

matrix X is X = QΛQ–1

–Λ is a diagonal matrix with eigenvalues in the diagonal
–Columns of Q are the eigenvectors associated with the 

eigenvalues in Λ
• Matrix X has to be diagonalizable
–PXP–1 is a diagonal matrix for some invertible matrix P

• Matrix X has to have n real eigenvalues (counting 
multiplicity)
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Some useful facts
• Not all matrices have eigendecomposition
–Not all invertible matrices have eigendecomposition
–Not all matrices that have eigendecomposition are invertible
– If X is invertible and has eigendecomposition, then

X–1 = QΛ–1Q–1

• If X is symmetric and invertible (and real), then X has 
eigendecomposition X = QΛQT
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Singular value decomposition (SVD)
• Not every matrix has eigendecomposition, but:

Theorem. If X is n-by-m real matrix, there exists 
n-by-n orthogonal matrix U and m-by-m orthogonal 
matrix V such that UTXV is n-by-m matrix Σ with 
values σ1, σ2, …, σmin(n,m), σ1 ≥ σ2 ≥ … ≥ σmin(n,m) ≥ 0, 
in its diagonal.
– In other words, X = UΣVT

–Values σi are the singular values of X
–Columns of U are the left singular vectors and columns of 

V the right singular vectors of X
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Example
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Rank and SVD
• rank(X) = r iff X has exactly r non-zero singular 

values 
– σ1 ≥ σ2 ≥ … ≥ σr > σr+1 = … = σmin(n,m) = 0
–A method to compute the rank of a matrix

• A truncated SVD of rank k is obtained by setting all 
but the first k singular values to 0
–Typically denoted as UkΣkVkT  
– For the product, we can ignore the columns of U and V 

corresponding to the zero singular values
•Uk is n-by-k, Vk is m-by-k, and Σk is k-by-k 
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Properties of SVD
• If X is rank-r, then 
–X is a sum of r rank-1 matrices scaled with singular values

•   
•   
• Eckart–Young theorem. Let X be of rank-r and let 

UΣVT be its SVD. Denote by Uk the first k columns of 
U, by Vk the first k columns of V and by Σk the upper-
left k-by-k corner of Σ. Then Xk = UkΣkVkT is the best 
rank-k approximation of X in the sense that
                                         and 
for any rank-k matrix Y.
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SVD and pseudo-inverse
• Recall that if X is n-by-m with rank(X) = m ≤ n, the 

pseudo-inverse of X is X+ = (XTX)–1XT

• If rank(X) = r and X = UΣVT, then we can define 
X+ = VΣ+UT

–Σ+ is a diagonal matrix with 1/σi in its ith position (or 0 if 
σi = 0)
–More general than the above definition

• This gives the least-squares solution to the following 
problem: given A and X, find Y s.t. ||A – XY||F2 is 
minimized
– Setting Y = X+A minimizes the squared Frobenius norm
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SVD and eigendecomposition
• Let X be n-by-m and X = UΣVT its SVD
• The Gram matrix of the columns of X is XTX
– For the rows it is XXT

• Now XTX = (UΣVT)T(UΣVT) = VΣTUTUΣVT

= VΣTΣVT = VΣm2VT

–Σm2 is an m-by-m diagonal matrix with σi2 in its ith position
• Similarly XXT = UΣn2UT

• Therefore 
–Columns of U are the eigenvectors of XXT

–Columns of V are the eigenvectors of XTX
– Singular values are square roots of the associated eigenvalues
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