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Chapter II.2: Basic Probability 
Theory and Statistics
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What is a probability
• “If I throw a dice, I will probably get

4 or less”

• “I’ll probably go running after this lecture”

• The term “probability” here means different things
–The outcome of a repeatable experiment
–My personal belief
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Views on probability
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• In classical definition, probability is equally shared 
among all outcomes, provided the outcomes are 
equally likely
– “Equally likely” is decided based on physical symmetries or 

the like
• In frequentism, a probability is the frequency of 

which something happens over repeated experiments
–Requires infinite number of repetitions

• In subjectivism (Bayesianism), probability refers to 
my subjective “degree of belief”
–But everybody’s belief is different
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Axiomatic approach: sample spaces 
and events
• A sample space Ω is a set of all possible outcomes of an 

experiment
– Element e ∈ Ω is a sample outcome or realization

• Subsets E ⊆ Ω are events 
• Examples:
– If we toss a coin twice, Ω = {HH, HT, TH, TT}
• Event “Second toss is tails” is A = {HT, TT}

– If we toss a coin until we get tails, Ω = {T, HT, HHT, HHHT, 
HHHHT, HHHHHT, …}

– If we measure a temperature in Kelvins, Ω = {x ∈ ℝ, x ≥ 0}

4
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Axiomatic approach: probability 
measures
• Collection 𝒜 ⊆ 2Ω is a σ-algebra of Ω if

– Ω ∈ 𝒜

– If A ∈ 𝒜, then (Ω \ A) ∈ 𝒜

– If A1, A2, A3, … ∈ 𝒜, then (∪i Ai) ∈ 𝒜

• Function Pr: 𝒜 → [0, 1] is a probability measure if

– Axiom 1: Pr[A] ≥ 0 for every A ∈ 𝒜
– Axiom 2: Pr[Ω] = 1
– Axiom 3: If A1, A2, … are disjoint, then Pr[∪i Ai] = ∑i Pr[Ai] 

(countably many Ais) 
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Intermission: some combinatorics
• The power set of a set A, 2A (or 𝒫(A)) is a collection 

of all subsets of A 
– If A = {1, 2, 3}, then 

2A = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
–The size of the power set is 2|A| 
• If A is finite, this is a natural number
• If A = ℕ, this is the same cardinality as the real numbers 

• If A = ℝ, this is the next cardinal number

• The number of size-k subsets of A is 
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Axiomatic approach: probability 
spaces and further properties
• A probability space is a triple (Ω, 𝒜, Pr)

–𝒜 contains all the events we can assign a probability

• If Ω is finite or countably infinite, we can have 𝒜 = 2Ω 
• If Ω is uncountable, it contains sets that cannot have probability 

(unmeasurable sets)

• From the axioms we can derive that
– Pr[∅] = 0
– If A ⊆ B, then Pr[A] ≤ Pr[B]
– Pr[Ω \ A] = 1 – Pr[A]
– Pr[A ∪ B] = Pr[A] + Pr[B] – Pr[A ∩ B]
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Axiomatic approach: random variables
• A random variable (r.v.) is a function X: 𝒜 → ℝ 

such that {e ∈ Ω : X(e) ≤ r} ∈ 𝒜 for all r ∈ ℝ 
–This is needed to define probabilities like Pr[a ≤ X ≤ b] 
– Pr[X = x] is a shorthand for Pr[{e ∈ Ω : X(e) = x}]

• An r.v. is discrete if it takes at most countably infinite 
different discrete values
–None of the complexities applies

• An r.v. is continuous if it varies continuously in one 
or more intervals
–These are the ones that cause problems
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Example r.v.’s
• Indicator variable 𝟙E or χE for event E ∈ 𝒜
– 𝟙E(x) = 1 if x ∈ E and 𝟙E(x) = 0 otherwise

– Pr[E] = Pr[𝟙E = 1]

• Let r.v. X be the number of heads in 10 coin flips
– If e = HTTTTTHHTT, then X(e) = 3
–Discrete r.v.

• Let r.v. Y be the room temperature of my kitchen (in 
Celsius)
– if e = “00:22 on 22 Oct”, then X(e) = 22,7 
–Continuous r.v.

9
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Some diagrams (1)
• The Venn diagram is a way to visualize the 

combinatorial relationships of three sets
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The inclusion–exclusion principle for 
three sets: 
Pr[A ∪ B ∪ C] = 
Pr[A] + Pr[B] + Pr[C] 
– Pr[A ∩ B] – Pr[A ∩ C] – Pr[B ∩ C] 
+ Pr[A ∩ B ∩ C]
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Some diagrams (2)
• R.v. X that takes finite number of values partitions the 

sample space into finite sets (the pre-image of X)
– If X is a roll of dice, we have E1 = {e ∈ Ω : X(e) = 1} 

= X–1(1), and similarly for E2, E3, …, E6 
– If Y is indicator variable for “X ≥ 2”, we get
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Distributions
• The cumulative distribution function (cdf) of r.v. X 

is a function FX: ℝ → [0, 1], FX(x) = Pr[X ≤ x]
• If X is discrete, the probability mass function (pmf) 

of X is fX(x) = Pr[X = x]
• If X is continuous, the probability density function 

(pdf) of X is a function fX for which 
– fX(x) ≥ 0 for all x 
–    
–We have that 
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Example of a CDF and PDF
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Some discrete distributions
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• Uniform distribution over {1, 2, …, m}
– Pr[X = k] = 1/m for 1 ≤ k ≤ m 

• Bernoulli distribution with parameter p 
– Binary, single coin toss
– Pr[X = k] = pk(1 – p)1 – k for k ∈ {0, 1}

• Binomial distribution with parameters p and n 
– n repeated Bernoulli experiments with parameter p 
–                                                 for 0 ≤ k ≤ n 

• Geometric distribution with parameter p 
– Pr[X = k] = (1 – p)kp for k ≥ 0

• Poisson distribution with rate parameter λ
– Pr[X = k] = e���k/k!

Pr[X = k] =
⇣
n
k

⌘
pk (1–p)n�k
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Some continuous distributions
• Uniform distribution in the interval [a, b]
–                         for x ∈ [a, b]

• Exponential distribution with rate λ
–Time between two events in a Poisson process
–                             for x ≥ 0

• t-distribution with ν degrees of freedom
–Typical distribution for test statistics
–   

• χ2 distribution with k degrees of freedom
–   
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Normal (Gaussian) distribution
• Two parameters, µ (mean) and σ2 (variance)
–   

• For standard normal distribution µ = 0 and σ2 = 1
• Many, many applications

• R.v. X is log-normally distributed if its logarithm is 
normally distributed
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Multivariate distributions
• If X and Y are two discrete variables, their joint mass 

function is fX,Y(x, y) = Pr[X = x, Y = y]
– For continuous variables it is a non-negative function s.t.
•   
• for any A ∈ ℝ × ℝ, 

• The marginal distribution (mass function) for X is
–                                                            for discrete X
–                                          for continuous X 

• All these concepts extend naturally to more than two 
variables
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Multivariate normal distribution
• A.k.a. multidimensional Gaussian distribution
• Two variables, vector µ and matrix Σ  
– For n variables, µ ∈ ℝn and Σ ∈ ℝn×n 

• The density function is 

• In the standard multivariate normal distribution, µ 
is all-zeros and Σ is the identity, giving
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Bivariate normal distribution

19
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Independence, moments & Bayes’
• Two events A and B are independent if 

Pr[A ∩ B] = Pr[A]Pr[B]
• Two r.v.’s X and Y are independent if

fX,Y(x, y) = fX(x)fY(y) for all x, y 
• The conditional probability of A given B is

Pr[A | B] = Pr[A ∩ B]/Pr[B]
– Assumes Pr[B] > 0
– If A and B are independent, Pr[A | B] = Pr[A]

• The conditional pmf/pdf is fX|Y(x | y) = fX,Y(x, y)/fY(y)
– For independent X and Y, fX|Y(x | y) = fX(x) 

• A and B are conditionally independent given C if 
Pr[A ∩ B | C] = Pr[A | C]Pr[B | C]

20
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Example
• Test for sickness with outcomes + and –

• Test seems to work:
– Pr[+ | sick] = Pr[+ ∩ sick]/Pr[sick] = 0.9
– Pr[– | healthy] ≈ 0.9

• But what is the probability that you are sick if you 
get +?
– Pr[sick | +] = Pr[+ ∩ sick]/Pr[+] ≈ 0.08

21
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Bayes’ theorem and total probability
• The law of total probability states that if A1, A2, …, 

Ak partition Ω, then for any event B 

– Sum B piece-wise over Ai’s
• The Bayes’ theorem states that if A1, A2, …, Ak is 

partition of Ω s.t. Pr[Ai] > 0 for all i, then for any B 
s.t. Pr[B] > 0 and for each i = 1, …, k

– Pr[Ai] is the prior probability and Pr[Ai | B] the posterior 
probability

22
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Expectation and variance
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• The expected value or r.v. X is
–                                  for discrete X
–                                     for continuous X 
•Exists only if 

• The i-th moment is 
–Assuming that

• The variance of X is V[X] = E[(X – E[X])2] 
= E[X2] – E[X]2

–Also denoted by σ2 
– Standard deviation sd(X) is √V[X] 

E[X] =
P

k k fX (k)
E[X] =

R
R x fX (x)dxR

|x | fX (x)dx < 1
E[X

i] =
R
R x

i
fX (x)dxR ���x

i ��� fX (x)dx < 1
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Properties of expectation and variance
• E[aX + b] = aE[X] + b for constants a and b 
• E[X1 + X2 + … + Xn] = E[X1] + E[X2] + … + E[Xn]
–Linearity of expectation
–Works for any Xi’s (e.g. don’t have to be independent)

• E[XY] = E[X]E[Y] for independent X and Y
• V[aX + b] = a2V[X] for constants a and b 
• V[X1 + X2 + … + Xn] = V[X1] + V[X2] + … + V[Xn] 
– For independent Xi’s

24
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Correlation and covariance
• The covariance between r.v.’s X and Y is 

Cov(X, Y) = E[(X – E[X])(Y – E[Y])]
–Cov(X, Y) = E[XY] – E[X]E[Y]
•Cov(X, X) = V[X]

– If X and Y are independent, then Cov(X, Y) = 0
•The converse is not generally true

• The correlation between X and Y is
ρX,Y = Cov(X, Y)/(sd(X)×sd(Y))
–We have –1 ≤ ρX,Y ≤ 1
– If Y = aX + b for some constants a and b, then ρX,Y = sign(a) 

(i.e. either –1 or 1)

25
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Conditional expectation
• The conditional expectation of X given Y = y is
–E[X | Y = y] = ∑xfX|Y(x | y) for discrete X 
–E[X | Y = y] = ∫xfX|Y(x | y)dx for continuous X 

• The conditional expectation E[X | Y] is a r.v. of Y
– It only becomes a number when we observe Y = y 
– If X is a roll of dice and Y is an indicator variable for event 

“X ≥ 5”, then E[X | Y] is
• (1 + 2 + 3 + 4)×(1/6)/(4/6) = 2.5 if Y = 0
• (5 + 6)×(1/6)/(2/6) = 5.5 if Y = 1

26
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Bounds and convergence
• Sometimes we don’t know everything about a r.v., but 

we want to still study its behaviour
–E.g. we want to bound the “tail probability”

• Trivial bound: If E[X] exists, then Pr[X ≤ E[X]] > 0
–Also Pr[X ≥ E[X]] > 0

• Markov’s inequality: Pr[X ≥ t] ≤ E[X]/t 
–Assumes X is nonnegative and t > 0

• Chebyshev’s inequality: Pr[|X – E[X]| ≥ t] ≤ V[X]/t2 
–Any X, t > 0
–Corollary of Markov’s with (X – E[X])2 as the r.v.

27
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More bounds
• Chernoff–Hoeffding: If X1, … Xn ~ Bernoulli(p), 

then for any ε > 0, 
–   
–A large family of inequalities for different settings

• Mill’s inequality:                                            
for Z ~ N(0, 1) and t > 0
• Cauchy–Schwartz: |E[XY]|2 ≤ E[X2]E[Y2]
–Assumes finite variances

• Jensen’s inequality: E[g(X)] ≥ g(E[X]) for convex g 
and E[g(X)] ≤ g(E[X]) for concave g 
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Convergence
• A sequence X1, X2, … of r.v.’s can converge to r.v. X 

in the following senses
–Xn converges to X almost surely, Xn →a.s. X, if 

Pr[limn→∞ Xn = X] = 1
–Xn converges to X in probability, Xn →P X, if for every 
ε > 0, Pr[|Xn – X| > ε] → 0 as n → ∞
–Xn converges to X in distribution, Xn →D X, if 

limn→∞Fn(x) = F(x) at all points where F(x) is continuous 
•Fn is the cdf of Xn and F the cdf of X 

• Almost sure convergence implies convergence in 
probability implies convergence in distribution

29
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Laws of large numbers
• The weak law of large numbers states that if X1, X2, 

…, Xn are independent and identically distributed 
(i.i.d.) r.v.’s with mean µ, then 

• The strong law of large numbers replaces the 
convergence in probability with almost sure 
convergence
• The laws of large numbers show that the expected 

value is the average value over infinite number of 
repetitions
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Central limit theorem
• If X1, X2, …, Xn are i.i.d. with mean µ and variance σ2, 

and if X ~ N(µ, σ2/n), then per the central limit 
theorem, 
–Does not depend on distributions of Xi 
•Except that they must have mean and variance

–One main reason why normal distribution is ubiquitous
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Statistical inference
• A statistical model M is a set of distributions
–All smooth distributions, all unimodal distributions, all 

discrete distributions with mean 1, …
• M is parametric model if it can be completely 

described with a finite number of parameters
–E.g. the family of Normal distributions with parameters µ 

and σ2  
M = {N(µ, σ2) : µ ∈ ℝ, σ2 ∈ ℝ+}
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Statistical inference
• Given a parametric model M and a sample X1, …, Xn, 

how do we infer the parameters of M?
• The sample mean is 
• The sample variance is 

• The bias of the estimator   for parameter θ is 
–The estimator is unbiased if it has bias 0
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Summary
• What “probability” means is debatable
–Axiomatic approach side-steps interpretation issues 

• With discrete r.v.’s, most of prob. theory is simple 
combinatorics
–Continuous variables are more problematic

• Conditional expectation is a random variable!
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