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Chapter
Mathem

1. Linear Algebra

Matrices, vectors, and related concepts

2. Probability Theory and Statistical Inference

Events, probabilities, random variables, and limit
theorems; likehoods and estimators

3. Confidence Intervals, Hypothesis Testing and
Regression
Confidence intervals, statistical tests, linear regression
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Chapter IL.1: Linear Algebra il

1. Matrices and vectors
1.1. Definitions
1.2. Basic algebraic operations

2. Basic concepts
2.1. Orthogonality and linear independence
2.2. Rank, invertibility, and pseudo-inverse

3. Fundamental decompositions
3.1. Eigendecomposition
3.2. Singular value decomposition
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Matrices and vectors

* A vector 1s
—a 1D array of numbers

—a geometric entity with magnitude and direction

* The norm of the vector defines 1ts magnitude
— Euclidean (L) norm:

— L, norm (1 < p < )
o]l = (X i) '”

e The direction 1s
the angle
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Which of the following are matrices?
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Which of the following are matrices?

O O O O O
O OO OO
OO~ OO O
O O O O O

A rectangular array
of numbers

A womb
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Which of the following are matrices?

it (1 000 0 0

g 01 00 0O

Y gL 001000

S \ O 001 0O

&) 0 00 010
A womb

A rectangular array
of numbers
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Which of the following are matrices?

A rectangular array
of numbers

@’ (L 000 0 0 (6)
010000 e
l'.“. _ - "/:;.j;'"'-: O 01 0 OO a a
\ 77 8\ 000100 .‘
- 000010 e
Z \O 0 0 0 01 ) e
A womb

A system of
linear equations



Which of the following are matrices?

",':*-:I'-é} 1:\ =" "',
i1/ g\ 010000
BN\ 00100 O
00010 0
W 000010
7 \0 0 0 00 1/

A rectangular array

A womb of numbers

3x + 2y +z =39 f(x,y,z) =3x+2y +z
f; =2
Ox + 3y + z = 34 2(x,y,2) =2x+3y +z

f3(x,y,z) = x4+ 2y + 3z

A system of

. . A linear mappin
linear equations PP



Which of the following are matrices?

OO~ OO O
O O O O O

O O O O O
O OO OO

A rectangular array
of numbers

3x + 2y +z=39  Aloy,z)=3x+2y+z
f(x,y,z) =2x + 3
Ox+3y+z—=34 Xy =2ty i

f3(x,y,z) = x4+ 2y + 3z

C\]_

ﬂ_

| | | | |
4 2 2 4

A system of A linear mapping A set of data points

linear equations



Vectors in IR&KDM

» All above meanings of matrices and vectors (and
more) are important ways to understand them

— Different intuitions provide different insights

* In IR&DM, the most important one 1s the vector
space model

— A document 1n a vocabulary of n terms 1s represented as an
n-dimensional vector

— A customer transaction in a supermarket selling » items 1s
represented as an n-dimensional vector
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Matrices in IR&DM

Anna
Bob
Charlie

Alice
Bob
Charlie

Bread Butter Beer
1 1 0
1 1 1
0 1 1

Customer transactions

Avatar The Matrix Up
4
3 2

5

Incomplete rating matrix

2

3

Data Matrix Mining
Book 1 5 0 3
Book 2 0 0 {
Book 3 4 0 5

Document-term matrix

Jan Jun Sep

Saarbrucken 1 11 10
Helsinki 6.b 109 8.7
Cape Town \15.7 7.8 8.7

Cities and monthly temperatures



Basic operations on vectors

A transpose v’ transposes a row vector into a column
vector and vice versa

*Ifv,we R", v+ wis a vector with (v + w); =vi + w;
* For vector v and scalar a, (av); = av;

* A dot product of two vectors v, w € R” is
VoW = ViW;
— A .k.a. scalar product or inner product

— Alternative notations: (v, w), v!w (for column vectors), vw’
(for row vectors)

—In Euclidean space v - w = ||v]| ||w]| cos



Basic operations on matrices

* Matrix transpose 4’ has the rows of 4 as its columns

* [f A and B are n-by-m matrices, then 4 + B 1s an
n-by-m matrix with (4 + B);; = m;; + n;;

* If A 1s n-by-k and B 1s k-by-m, then AB 1s an n-by-m
matrix with

— The mner dimension (k) must agree

— Vector outer product vw’ (for column vectors) is the
matrix product of n-by-1 and 1-by-m matrices



Intuition for matrix multiplication

* Element (AB);; 1s the imnner product of row i of 4 and
columnjof B
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Intuition for matrix multiplication
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Intuition for matrix multiplication

* Element (AB);; 1s the imnner product of row i of 4 and
columnjof B

* Column j of AB 1s the linear combination of columns
of A with the coefficients coming from column j of B

e Matrix AB is a sum of k matrices a;b;” obtained by

multiplying the /-th column of A4 with the /-th row of
B

]
@




Ring of n-by-n matrices

* Square matrices of same size form a ring
— Operations are addition, subtraction, and multiplication

— The 1dentity for addition and subtraction (0) 1s the all-zeros
matrix 0

— Multiplication doesn’t always have an inverse (division)
— Multiplication 1sn’t commutative (4B # BA 1n general)

— The 1dentity for multiplication is the identity matrix 7 with
Is on the main diagonal and Os elsewhere

o ()= 11fti=j; (I); = 0 otherwise

* With these limitations, we can do algebra on matrices
as with real numbers



Matrices as linear mappings

* An n-by-m matrix A4 1s a linear mapping from
m-dimensional vector space to n-dimensional vector
space
—A(x)=Ax, (Ax); = ;’”‘:1 a;jX;

— The transpose A is a mapping from n-dimensional to
m-dimensional vector space

* Typically it does not hold that if y = Ax, then x = A’y
* If A 1s n-by-m and B 1s m-by-k, then for the
concatenated product (4 © B)(x) = A(Bx) = (AB)x



Types of matrices

* Diagonal n-by-n matrix

— Identity matrix I, 1s a diagonal
n-by-n matrix with 1s in diagonal

* Upper triangular matrix

— Lower triangular 1s the transpose

—If diagonal 1s full of Os, matrix 1s
strictly triangular

* Permutation matrix

/Xl,l 0 0
0 X2 2 0
0 0 X3.3

\ 0 0 0

/X1,1 X1,2 X1.3

0 0 X3,3

Lo 0 0

—Each row and column has exactly one 1, rest are 0

» Symmetric matrix: M = M’

0 X2 X23 -




Matrix distances and norms

* Frobenius norm || X]|F = 3i; xii?)"?
— Corresponds to Euclidean norm of vectors

* Sum of absolute values | X| = >/ |xi]

— Corresponds to L;-norm of vectors

 The above elementwise norms are sometimes
(imprecisely) called L2 and L; norms

—Matrix L; and L2 norms are something different altogether

* Operator norm ||X]|, = maxy-o || Xy||/|yl|»

— Largest norm of an image of a unit norm vector

~[1X]l2 < [IX|F < V(rank(X)) [|X] 2



Basic concepts

* Two vectors x and y are orthogonal 1f their inner
product (x, y) is 0

— Vectors are orthonormal if they have unit norm, ||x||=|ly||=1

—In Euclidean space, this means that ||x|| |ly|| cos 8 = 0 which
happens iff cos & = 0 which means x and y are perpendicular
to each other

* A square matrix X 1s orthogonal 1f 1ts rows and
columns are orthonormal
— An n-by-m matrix X 1s row-orthogonal if » <m and 1ts rows

are orthogonal and column-orthogonal 1f » > m and 1ts
columns are orthogonal



Linear independency

* Vector v € R” is linearly dependent from a set of

vectors W={w,€R":i=1, ..., m} if there exists a

set of coefficients a; such that v = 77 a;w;
—If v 1s not linearly dependent, it is linearly independent

—That 1s, v can’t be expressed as a linear combination of the
vectors in W

*Asetofvectors V={vieR":i=1, ..., m} is

linearly independent 1f v; 1s linearly independent
from V'\ {v;} for all i



Matrix rank

* The column rank of an n-by-m matrix M is the
number of linearly independent columns of M

* The row rank 1s the number of linearly independent
rows of M

* The Schein rank of M is the least integer k& such that

M = AB for some n-by-k matrix A and k-by-m matrix
B

— Equivalently, the least &k such that M 1s a sum of & vector
outer products

* All these ranks are equivalent!



The matrix inverse

* The inverse of a matrix M 1s the unique matrix /N for
which MN =NM =1
— The inverse is denoted by M~

* M has an inverse (1s invertible) 1t
— M 1s square (n-by-n)
— The rank of M 1s n (full rank)

* Non-square matrices can have left or right inverses
—MR=1orLA=1

* [f M is orthogonal, then (and only then) M~ = M"
—That i1s, MM =M'M =1



The matrix pseudo-inverse

* The Moore—Penrose pseudo-inverse of an n-by-m
matrix M 1s an m-by-n matrix M for which

MM=M (MM doesn’t have to be 1dentity)
—M"MM"=M" (MM doesn’t have to be 1dentity)
— (MM =MM* (MM is symmetric)
— MMy =MM (M'M is symmetric)
o If the rank of M 1s m (full column rank, n > m), then
M= (MTM)-' M7
— If the rank of M is n (n <m), then M* = M'(MM")!



Fundamental decompositions

* A matrix decomposition (or factorization) presents

an n-by-m matrix A as a product of two (or more)
factor matrices

—-A=BC
* For approximate decompositions, A = BC

* The size of the decomposition is the inner dimension
of Band C

— Number of columns in B and number of rows in C

— For exact decompositions, the size 1s no less than the rank
of the matrix



Eigenvalues and eigenvectors

 If X 1s an n-by-n matrix and v 1s a vector such that
Xv = Ay for some scalar A, then

— A 1s an eigenvalue of X
—v 1s an eigenvector of X associated to A

* That 1s, eigenvectors are those vectors v for which Xv
only changes their magnitude, not direction
— It 1s possible to exactly reverse the direction
—The change in magnitude 1s the eigenvalue

* If v 1s an eigenvector of X and «a 1s a scalar, then av 1s
also an eigenvector with the same eigenvalue



Properties of eigenvalues

* Multiple linearly independent eigenvectors can be
associated with the same eigenvalue

— The algebraic multiplicity of the eigenvalue

* Every n-by-n matrix has n eigenvectors and 7
eigenvalues (counting the multiplicity)

— But some of these can be complex numbers

* [f a matrix 1s symmetric, then all its eigenvalues are
real

* Matrix 1s invertible 1ff all its eigenvalues are non-zero



Ei1gendecomposition

* The (real-valued) eigendecomposition of an n-by-n
matrix X is X = 040!
— A 1s a diagonal matrix with eigenvalues 1n the diagonal

— Columns of Q are the eigenvectors associated with the
eigenvalues in A

* Matrix X has to be diagonalizable
— PXP! is a diagonal matrix for some invertible matrix P

» Matrix X has to have n real eigenvalues (counting
multiplicity)



Some usetful facts

* Not all matrices have eigendecomposition
— Not all invertible matrices have eigendecomposition
— Not all matrices that have eigendecomposition are invertible
—If X 1s invertible and has eigendecomposition, then
X1=0410"
o If X 1s symmetric and invertible (and real), then X has
eigendecomposition X = 040"



Singular value decomposition (SVD)

* Not every matrix has eigendecomposition, but:
Theorem. If X 1s n-by-m real matrix, there exists
n-by-n orthogonal matrix U and m-by-m orthogonal
matrix V such that U'XV is n-by-m matrix X with
values 01, 02, ..., Omin(n,m), O1 ~>022...2 Omin(n,m) > O,
in 1ts diagonal.

—In other words, X = UX V7'
— Values o; are the singular values of X

— Columns of U are the left singular vectors and columns of
V the right singular vectors of X



Example

~ &

U

Y
—

-
N

M=U->-V*
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Rank and SVD

* rank(X) = r 1ff X has exactly » non-zero singular
values
—G01 2022 ... 2 Cr > Ol = ... = Omin(nm) = 0

— A method to compute the rank of a matrix

* A truncated SVD of rank £ 1s obtained by setting all
but the first £ singular values to 0

— Typically denoted as Uiz Vi"

— For the product, we can 1gnore the columns of U and V
corresponding to the zero singular values

» Ui 1s n-by-k, Vi 1s m-by-k, and 2% 1s k-by-k



Properties of SVD

. ' _ 5T vl
If X is rank-r, then X = ) ., oyuyv;

— X 1s a sum of » rank-1 matrices scaled with singular values

2

o |X||f =01+ 05+ + 0

min(mn,m)

* Eckart—Young theorem. Let X be of rank-r and let
UXV' be its SVD. Denote by Uy the first £ columns of
U, by Vi the first £ columns of ¥ and by X« the upper-
left k-by-k corner of X. Then Xi = UiXiVi! 1s the best
rank-k approximation of X in the sense that
IX = Xicllp < IX=Y]lg and [|X = Xic ||, < X =Yl
for any rank-k matrix Y.



SVD and pseudo-inverse

* Recall that 1f X 1s n-by-m with rank(X) = m < n, the
pseudo-inverse of X i1s X" = (X' X) X"
o [f rank(X) =r and X = UXV7, then we can define
X' = VU
— X" 15 a diagonal matrix with 1/6; 1n 1ts ith position (or O 1f
o; = 0)
— More general than the above definition

* This gives the least-squares solution to the following
problem: given A and X, find Y s.t. ||[4 — XY||# is
minimized
— Setting ¥ = X4 minimizes the squared Frobenius norm



SVD and eigendecomposition

e Let X be n-by-m and X= UXV" its SVD

e The Gram matrix of the columns of X is X’X
— For the rows it is XX’
e Now XX = (UXVHI(UZVY) = VEIU'UEV!
— RISV = VE,AVT
— X,»” is an m-by-m diagonal matrix with 6,2 in its ith position
 Similarly XX7 = UX,2U"
* Therefore
— Columns of U are the eigenvectors of XX’

— Columns of V are the eigenvectors of X’ X
— Singular values are square roots of the associated eigenvalues



