Chapter II.2: Basic Probability Theory and Statistics

1. What is a probability?
 1.1. Probability spaces, events, and random variables

2. Distributions
 2.1. Discrete distributions
 2.2. Continuous distributions

3. Moments, independence, and Bayes’ rule
 3.1. Expectation, variance, and higher moments
 3.2. Independence
 3.3. Bayes’ rule

4. Bounds and convergence

5. Statistical inference

Wasserman, Ch. 1–5
What is a probability

- “If I throw a dice, I will probably get 4 or less”

- “I’ll probably go running after this lecture”

- The term “probability” here means different things
 - The outcome of a repeatable experiment
 - My personal belief
Views on probability

• In **classical** definition, probability is equally shared among all outcomes, provided the outcomes are equally likely
 — “Equally likely” is decided based on physical symmetries or the like

• In **frequentism**, a probability is the frequency of which something happens over repeated experiments
 — Requires infinite number of repetitions

• In **subjectivism** (**Bayesianism**), probability refers to my subjective “degree of belief”
 — But everybody’s belief is different
Axiomatic approach: sample spaces and events

• A **sample space** Ω is a set of all possible outcomes of an experiment

 – Element $e \in \Omega$ is a **sample outcome** or **realization**

• Subsets $E \subseteq \Omega$ are **events**

• Examples:

 – If we toss a coin twice, $\Omega = \{\text{HH, HT, TH, TT}\}$

 • Event “Second toss is tails” is $A = \{\text{HT, TT}\}$

 – If we toss a coin until we get tails, $\Omega = \{\text{T, HT, HHT, HHHT, HHHHT, HHHHHT, \ldots}\}$

 – If we measure a temperature in Kelvins, $\Omega = \{x \in \mathbb{R}, x \geq 0\}$
Axiomatic approach: probability measures

• Collection \(\mathcal{A} \subseteq 2^\Omega \) is a \(\sigma\text{-algebra} \) of \(\Omega \) if

 – \(\Omega \in \mathcal{A} \)

 – If \(A \in \mathcal{A} \), then \((\Omega \setminus A) \in \mathcal{A} \)

 – If \(A_1, A_2, A_3, \ldots \in \mathcal{A} \), then \((\bigcup_i A_i) \in \mathcal{A} \)

• Function \(\text{Pr}: \mathcal{A} \to [0, 1] \) is a \textit{probability measure} if

 – \textbf{Axiom 1:} \(\text{Pr}[A] \geq 0 \) for every \(A \in \mathcal{A} \)

 – \textbf{Axiom 2:} \(\text{Pr}[\Omega] = 1 \)

 – \textbf{Axiom 3:} If \(A_1, A_2, \ldots \) are disjoint, then \(\text{Pr}[\bigcup_i A_i] = \sum_i \text{Pr}[A_i] \) (countably many \(A_i \)s)
Intermission: some combinatorics

• The **power set** of a set A, 2^A (or $\mathcal{P}(A)$) is a collection of all subsets of A

 – If $A = \{1, 2, 3\}$, then

 $$2^A = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

 – The size of the power set is $2^{|A|}$

 • If A is finite, this is a natural number

 • If $A = \mathbb{N}$, this is the same cardinality as the real numbers

 • If $A = \mathbb{R}$, this is the next cardinal number

• The number of size-k subsets of A is

$$\binom{|A|}{k} = \frac{|A|!}{k!(|A| - k)!}$$
Axiomatic approach: probability spaces and further properties

• A **probability space** is a triple \((\Omega, \mathcal{A}, \Pr)\)

 – \(\mathcal{A}\) contains all the events we can assign a probability

 • If \(\Omega\) is finite or countably infinite, we can have \(\mathcal{A} = 2^\Omega\)

 • If \(\Omega\) is uncountable, it contains sets that cannot have probability (unmeasurable sets)

• From the axioms we can derive that

 – \(\Pr[\emptyset] = 0\)

 – If \(A \subseteq B\), then \(\Pr[A] \leq \Pr[B]\)

 – \(\Pr[\Omega \setminus A] = 1 - \Pr[A]\)

 – \(\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B]\)
Axiomatic approach: random variables

- A random variable (r.v.) is a function $X: \mathcal{A} \rightarrow \mathbb{R}$ such that $\{e \in \Omega : X(e) \leq r\} \in \mathcal{A}$ for all $r \in \mathbb{R}$
 - This is needed to define probabilities like $\Pr[a \leq X \leq b]$
 - $\Pr[X = x]$ is a shorthand for $\Pr[\{e \in \Omega : X(e) = x\}]$

- An r.v. is **discrete** if it takes at most countably infinite different discrete values
 - None of the complexities applies

- An r.v. is **continuous** if it varies continuously in one or more intervals
 - These are the ones that cause problems
Example r.v.’s

• **Indicator variable** 1_E or χ_E for event $E \in \mathcal{A}$

 – $1_E(x) = 1$ if $x \in E$ and $1_E(x) = 0$ otherwise

 – $\Pr[E] = \Pr[1_E = 1]$

• Let r.v. X be the number of heads in 10 coin flips

 – If $e = \text{HTTTTTTHHTT}$, then $X(e) = 3$

 – Discrete r.v.

• Let r.v. Y be the room temperature of my kitchen (in Celsius)

 – if $e = \text{“00:22 on 22 Oct”}$, then $X(e) = 22.7$

 – Continuous r.v.
Some diagrams (1)

• The **Venn diagram** is a way to visualize the combinatorial relationships of three sets

![Venn Diagram]

The **inclusion–exclusion principle** for three sets:

\[
\Pr[A \cup B \cup C] = \\
\Pr[A] + \Pr[B] + \Pr[C] \\
- \Pr[A \cap B] - \Pr[A \cap C] - \Pr[B \cap C] \\
+ \Pr[A \cap B \cap C]
\]
Some diagrams (2)

- R.v. X that takes finite number of values partitions the sample space into finite sets (the pre-image of X)
 - If X is a roll of dice, we have $E_1 = \{ e \in \Omega : X(e) = 1 \}$
 $= X^{-1}(1)$, and similarly for E_2, E_3, \ldots, E_6
 - If Y is indicator variable for “$X \geq 2$”, we get
Distributions

- The **cumulative distribution function** (cdf) of r.v. \(X \) is a function \(F_X: \mathbb{R} \to [0, 1] \), \(F_X(x) = \Pr[X \leq x] \)

- If \(X \) is discrete, the **probability mass function** (pmf) of \(X \) is \(f_X(x) = \Pr[X = x] \)

- If \(X \) is continuous, the **probability density function** (pdf) of \(X \) is a function \(f_X \) for which
 - \(f_X(x) \geq 0 \) for all \(x \)
 - \(\int_{-\infty}^{\infty} f_X(x) \, dx = 1 \)
 - We have that \(F_X(x) = \int_{-\infty}^{x} f_X(t) \, dt \)
Example of a CDF and PDF

CDF:

PDF:
Some discrete distributions

• **Uniform** distribution over \(\{1, 2, \ldots, m\} \)

 \[\Pr[X = k] = \frac{1}{m} \text{ for } 1 \leq k \leq m \]

• **Bernoulli** distribution with parameter \(p \)

 Binary, single coin toss

 \[\Pr[X = k] = p^k (1 - p)^{1-k} \text{ for } k \in \{0, 1\} \]

• **Binomial** distribution with parameters \(p \) and \(n \)

 \(n \) repeated Bernoulli experiments with parameter \(p \)

 \[\Pr[X = k] = \binom{n}{k} p^k (1 - p)^{n-k} \text{ for } 0 \leq k \leq n \]

• **Geometric** distribution with parameter \(p \)

 \[\Pr[X = k] = (1 - p)^k p \text{ for } k \geq 0 \]

• **Poisson** distribution with rate parameter \(\lambda \)

 \[\Pr[X = k] = e^{-\lambda} \frac{\lambda^k}{k!} \]
Some continuous distributions

• **Uniform** distribution in the interval \([a, b]\)

 \[f_X(x) = \frac{1}{b-a} \text{ for } x \in [a, b] \]

• **Exponential** distribution with rate \(\lambda\)

 - Time between two events in a Poisson process

 \[f_X(x) = \lambda e^{-\lambda x} \text{ for } x \geq 0 \]

• **\(t\)-distribution** with \(\nu\) degrees of freedom

 - Typical distribution for test statistics

 \[f_X(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} \]

• **\(\chi^2\)** distribution with \(k\) degrees of freedom

 \[f_X(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-\frac{x}{2}} \]
Normal (Gaussian) distribution

- Two parameters, μ (mean) and σ^2 (variance)

 $$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- For **standard normal distribution** $\mu = 0$ and $\sigma^2 = 1$

- Many, many applications

- R.v. X is **log-normally** distributed if its logarithm is normally distributed
Multivariate distributions

• If X and Y are two discrete variables, their **joint mass function** is $f_{X,Y}(x, y) = \Pr[X = x, Y = y]$

 – For continuous variables it is a non-negative function s.t.
 • $f_{X,Y}(x, y) = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) \, dx \, dy = 1$
 • for any $A \in \mathbb{R} \times \mathbb{R}$, $\Pr[(X, Y) \in A] = \iint_A f_{X,Y}(x, y) \, dx \, dy$

• The **marginal distribution** (mass function) for X is

 – $f_X(x) = \Pr[X = x] = \sum_y f_{X,Y}(x, y)$ for discrete X
 – $f_X(x) = \int_\mathbb{R} f_{X,Y}(x, y) \, dy$ for continuous X

• All these concepts extend naturally to more than two variables
Multivariate normal distribution

- A.k.a. multidimensional Gaussian distribution
- Two variables, vector μ and matrix Σ
 - For n variables, $\mu \in \mathbb{R}^n$ and $\Sigma \in \mathbb{R}^{n \times n}$
- The density function is
 \[
 f(x; \mu, \Sigma) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp \left\{ \frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}
 \]
- In the standard multivariate normal distribution, μ is all-zeros and Σ is the identity, giving
 \[
 f(x) = \frac{1}{(2\pi)^{k/2}} \exp \left\{ \frac{1}{2} x^T x \right\}
 \]
Bivariate normal distribution
Independence, moments & Bayes’

- Two events A and B are **independent** if
 \[\Pr[A \cap B] = \Pr[A]\Pr[B] \]

- Two r.v.’s X and Y are independent if
 \[f_{X,Y}(x, y) = f_X(x)f_Y(y) \text{ for all } x, y \]

- The **conditional probability** of A given B is
 \[\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]} \]
 - Assumes $\Pr[B] > 0$
 - If A and B are independent, \(\Pr[A \mid B] = \Pr[A] \)

- The **conditional pmf/pdf** is \(f_{X \mid Y}(x \mid y) = \frac{f_{X,Y}(x, y)}{f_Y(y)} \)
 - For independent X and Y, \(f_{X \mid Y}(x \mid y) = f_X(x) \)

- A and B are **conditionally independent** given C if
 \[\Pr[A \cap B \mid C] = \Pr[A \mid C]\Pr[B \mid C] \]
Example

- Test for sickness with outcomes + and –

<table>
<thead>
<tr>
<th></th>
<th>sick</th>
<th>healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0.009</td>
<td>0.099</td>
</tr>
<tr>
<td>–</td>
<td>0.001</td>
<td>0.891</td>
</tr>
</tbody>
</table>

- Test seems to work:
 - $\Pr[+ \mid \text{sick}] = \frac{\Pr[+ \cap \text{sick}]}{\Pr[\text{sick}]} = 0.9$
 - $\Pr[– \mid \text{healthy}] \approx 0.9$

- But what is the probability that you are sick if you get +?
 - $\Pr[\text{sick} \mid +] = \frac{\Pr[+ \cap \text{sick}]}{\Pr[+] \approx 0.08}$
Bayes’ theorem and total probability

- The **law of total probability** states that if A_1, A_2, \ldots, A_k partition Ω, then for any event B
 $$\Pr[B] = \sum_{i=1}^{k} \Pr[B \mid A_i] \Pr[A_i]$$
 - Sum B piece-wise over A_i’s

- The **Bayes’ theorem** states that if A_1, A_2, \ldots, A_k is partition of Ω s.t. $\Pr[A_i] > 0$ for all i, then for any B s.t. $\Pr[B] > 0$ and for each $i = 1, \ldots, k$
 $$\Pr[A_i \mid B] = \frac{\Pr[B \mid A_i] \Pr[A_i]}{\sum_{j=1}^{k} \Pr[B \mid A_j] \Pr[A_j]}$$
 - $\Pr[A_i]$ is the **prior probability** and $\Pr[A_i \mid B]$ the **posterior probability**
Expectation and variance

- The **expected value** or r.v. X is
 - $E[X] = \sum_k k f_X(k)$ for discrete X
 - $E[X] = \int_{\mathbb{R}} x f_X(x)dx$ for continuous X
 - Exists only if $\int |x| f_X(x)dx < \infty$
- The **i-th moment** is $E[X^i] = \int_{\mathbb{R}} x^i f_X(x)dx$
 - Assuming that $\int |x^i| f_X(x)dx < \infty$
- The **variance** of X is $V[X] = E[(X - E[X])^2]$
 - $= E[X^2] - E[X]^2$
 - Also denoted by σ^2
 - **Standard deviation** $sd(X)$ is $\sqrt{V[X]}$
Properties of expectation and variance

• $E[aX + b] = aE[X] + b$ for constants a and b

• $E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n]$
 — Linearity of expectation
 — Works for any X_i’s (e.g. don’t have to be independent)

• $E[XY] = E[X]E[Y]$ for independent X and Y

• $V[aX + b] = a^2V[X]$ for constants a and b

• $V[X_1 + X_2 + \ldots + X_n] = V[X_1] + V[X_2] + \ldots + V[X_n]$
 — For independent X_i’s
Correlation and covariance

• The **covariance** between r.v.’s X and Y is
 \[
 \text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]
 \]

 \[= E[XY] - E[X]E[Y] \]

 • $\text{Cov}(X, X) = V[X]$

 – If X and Y are independent, then $\text{Cov}(X, Y) = 0$
 • The converse is not generally true

• The **correlation** between X and Y is
 \[
 \rho_{X,Y} = \frac{\text{Cov}(X, Y)}{\text{sd}(X) \times \text{sd}(Y)}
 \]

 – We have $-1 \leq \rho_{X,Y} \leq 1$

 – If $Y = aX + b$ for some constants a and b, then $\rho_{X,Y} = \text{sign}(a)$
 (i.e. either -1 or 1)
Conditional expectation

• The **conditional expectation** of \(X \) given \(Y = y \) is

 – \(E[X \mid Y = y] = \sum f_{X \mid Y}(x \mid y) \) for discrete \(X \)

 – \(E[X \mid Y = y] = \int f_{X \mid Y}(x \mid y)dx \) for continuous \(X \)

• The conditional expectation \(E[X \mid Y] \) is a r.v. of \(Y \)

 – It only becomes a number when we observe \(Y = y \)

 – If \(X \) is a roll of dice and \(Y \) is an indicator variable for event “\(X \geq 5 \)”, then \(E[X \mid Y] \) is

 \[
 \begin{align*}
 & (1 + 2 + 3 + 4) \times (1/6)/(4/6) = 2.5 \text{ if } Y = 0 \\
 & (5 + 6) \times (1/6)/(2/6) = 5.5 \text{ if } Y = 1
 \end{align*}
 \]
Bounds and convergence

- Sometimes we don’t know everything about a r.v., but we want to still study its behaviour
 - E.g. we want to bound the “tail probability”

- Trivial bound: If $E[X]$ exists, then $\Pr[X \leq E[X]] > 0$
 - Also $\Pr[X \geq E[X]] > 0$

- **Markov’s inequality**: $\Pr[X \geq t] \leq E[X]/t$
 - Assumes X is nonnegative and $t > 0$

- **Chebyshev’s inequality**: $\Pr[|X - E[X]| \geq t] \leq V[X]/t^2$
 - Any X, $t > 0$
 - Corollary of Markov’s with $(X - E[X])^2$ as the r.v.
More bounds

- **Chernoff–Hoeffding**: If $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$, then for any $\varepsilon > 0$, $\Pr[|\bar{X}_n - p| > \varepsilon] \leq 2e^{-2n\varepsilon^2}$

 $\bar{X}_n = n^{-1} \sum_{i=1}^{n} X_i$

 - A large family of inequalities for different settings

- **Mill’s inequality**: $\Pr[|Z| > t] \leq \sqrt{\frac{2}{\pi}} \frac{\exp\{-t^2/2\}}{t}$

 for $Z \sim \mathcal{N}(0, 1)$ and $t > 0$

- **Cauchy–Schwartz**: $|E[XY]|^2 \leq E[X^2]E[Y^2]$

 - Assumes finite variances

- **Jensen’s inequality**: $E[g(X)] \geq g(E[X])$ for convex g and $E[g(X)] \leq g(E[X])$ for concave g
Convergence

• A sequence X_1, X_2, \ldots of r.v.’s can converge to r.v. X in the following senses

 – X_n converges to X **almost surely**, $X_n \to_{\text{a.s.}} X$, if
 $\Pr[\lim_{n \to \infty} X_n = X] = 1$

 – X_n converges to X in **probability**, $X_n \to_{\mathbb{P}} X$, if for every $\epsilon > 0$, $\Pr[|X_n - X| > \epsilon] \to 0$ as $n \to \infty$

 – X_n converges to X in **distribution**, $X_n \to_{\mathbb{D}} X$, if
 $\lim_{n \to \infty} F_n(x) = F(x)$ at all points where $F(x)$ is continuous
 • F_n is the cdf of X_n and F the cdf of X

• Almost sure convergence implies convergence in probability implies convergence in distribution
Laws of large numbers

- The **weak law of large numbers** states that if X_1, X_2, \ldots, X_n are independent and identically distributed (i.i.d.) r.v.’s with mean μ, then

 $$\bar{X}_n = n^{-1} \sum_{i=1}^{n} X_i \rightarrow_{P} \mu.$$

- The **strong law of large numbers** replaces the convergence in probability with almost sure convergence.

- The laws of large numbers show that the expected value is the average value over infinite number of repetitions.
Central limit theorem

• If X_1, X_2, \ldots, X_n are i.i.d. with mean μ and variance σ^2, and if $X \sim N(\mu, \sigma^2/n)$, then per the central limit theorem, $\bar{X}_n \xrightarrow{D} X$.

 – Does not depend on distributions of X_i

 • Except that they must have mean and variance

 – One main reason why normal distribution is ubiquitous
Statistical inference

• A **statistical model** M is a set of distributions
 – All smooth distributions, all unimodal distributions, all discrete distributions with mean 1, …

• M is **parametric model** if it can be completely described with a finite number of parameters
 – E.g. the family of Normal distributions with parameters μ and σ^2

 $$M = \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+\}$$
Statistical inference

- Given a parametric model M and a sample X_1, \ldots, X_n, how do we infer the parameters of M?
- The **sample mean** is $\bar{X}_n = n^{-1} \sum_{i=1}^{n} X_i$
- The **sample variance** is
 \[S^2_{X_n} = (n - 1)^{-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \]
- The **bias** of the estimator $\hat{\theta}$ for parameter θ is $E[\hat{\theta}] - \theta$
 - The estimator is **unbiased** if it has bias 0
Summary

• What “probability” means is debatable
 – Axiomatic approach side-steps interpretation issues

• With discrete r.v.’s, most of prob. theory is simple combinatorics
 – Continuous variables are more problematic

• Conditional expectation is a random variable!